Supporting Information for

Actinide Tetracyanoplatinates: Synthesis and Structural Characterization Featuring Unique Fluorescent Properties from d-f Orbital Interactions

Branson Maynard^a, Richard Sykora^b, Joel T. Mague,^c and Anne E. V. Gorden^a*

^aDepartment of Chemistry and Biochemistry, Auburn University, AL, USA 36849

^bDepartment of Chemistry, University of South Alabama, AL, USA 36688

^cDepartment of Chemistry, Tulane University, LA, USA 70118

Email: gordeae@auburn.edu

Table of Contents
General Experimental
Crystallographic Images
MALDI - mass spectrometry data
FTIR
Crystallographic Information
1 $Th_2(H_2O)_{10}(OH)[Pt(CN)_4]^{-5}H_2O$
2 Th(H ₂ O) ₇ [Pt(CN) ₄] ₂ 10H ₂ O
3 $K_3[(UO_2)_2(OH)(Pt(CN)_4)_2]_2 \cdot NO_3 \cdot 1.5H_2O$

Experimental Section

General Procedure: $UO_2(NO_3)_2.6H_2O$, $Th(NO_3)_4.6H_2O$ and $K_2[Pt(CN)_4].3H_2O$ were purchased from Acros and used as received. The IR data were recorded as KBr pellets on SHIMADZU Inc. IR, Prestige-21 Fourier Transform Infrared Spectrophotometer in the range 400 – 4000 cm⁻¹. MALDI was performed on a Micromass QTOF mass spectrometer.

Synthesis: $\underline{\text{Th}(\text{H}_2\text{O})_7[\text{Pt}(\text{CN})_4]_2 \cdot 10\text{H}_2\text{O}}{10\text{H}_2\text{O}}$ (1) was prepared by dissolving 0.0250 g (0.04 mmol) of $\text{Th}(\text{NO}_3)_4 \cdot 6\text{H}_2\text{O}$ and 0.0235 g (0.06 mmol) of $K_2[\text{Pt}(\text{CN})_4]$ 'xH₂O in 3 mL of H₂O in a test tube. The pH was brought to 2.5 with a small amount of 0.01 M KOH. The test tube was placed in a slow evaporation chamber, after 29 days green-yellow plates suitable for single crystal X-ray diffraction were observed.

<u>Th₂(H₂O)₁₀(OH)[Pt(CN)₄]5H₂O</u>(**2**) was prepared out by dissolving 0.0246 g (0.04 mmol) of Th(NO₃)₄6H₂O and 0.0237 g (.06 mmol) of K₂[Pt(CN)₄]3H₂O in 3 mL of H₂O in a test tube. The test tube was placed in a slow evaporation chamber, after 14 days green-yellow plates suitable for single crystal X-ray diffraction were observed.

<u>K₃[(UO₂)₂(OH)(Pt(CN)₄)₂]₂·NO₃·1.5H₂O (3) was prepared dissolving 0.0248 g (0.05 mmol) of UO₂(NO₃)₂·6H₂O and 0.0190 g (.05 mmol)of K₂[Pt(CN)₄]·xH₂O in 3 mL of H₂O. The test tube was placed in a slow evaporation chamber, after 20 days yellow plates suitable for single crystal X-ray diffraction were observed.</u>

X-ray Crystallography: Crystals of compounds 2 and 3 were obtained in good yield from slow evaporation in water at room temperature. Crystals of 1 were obtained by slow evaporation of a water solution with a pH of 2.5. X-ray diffraction data for 1 were collected at -80 °C on a Bruker SMART APEX CCD X-ray diffractometer unit using Mo Kα radiation from crystals mounted in Paratone-N oil on glass fibers. SMART (v 5.624) was used for preliminary determination of cell constants and data collection control. Determination of integrated intensities and global cell refinement were performed with the Bruker SAINT Software package using a narrow-frame integration algorithm. X-ray data for 2 and 3 were collected using a Varian Oxford Xcalibur E single-crystal X-ray diffractometer. Intensity measurements were performed using Mo Ka radiation, from a sealed-tube Enhance X-ray source, and an Eos area detector. CrysAlis^{R1} was used for preliminary determination of the cell constants, data collection strategy, and for data collection control. Following data collection, CrysAlis was also used to integrate the reflection intensities, apply an absorption correction to the data, and perform a global cell refinement. The program suite SHELXTL (v 5.1) was used for space group determination, structure solution, and refinement.¹ Refinement was performed against F^2 by weighted full-matrix least square, and empirical absorption correction (SADABS³) was applied. H atoms were found from the difference fourier maps.

Fig. S1 Packing diagram of 1, Th(H₂O)₇[Pt(CN)₄]₂:10H₂O. Pt-Pt interactions and hydrogen bonding shown with dotted lines.

Fig. S2 Asymmetric unit of $Th_2(H_20)_{10}(OH)_2[Pt(CN)_4]_3 5H_20$ (2).

Fig. S3 Viewing down the C axis 2. Two Th centers are bridged by a hydroxy group.

Fig. S4 Packing diagram of 2 Pt-Pt interactions and hydrogen bonding shown with dotted lines.

Fig. S6 Packing diagram of $K_3[(UO_2)_2(OH)(Pt(CN)_4)_2]_2 \cdot NO_3 \cdot 1.5H_2O$ (3) viewed perpendicular to the c axis.

Crystallographic Information for 1,2 and 3

Table 1. Crystal data and structure refinement for 1, $Th(H_2O)_7[Pt(CN)_4]_2$:10H₂O.

Identification code	Th1
Empirical formula	C8 H34 N8 O17 Pt2 Th
Formula weight	1136.65
Temperature	193(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, Pbca
Unit cell dimensions	
	a = 13.2464(6) Å alpha = 90.0000(9) °
	b = 20.5599(10) Å beta = 90.0000(1) °
	$c = 22.4536(11) \text{ Å} \text{ gamma} = 90.0000(9) \circ$
Volume	6115.1(5) Å ^3
Z, Calculated density	8, 2.469 Mg/m^3
Absorption coefficient	14.053 mm^-1
F(000)	4160
Crystal size	0.80 x 0.80 x 0.09 mm
Theta range for data collection	1.81 to 28.27 °
Limiting indices	-17<=h<=17, -27<=k<=27, -29<=l<=29
Reflections collected / unique	59819 / 7574 [R(int) = 0.0737]
Completeness to theta $= 28.27$	99.9 %
Absorption correction	Analytical
Max. and min. transmission	0.3710 and 0.0314
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7574 / 0 / 313
Goodness-of-fit on F^2	0.999
Final R indices [I>2sigma(I)]	R1 = 0.0301, $wR2 = 0.0766$
R indices (all data)	R1 = 0.0373, wR2 = 0.0781
Largest diff. peak and hole	2.154 and -3.034 e. Å ^-3

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³)

	X	у	Z	U(eq)
Th(1)	3617(1)	3956(1)	8669(1)	14(1)
Pt(1)	3747(1)	6259(1)	7345(1)	16(1)
O(1)	2519(3)	3947(2)	7783(2)	28(1)
N(1)	3683(3)	5121(2)	8278(2)	22(1)
C(1)	3711(4)	5557(2)	7954(2)	18(1)
O(2)	4947(3)	3941(2)	7922(2)	25(1)
Pt(2)	3733(1)	1421(1)	7668(1)	15(1)
N(2)	1312(3)	2367(3)	8310(3)	33(1)
C(2)	3733(4)	6956(3)	7957(3)	21(1)
O(3)	2275(3)	3225(2)	9036(2)	23(1)
N(3)	6121(4)	2301(2)	8688(2)	31(1)
C(3)	3809(4)	6923(3)	6703(3)	24(1)
O(4)	2058(3)	4602(2)	8865(2)	25(1)
N(4)	3619(4)	5162(3)	6382(2)	35(1)
C(4)	3683(4)	5561(3)	6732(3)	26(1)
O(5)	5104(3)	4559(2)	9052(2)	25(1)
N(5)	3705(3)	2874(2)	8098(2)	18(1)
C(5)	3725(4)	2356(3)	7925(2)	18(1)
O(6)	4743(3)	3181(2)	9197(2)	24(1)
N(6)	3954(4)	1798(3)	6321(2)	33(1)
C(6)	3872(4)	1663(3)	6813(3)	22(1)
O(7)	3459(3)	4136(2)	9730(2)	27(1)
C(7)	3567(4)	1168(3)	8520(3)	20(1)
N(7)	3449(4)	1006(2)	9002(2)	31(1)
O(8)	127(3)	4252(2)	8998(2)	32(1)
N(8)	6239(3)	4929(3)	7635(2)	28(1)
C(8)	3755(4)	487(3)	7462(2)	21(1)
O(9)	4100(4)	2602(2)	10200(2)	36(1)
O(10)	4764(3)	3339(2)	6865(2)	30(1)
O(11)	4819(3)	1362(2)	9962(2)	38(1)
O(12)	6790(3)	3788(2)	177(2)	35(1)
O(13)	2101(3)	4223(2)	5978(2)	32(1)

 $Th(H_2O)_7[Pt(CN)_4]_2$:10H₂O. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(14)	5082(3)	5813(2)	9419(2)	28(1)
O(15)	2691(3)	3258(2)	6760(2)	30(1)
O(16)	2020(4)	2537(2)	10071(2)	38(1)
O(17)	1751(4)	4061(3)	10301(3)	74(2)

Table 3. Bond lengths [Å] and angles [°] for $Th(H_2O)_7[Pt(CN)_4]_2$ ·10H₂O.

Th(1)-O(7)	2.420(4)
Th(1)-O(2)	2.434(4)
Th(1)-O(1)	2.464(4)
Th(1)-O(3)	2.469(4)
Th(1)-O(5)	2.481(4)
Th(1)-O(6)	2.485(4)
Th(1)-O(4)	2.494(4)
Th(1)-N(1)	2.552(5)
Th(1)-N(5)	2.570(4)
Pt(1)-C(2)	1.985(6)
Pt(1)-C(3)	1.986(6)
Pt(1)-C(1)	1.990(6)
Pt(1)-C(4)	1.991(6)
N(1)-C(1)	1.155(7)
Pt(2)-C(8)	1.975(6)
Pt(2)-C(6)	1.991(6)
Pt(2)-C(7)	1.995(6)
Pt(2)-C(5)	2.007(6)
N(2)-C(2)#1	1.160(8)
C(2)-N(2)#2	1.160(8)
N(3)-C(3)#3	1.176(8)
C(3)-N(3)#4	1.176(8)
N(4)-C(4)	1.139(8)
N(5)-C(5)	1.135(7)
N(6)-C(6)	1.146(7)
C(7)-N(7)	1.142(8)
N(8)-C(8)#4	1.168(8)
C(8)-N(8)#3	1.168(8)

O(7)-Th(1)-O(2)	138.02(13)
O(7)-Th(1)-O(1)	138.15(13)
O(2)-Th(1)-O(1)	82.58(15)
O(7)-Th(1)-O(3)	72.68(13)
O(2)-Th(1)-O(3)	138.01(13)
O(1)-Th(1)-O(3)	80.77(13)
O(7)-Th(1)-O(5)	69.61(14)
O(2)-Th(1)-O(5)	70.74(14)
O(1)-Th(1)-O(5)	138.78(14)
O(3)-Th(1)-O(5)	139.48(14)
O(7)-Th(1)-O(6)	71.35(13)
O(2)-Th(1)-O(6)	83.43(13)
O(1)-Th(1)-O(6)	137.26(12)
O(3)-Th(1)-O(6)	83.24(13)
O(5)-Th(1)-O(6)	71.25(13)
O(7)-Th(1)-O(4)	70.93(13)
O(2)-Th(1)-O(4)	136.75(13)
O(1)-Th(1)-O(4)	70.01(13)
O(3)-Th(1)-O(4)	70.69(12)
O(5)-Th(1)-O(4)	109.29(13)
O(6)-Th(1)-O(4)	138.98(13)
O(7)-Th(1)-N(1)	101.46(15)
O(2)-Th(1)-N(1)	75.52(14)
O(1)-Th(1)-N(1)	75.52(14)
O(3)-Th(1)-N(1)	135.31(13)
O(5)-Th(1)-N(1)	67.86(14)
O(6)-Th(1)-N(1)	138.21(13)
O(4)-Th(1)-N(1)	65.79(13)
O(7)-Th(1)-N(5)	128.82(15)
O(2)-Th(1)-N(5)	67.17(13)
O(1)-Th(1)-N(5)	67.51(13)
O(3)-Th(1)-N(5)	70.85(13)
O(5)-Th(1)-N(5)	124.67(13)
O(6)-Th(1)-N(5)	69.82(13)
O(4)-Th(1)-N(5)	125.91(13)
N(1)-Th(1)-N(5)	129.71(15)

C(2)-Pt(1)-C(3)	90.4(2)
C(2)-Pt(1)-C(1)	92.6(2)
C(3)-Pt(1)-C(1)	176.8(2)
C(2)-Pt(1)-C(4)	177.0(2)
C(3)-Pt(1)-C(4)	89.8(2)
C(1)-Pt(1)-C(4)	87.2(2)
C(1)-N(1)-Th(1)	161.2(4)
N(1)-C(1)-Pt(1)	175.5(5)
C(8)-Pt(2)-C(6)	90.9(2)
C(8)-Pt(2)-C(7)	88.5(2)
C(6)-Pt(2)-C(7)	178.8(2)
C(8)-Pt(2)-C(5)	176.8(2)
C(6)-Pt(2)-C(5)	92.2(2)
C(7)-Pt(2)-C(5)	88.5(2)
N(2)#2-C(2)-Pt(1)	177.5(5)
N(3)#4-C(3)-Pt(1)	177.1(5)
N(4)-C(4)-Pt(1)	178.1(5)
C(5)-N(5)-Th(1)	170.1(4)
N(5)-C(5)-Pt(2)	176.4(5)
N(6)-C(6)-Pt(2)	179.5(6)
N(7)-C(7)-Pt(2)	177.6(5)
N(8)#3-C(8)-Pt(2)	177.1(5)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,y-1/2,z #2 -x+1/2,y+1/2,z #3 -x+1,y-1/2,-z+3/2 #4 -x+1,y+1/2,-z+3/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Th(1)	18(1)	14(1)	10(1)	0(1)	0(1)	0(1)
Pt(1)	19(1)	16(1)	14(1)	2(1)	1(1)	0(1)
O(1)	38(2)	26(2)	19(2)	-3(2)	-8(2)	6(2)
N(1)	27(3)	18(2)	20(3)	2(2)	-2(2)	-1(2)
C(1)	24(3)	16(3)	14(3)	-4(2)	0(2)	0(2)
O(2)	36(2)	24(2)	16(2)	-2(2)	10(2)	-3(2)
Pt(2)	19(1)	15(1)	13(1)	-2(1)	1(1)	0(1)
N(2)	31(3)	30(3)	38(3)	-8(3)	3(2)	-1(2)
C(2)	21(3)	19(3)	23(3)	-1(2)	0(2)	-1(2)
O(3)	24(2)	24(2)	19(2)	-1(2)	3(2)	-6(2)
N(3)	35(3)	30(3)	29(3)	-9(2)	3(2)	0(2)
C(3)	25(3)	21(3)	25(3)	-1(2)	0(2)	0(2)
O(4)	23(2)	24(2)	27(2)	2(2)	5(2)	5(2)
N(4)	47(3)	36(3)	21(3)	-7(2)	-4(2)	0(2)
C(4)	35(3)	26(3)	16(3)	9(2)	0(2)	-1(2)
O(5)	26(2)	27(2)	23(2)	-3(2)	-6(2)	-3(2)
N(5)	26(2)	15(2)	13(2)	-2(2)	2(2)	-1(2)
C(5)	16(3)	25(3)	13(3)	4(2)	1(2)	0(2)
O(6)	31(2)	24(2)	16(2)	1(2)	-1(2)	6(2)
N(6)	40(3)	39(3)	21(3)	0(2)	3(3)	-4(2)
C(6)	24(3)	23(3)	18(3)	-6(2)	0(2)	0(2)
O(7)	26(2)	42(2)	12(2)	-3(2)	2(2)	-1(2)
C(7)	22(3)	18(3)	19(3)	-4(2)	1(2)	-3(2)
N(7)	43(3)	27(3)	24(3)	2(2)	3(2)	-6(2)
O(8)	31(2)	31(2)	35(3)	-2(2)	-1(2)	-1(2)
N(8)	32(3)	20(3)	32(3)	4(2)	5(2)	-1(2)
C(8)	28(3)	23(3)	11(3)	-3(2)	4(2)	0(2)
O(9)	56(3)	35(2)	16(2)	1(2)	4(2)	-1(2)
O(10)	37(2)	32(2)	21(2)	-2(2)	0(2)	1(2)
O(11)	45(3)	41(3)	28(3)	-1(2)	-6(2)	4(2)
O(12)	36(2)	40(3)	28(3)	1(2)	0(2)	4(2)

Table 4. Anisotropic displacement parameters (Å²x 10³)for Th(H₂O)₇[Pt(CN)₄]₂·10H₂O. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

O(13)	30(2)	36(2)	29(3)	-3(2)	-4(2)	-2(2)
O(14)	37(2)	29(2)	18(2)	-6(2)	-4(2)	-3(2)
O(15)	39(2)	30(2)	21(2)	-2(2)	-3(2)	-1(2)
O(16)	58(3)	36(2)	20(2)	7(2)	6(2)	-1(2)
O(17)	44(3)	139(6)	40(3)	-45(4)	17(3)	-24(3)

 $Table \ 5. \ Crystal \ data \ and \ structure \ refinement \ for \ (2), \ Th_2(H_20)_{10}(OH)_2[Pt(CN)_4]_3 \\ \cdot 5H_20.$

Identification code	Th2	
Empirical formula	$C_{12}H_{32}N_{12}O_{17}Pt_{3}Th_{2} \\$	
Formula weight	1665.85	
Temperature	295(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 16.4915(4) Å	<i>α</i> = 90°.
	b = 12.1941(4) Å	β=114.016(4)°.
	c = 19.5380(5) Å	$\gamma = 90^{\circ}$.
Volume	3588.9(2) Å ³	
Z	4	
Density (calculated)	3.083 Mg/m ³	
Absorption coefficient	19.989 mm ⁻¹	
F(000)	2952	
Crystal size	0.29 x 0.03 x 0.03 mm ³	
Theta range for data collection	3.34 to 30.61°.	
Index ranges	-22<=h<=23, -16<=k<=17, -27<=l<=2	7
Reflections collected	32269	
Independent reflections	5166 [R(int) = 0.0281]	
Completeness to theta = 29.00°	99.6 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.0 and 0.30	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	5166 / 0 / 211	
Goodness-of-fit on F^2	0.918	

Final R indices [I>2sigma(I)]	R1 = 0.0141, $wR2 = 0.0239$
R indices (all data)	R1 = 0.0211, wR2 = 0.0244
Extinction coefficient	0.000167(4)
Largest diff. peak and hole	0.652 and -0.703 e.Å ⁻³

Table 6. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for Th₂(H₂0)₁₀(OH)₂[Pt(CN)₄]₃:5H₂0. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
Th(1)	1439(1)	1950(1)	149(1)	15(1)
Pt(1)	-838(1)	2711(1)	1667(1)	19(1)
Pt(2)	2500	-2500	0	19(1)
O(1)	2912(1)	1674(1)	321(1)	21(1)
O(2)	327(1)	3347(2)	-470(1)	39(1)
O(3)	2138(1)	1128(2)	1407(1)	36(1)
O(4)	978(1)	1541(2)	-1193(1)	32(1)
O(5)	1993(2)	3462(2)	1087(1)	41(1)
O(6)	-40(1)	1005(2)	-412(1)	31(1)
O(7)	0	2667(3)	-2500	48(1)
O(8)	1252(2)	-571(2)	1772(1)	52(1)
O(9)	-1371(2)	6087(2)	2690(1)	51(1)
C(1)	-39(2)	2306(2)	1173(2)	25(1)
C(2)	-1040(2)	1152(2)	1838(2)	30(1)
C(3)	-1609(2)	3159(2)	2176(2)	28(1)
C(4)	-705(2)	4284(2)	1463(2)	30(1)
C(5)	1985(2)	-1034(2)	46(1)	22(1)
C(6)	1855(2)	-3191(2)	550(2)	32(1)
N(1)	429(2)	2110(2)	888(1)	30(1)
N(2)	-1182(2)	261(2)	1927(2)	53(1)
N(3)	-2028(2)	3433(2)	2486(2)	47(1)
N(4)	-661(2)	5176(2)	1329(2)	49(1)
N(5)	1694(2)	-181(2)	51(1)	27(1)
N(6)	1490(2)	-3589(3)	873(2)	63(1)

Th(1)-O(1)	2.3369(17)
Th(1)-O(1)#1	2.3675(17)
Th(1)-O(2)	2.4342(18)
Th(1)-O(3)	2.4631(18)
Th(1)-O(4)	2.4650(18)
Th(1)-O(5)	2.4962(19)
Th(1)-O(6)	2.5113(18)
Th(1)-N(1)	2.619(2)
Th(1)-N(5)	2.651(2)
Th(1)-Th(1)#1	4.0045(2)
Pt(1)-C(2)	1.982(3)
Pt(1)-C(3)	1.982(3)
Pt(1)-C(1)	1.987(3)
Pt(1)-C(4)	1.988(3)
Pt(2)-C(6)#2	1.982(3)
Pt(2)-C(6)	1.982(3)
Pt(2)-C(5)#2	1.997(3)
Pt(2)-C(5)	1.997(3)
O(1)-Th(1)#1	2.3675(17)
O(1)-H(1A)	0.8501
O(2)-H(2A)	0.8500
O(2)-H(2B)	0.8499
O(3)-H(3A)	0.8500
O(3)-H(3B)	0.8501
O(4)-H(4A)	0.8500
O(4)-H(4B)	0.8500
O(5)-H(5A)	0.8500
O(5)-H(5B)	0.8500
O(6)-H(6A)	0.8500
O(6)-H(6B)	0.8501
O(7)-H(7)	0.8501
O(8)-H(8A)	0.8499
O(8)-H(8B)	0.8500

 $\label{eq:table 7. Bond lengths [Å] and angles [°] for $Th_2(H_20)_{10}(OH)_2[Pt(CN)_4]_3$:5H_20.$}$

O(9)-H(9A)	0.8500
O(9)-H(9B)	0.8500
C(1)-N(1)	1.145(3)
C(2)-N(2)	1.140(4)
C(3)-N(3)	1.139(4)
C(4)-N(4)	1.129(4)
C(5)-N(5)	1.147(3)
C(6)-N(6)	1.141(4)
O(1)-Th(1)-O(1)#1	63.31(7)
O(1)-Th(1)-O(2)	134.55(6)
O(1)#1-Th(1)-O(2)	71.29(6)
O(1)-Th(1)-O(3)	76.19(6)
O(1)#1-Th(1)-O(3)	125.04(6)
O(2)-Th(1)-O(3)	137.08(7)
O(1)-Th(1)-O(4)	88.66(7)
O(1)#1-Th(1)-O(4)	73.94(6)
O(2)-Th(1)-O(4)	76.67(7)
O(3)-Th(1)-O(4)	142.68(7)
O(1)-Th(1)-O(5)	87.31(7)
O(1)#1-Th(1)-O(5)	70.95(6)
O(2)-Th(1)-O(5)	79.88(8)
O(3)-Th(1)-O(5)	71.65(7)
O(4)-Th(1)-O(5)	142.45(6)
O(1)-Th(1)-O(6)	139.91(6)
O(1)#1-Th(1)-O(6)	131.91(6)
O(2)-Th(1)-O(6)	72.66(7)
O(3)-Th(1)-O(6)	103.04(6)
O(4)-Th(1)-O(6)	67.57(6)
O(5)-Th(1)-O(6)	131.24(7)
O(1)-Th(1)-N(1)	142.06(7)
O(1)#1-Th(1)-N(1)	130.56(7)
O(2)-Th(1)-N(1)	72.63(7)
O(3)-Th(1)-N(1)	67.93(7)
O(4)-Th(1)-N(1)	127.69(7)
O(5)-Th(1)-N(1)	70.37(7)
O(6)-Th(1)-N(1)	63.37(7)

O(1)-Th(1)-N(5)	71.54(6)
O(1)#1-Th(1)-N(5)	123.85(7)
O(2)-Th(1)-N(5)	139.42(7)
O(3)-Th(1)-N(5)	69.49(7)
O(4)-Th(1)-N(5)	73.40(6)
O(5)-Th(1)-N(5)	139.08(7)
O(6)-Th(1)-N(5)	70.93(7)
N(1)-Th(1)-N(5)	105.55(7)
O(1)-Th(1)-Th(1)#1	31.89(4)
O(1)#1-Th(1)-Th(1)#1	31.43(4)
O(2)-Th(1)-Th(1)#1	102.69(5)
O(3)-Th(1)-Th(1)#1	101.54(5)
O(4)-Th(1)-Th(1)#1	79.79(5)
O(5)-Th(1)-Th(1)#1	77.27(5)
O(6)-Th(1)-Th(1)#1	147.28(4)
N(1)-Th(1)-Th(1)#1	147.64(5)
N(5)-Th(1)-Th(1)#1	98.31(5)
C(2)-Pt(1)-C(3)	89.65(11)
C(2)-Pt(1)-C(1)	91.90(11)
C(3)-Pt(1)-C(1)	178.04(11)
C(2)-Pt(1)-C(4)	176.96(12)
C(3)-Pt(1)-C(4)	88.88(12)
C(1)-Pt(1)-C(4)	89.63(11)
C(6)#2-Pt(2)-C(6)	180.00(19)
C(6)#2-Pt(2)-C(5)#2	91.37(11)
C(6)-Pt(2)-C(5)#2	88.63(11)
C(6)#2-Pt(2)-C(5)	88.63(11)
C(6)-Pt(2)-C(5)	91.37(11)
C(5)#2-Pt(2)-C(5)	180.00(15)
Th(1)-O(1)-Th(1)#1	116.69(7)
Th(1)-O(1)-H(1A)	121.4
Th(1)#1-O(1)-H(1A)	121.1
Th(1)-O(2)-H(2A)	118.3
Th(1)-O(2)-H(2B)	119.7
H(2A)-O(2)-H(2B)	120.5
Th(1)-O(3)-H(3A)	123.6

Th(1)-O(3)-H(3B)	120.5
H(3A)-O(3)-H(3B)	115.6
Th(1)-O(4)-H(4A)	124.4
Th(1)-O(4)-H(4B)	124.7
H(4A)-O(4)-H(4B)	110.7
Th(1)-O(5)-H(5A)	109.8
Th(1)-O(5)-H(5B)	128.6
H(5A)-O(5)-H(5B)	121.4
Th(1)-O(6)-H(6A)	129.4
Th(1)-O(6)-H(6B)	112.5
H(6A)-O(6)-H(6B)	112.0
H(8A)-O(8)-H(8B)	104.9
H(9A)-O(9)-H(9B)	108.9
N(1)-C(1)-Pt(1)	177.6(3)
N(2)-C(2)-Pt(1)	177.9(3)
N(3)-C(3)-Pt(1)	177.7(3)
N(4)-C(4)-Pt(1)	177.5(3)
N(5)-C(5)-Pt(2)	177.6(3)
N(6)-C(6)-Pt(2)	179.4(3)
C(1)-N(1)-Th(1)	171.5(2)
C(5)-N(5)-Th(1)	165.5(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,-y+1/2,-z #2 -x+1/2,-y-1/2,-z

Table 8. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for $Th_2(H_20)_{10}(OH)_2[Pt(CN)_4]_3$. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Th(1)	15(1)	15(1)	18(1)	1(1)	10(1)	1(1)
Pt(1)	21(1)	21(1)	19(1)	1(1)	12(1)	2(1)
Pt(2)	16(1)	16(1)	24(1)	0(1)	9(1)	2(1)
O(1)	19(1)	17(1)	33(1)	9(1)	15(1)	5(1)
O(2)	24(1)	38(1)	61(1)	26(1)	24(1)	11(1)

Supplementary	y Material	(ESI) for Ch	nemical Comr	nunications
This journal is	(c) The Ro	oyal Society	of Chemistry	/ 2010

O(3)	32(1)	48(1)	25(1)	10(1)	8(1)	-2(1)
O(4)	44(1)	29(1)	23(1)	0(1)	13(1)	5(1)
O(5)	61(2)	39(1)	34(1)	-15(1)	32(1)	-23(1)
O(6)	23(1)	43(1)	29(1)	-3(1)	13(1)	-9(1)
O(7)	61(2)	42(2)	39(2)	0	18(2)	0
O(8)	41(1)	80(2)	32(1)	-5(1)	12(1)	9(1)
O(9)	45(2)	66(2)	36(1)	-4(1)	11(1)	6(1)
C(1)	23(1)	28(2)	23(1)	-1(1)	10(1)	-2(1)
C(2)	39(2)	30(2)	27(2)	-3(1)	20(1)	4(1)
C(3)	33(2)	27(2)	27(1)	6(1)	17(1)	6(1)
C(4)	29(2)	34(2)	28(2)	3(1)	15(1)	1(1)
C(5)	17(1)	23(1)	25(1)	-1(1)	7(1)	-2(1)
C(6)	22(1)	36(2)	37(2)	7(1)	13(1)	4(1)
N(1)	27(1)	41(2)	29(1)	-3(1)	18(1)	-1(1)
N(2)	90(2)	28(2)	55(2)	-1(1)	42(2)	-2(2)
N(3)	57(2)	55(2)	45(2)	11(1)	36(2)	23(2)
N(4)	57(2)	31(2)	60(2)	14(1)	25(2)	0(1)
N(5)	26(1)	20(1)	33(1)	-2(1)	11(1)	2(1)
N(6)	35(2)	97(3)	64(2)	31(2)	28(2)	6(2)

Table 9. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for Th_2(H_20)_{10}(OH)_2[Pt(CN)_4]_3;5H_20.

	х	у	Z	U(eq)
H(1A)	3224	1161	599	32
H(2A)	-179	3287	-455	58
H(2B)	404	3789	-774	58
H(3A)	2634	1337	1739	54
H(3B)	1864	649	1548	54
H(4A)	1123	964	-1361	48
H(4B)	686	1975	-1548	48
H(5A)	2123	4017	890	61

H(5B)	2032	3478	1535	61
H(6A)	-392	931	-870	47
H(6B)	-316	1026	-127	47
H(7)	-404	3069	-2467	72
H(8A)	1693	-1006	1930	78
H(8B)	1195	-358	2164	78
H(9A)	-1049	5514	2794	76
H(9B)	-1483	6254	3064	76

Table 10 Crystal data and structure refinement for U**3**, $K_3[(UO_2)_2(OH)(Pt(CN)_4)_2]_2 \cdot NO_3 \cdot 1.5H_2O$.

Identification code	U3
Empirical formula	C16 H5 K3 N17 O14.50 Pt4 U4
Formula weight	2517.15
Temperature	290(2) K
Wavelength	0.71073 Å
Crystal system, space group	Tetragonal, P 4/m b m
Unit cell dimensions	a = 22.1073(2) Å alpha = 90 °.
	b = 22.1073(2) Å beta = 90 °.
	c = 12.6202(2) Å gamma = 90 °.
Volume	6167.90(13) Å ^3
Z, Calculated density	4, 2.711 Mg/m^3
Absorption coefficient	19.750 mm^-1
F(000)	4292
Crystal size	0.344 x 0.174 x 0.096 mm
Theta range for data collection	2.91 to 26.37 °.
Limiting indices	-27<=h<=27, -25<=k<=26, -15<=l<=15
Reflections collected / unique	6733 / 3423 [R(int) = 0.0564]
Completeness to theta $= 26.37$	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.31193
Refinement method	Full-matrix least-squares on F^2

_

Data / restraints / parameters	3423 / 55 / 146
Goodness-of-fit on F ²	1.058
Final R indices [I>2sigma(I)]	R1 = 0.0522, wR2 = 0.1500
R indices (all data)	R1 = 0.0687, wR2 = 0.1562
Largest diff. peak and hole	4.241 and -9.542 e. Å ^-3

Table 11. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å $^2x \ 10^3$) for final. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x y	Z	U(eq)	
K(1)	607(3)	5607(3)	0 5	1(2)
K(2)	3617(7)	3695(7)	-5000	152
U(1)	2379(1)	5072(1)	-1713(1)	19(1)
Pt(1)	1464(1)	6464(1)	-5000	22(1)
Pt(2)	1234(1)	3766(1)	-5000	22(1)
Pt(3)	2432(1)	2568(1)	-1276(1)	15(1)
C(1)	1902(7)	6004(6)	-3904(11)	22(3)
C(2)	1676(8)	4216(7)	-3896(12)	26(3)
C(3)	2423(7)	3463(7)	-1306(12)	24(3)
C(4)	3325(6)	2575(7)	-1294(11)	20(3)
N(1)	2118(7)	5718(6)	-3255(11)	39(3)
N(2)	1937(7)	4471(7)	-3235(11)	39(3)
N(3)	2409(7)	3985(6)	-1344(11)	39(3)
N(4)	2579(7)	6157(6)	-1344(11)	38(3)
N(5)	0	5000	-2660(20)	74(11)
O(1)	1634(5)	5159(5)	-1214(9)	36(2)
O(2)	3103(5)	5001(5)	-2198(9)	33(2)
O(3)	2746(8)	5044(7)	0	29(3)
O(4)	0	5000	-1682(19)	55(5)
O(5)	326(12)	5326(12)	-3270(30)	210(20)
O(6)	728(10)	4272(10)	0	63(6)

O(7) 0 0 5000 56(12)

K(1)-O(4)	2.848(19)
K(1)-O(4)#1	2.848(19)
K(1)-O(1)#2	2.912(12)
K(1)-O(1)#3	2.912(12)
K(1)-O(1)	2.912(12)
K(1)-O(1)#4	2.912(12)
K(1)-O(6)#1	2.96(3)
K(1)-O(6)	2.96(3)
K(1)-K(1)#1	3.80(2)
U(1)-O(2)	1.720(12)
U(1)-O(1)	1.774(12)
U(1)-O(3)	2.310(6)
U(1)-N(3)	2.449(14)
U(1)-N(1)	2.482(13)
U(1)-N(4)	2.483(14)
U(1)-N(2)	2.531(14)
Pt(1)-C(1)#5	1.971(15)
Pt(1)-C(1)#4	1.971(15)
Pt(1)-C(1)	1.971(15)
Pt(1)-C(1)#6	1.971(15)
Pt(2)-C(2)#7	1.971(15)
Pt(2)-C(2)	1.971(15)
Pt(2)-C(2)#8	1.971(15)
Pt(2)-C(2)#6	1.971(15)
Pt(3)-C(4)	1.975(14)
Pt(3)-C(4)#8	1.975(14)
Pt(3)-C(3)	1.978(15)
Pt(3)-C(3)#8	1.978(15)
Pt(3)-Pt(3)#2	3.2214(15)
C(1)-N(1)	1.139(19)
C(2)-N(2)	1.16(2)
C(3)-N(3)	1.16(2)

Table 12. Bond lengths [Å] and angles [°] for final.

C(4)-N(4)#9	1.15(2)		
N(4)-C(4)#10	1.15(2)		
N(5)-O(4)	1.238(18)		
N(5)-O(5)#11	1.279(18)		
N(5)-O(5)	1.279(18)		
O(3)-U(1)#2	2.310(6)		
O(4)-K(1)#1	2.848(19)		
O(6)-K(1)#1	2.96(3)		
O(4)-K(1)-O(4)#1	96.4(7)		
O(4)-K(1)-O(1)#2	126.8(3)		
O(4)#1-K(1)-O(1)#2	79.3(3)		
O(4)-K(1)-O(1)#3	126.8(3)		
O(4)#1-K(1)-O(1)#3	79.3(3)		
O(1)#2-K(1)-O(1)#3	104.7(5)		
O(4)-K(1)-O(1)	79.3(3)		
O(4)#1-K(1)-O(1)	126.8(3)		
O(1)#2-K(1)-O(1)	63.5(5)		
O(1)#3-K(1)-O(1)	143.8(6)		
O(4)-K(1)-O(1)#4	79.3(3)		
O(4)#1-K(1)-O(1)#4	126.8(3)		
O(1)#2-K(1)-O(1)#4	143.8(6)		
O(1)#3-K(1)-O(1)#4	63.5(5)		
O(1)-K(1)-O(1)#4	104.7(5)		
O(4)-K(1)-O(6)#1	64.7(3)		
O(4)#1-K(1)-O(6)#1	64.7(3)		
O(1)#2-K(1)-O(6)#1	143.8(3)		
O(1)#3-K(1)-O(6)#1	65.9(4)		
O(1)-K(1)-O(6)#1	143.8(3)		
O(1)#4-K(1)-O(6)#1	65.9(4)		
O(4)-K(1)-O(6)	64.7(3)		
O(4)#1-K(1)-O(6)	64.7(3)		
O(1)#2-K(1)-O(6)	65.9(4)		
O(1)#3-K(1)-O(6)	143.8(3)		
O(1)-K(1)-O(6)	65.9(4)		
O(1)#4-K(1)-O(6)	143.8(3)		
O(6)#1-K(1)-O(6)	100.3(9)		

O(4)-K(1)-K(1)#1	48.2(4)			
O(4)#1-K(1)-K(1)#1	48.2(4)			
O(1)#2-K(1)-K(1)#1	108.1(3)			
O(1)#3-K(1)-K(1)#1	108.1(3)			
O(1)-K(1)-K(1)#1	108.1(3)			
O(1)#4-K(1)-K(1)#1	108.1(3)			
O(6)#1-K(1)-K(1)#1	50.1(4)			
O(6)-K(1)-K(1)#1	50.1(4)			
O(2)-U(1)-O(1)	179.1(5)			
O(2)-U(1)-O(3)	90.2(5)			
O(1)-U(1)-O(3)	89.8(5)			
O(2)-U(1)-N(3)	87.3(5)			
O(1)-U(1)-N(3)	93.7(5)			
O(3)-U(1)-N(3)	77.6(5)			
O(2)-U(1)-N(1)	89.4(5)			
O(1)-U(1)-N(1)	90.0(5)			
O(3)-U(1)-N(1)	146.2(5)			
N(3)-U(1)-N(1)	136.1(5)			
O(2)-U(1)-N(4)	89.4(5)			
O(1)-U(1)-N(4)	89.7(5)			
O(3)-U(1)-N(4)	77.8(5)			
N(3)-U(1)-N(4)	155.1(5)			
N(1)-U(1)-N(4)	68.5(5)			
O(2)-U(1)-N(2)	92.3(5)			
O(1)-U(1)-N(2)	88.2(5)			
O(3)-U(1)-N(2)	146.2(5)			
N(3)-U(1)-N(2)	68.9(5)			
N(1)-U(1)-N(2)	67.5(5)			
N(4)-U(1)-N(2)	135.9(5)			
C(1)#5-Pt(1)-C(1)#4	89.1(8)			
C(1)#5-Pt(1)-C(1)	178.0(9)			
C(1)#4-Pt(1)-C(1)	90.8(8)			
C(1)#5-Pt(1)-C(1)#6	90.8(8)			
C(1)#4-Pt(1)-C(1)#6	178.0(9)			
C(1)-Pt(1)-C(1)#6	89.1(8)			
C(2)#7-Pt(2)-C(2)	179.3(10)			

90.0(8) 90.0(8) 90.0(8)			
90.0(8) 90.0(8)			
90.0(8)			
179.3(10)			
90.8(9)			
90.1(6)			
178.0(6)			
178.0(6)			
90.1(6)			
88.9(9)			
90.6(4)			
90.6(4)			
91.1(4)			
91.1(4)			
175.3(15)			
178.8(15)			
178.3(15)			
177.5(13)			
168.5(15)			
172.8(15)			
171.4(13)			
166.7(13)			
127(2)			
127(2)			
106(5)			
161.3(6)			
138.7(8)			
138.2(4)			
138.2(4)			
138.2(4) 83.6(7)			

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z #2 x,y,-z #3 y-1/2,x+1/2,-z #4 y-1/2,x+1/2,z #5 y-1/2,x+1/2,-z-1

Table 13. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for final. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
 K(1)	50(3)	50(3)	53(5)	0	0	5(4)
U(1)	27(1)	11(1)	18(1)	0(1)	-2(1)	-1(1)
Pt(1)	25(1)	25(1)	14(1)	0	0	5(1)
Pt(2)	25(1)	25(1)	15(1)	0	0	-8(1)
Pt(3)	11(1)	11(1)	23(1)	0(1)	0(1)	0(1)
C(1)	36(9)	13(7)	17(6)	-5(5)	0(6)	-1(6)
C(2)	36(9)	22(8)	21(7)	4(6)	2(6)	-12(7)
C(3)	24(8)	16(5)	33(8)	-8(б)	1(7)	2(6)
C(4)	9(6)	27(8)	24(7)	4(6)	-5(5)	-1(5)
N(1)	55(10)	29(7)	33(6)	9(5)	-12(6)	0(7)
N(2)	53(9)	32(7)	30(6)	-2(5)	-11(6)	-13(7)
N(3)	58(10)	20(4)	39(7)	2(5)	-10(7)	2(5)
N(4)	55(10)	22(5)	36(7)	2(5)	-8(7)	-8(6)
N(5)	86(17)	86(17)	48(10)	0	0	20(20)
0(1)	31(5)	37(6)	41(6)	-4(5)	1(4)	0(4)
0(2)	34(5)	31(6)	35(5)	1(5)	1(4)	0(4)
0(3)	36(8)	29(8)	22(5)	0	0	-3(7)
0(4)	61(8)	61(8)	45(10)	0	0	-8(12)
0(5)	240(30)	240(30)	140(30)	100(20)	100(20)	20(40)
0(6)	54(8)	54(8)	83(18)	0	0	-16(10)
0(7)	72(19)	72(19)	22(17)	0	0	0

References

1 Sheldrick, G. M., SHELXTL PC, version 6.12, An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data; Siemens Analytical X-ray Instruments, Inc. Madison, WI, 2001.

2 Oxford Diffraction (2009). Oxford Diffraction Ltd., Xcalibur CCD system, CrysAlisPro Software system, Version 1.171.33.