Supplementary information

Fluorosugars: Synthesis of the 2,3,4-trideoxy-2,3,4-trifluoro hexose analogues of D-glucose and D-altrose and assessment of their erythrocyte transmembrane transport

Stefano Bresciani, Tomas Lebl, Alexandra M. Z. Slawin and David O’Hagan*

University of St Andrews, School of Chemistry and Centre for Biomolecular Sciences, North Haugh, St Andrews, Fife, KY16 9ST, UK; Fax: 01334 463800; Tel: 01334 467171

E-mail: do1@st-andrews.ac.uk

Contents:

General Experimental ...S2
2D EXSY NMR Spectroscopy..S3
Anomers Assignment...S4
Experimental procedures and physical data of the obtained compounds..................S8–S13
Reproduction NMR spectra for final products and intermediates.................................S13–S31
References for Supplementary Information ...S33
General Experimental

All reagents were obtained from commercial sources and were used without further purification unless otherwise stated. Air- and moisture sensitive reactions were carried out under a positive pressure of argon in oven-dried (160 °C) glassware. Dry CH₂Cl₂ was obtained from the Solvent Purification System MB SPS-800. Chloroform was dried with K₂CO₃, refluxed with Na₂SO₄, distilled and stored under N₂ prior to use. Room temperature (RT) refers to 20-25 °C. Reaction temperatures of 0 °C were obtained in an ice/water bath. Reaction reflux conditions were obtained using an oil bath equipped with a contact thermometer. Solvent evaporations were carried out under reduced pressure on a Büchi rotary evaporator. Thin layer chromatography (TLC) was performed using Macherey-Nagel Polygram Sil G/UV254 plastic plates; visualisation was achieved by inspection under UV light (255 nm) or by the staining with a solution of basic potassium permanganate or phosphomolybdic acid. Column chromatography was performed using silica gel 60 (40–63 micron). All microwave-assisted reactions were performed in sealed vessels (vial size 2-5 cm³) on a Biotage Initiator 2.0 instrument under various temperature gradient conditions, the reaction was monitored by TLC. NMR spectra were recorded on Bruker AVANCE 300, 400 or 500 instruments. ¹H and ¹³C NMR spectra were recorded using deuterated solvent as the lock and residual solvent as the internal standard. ¹⁹F NMR spectra were referenced to CFCl₃ as the external standard. Chemical shifts are reported in parts per million (ppm) and coupling constants (J) are given in Hertz (Hz). The abbreviations for the multiplicity of the proton, carbon and fluorine signals are as follows: s singlet, d doublet, dd doublet of doublets, ddd doublet of doublet of doublets, dddd doublet of doublet of doublet of doublets, t triplet, dt double triplets, q quartet, m multiplet, app. apparent, br s broad singlet. When necessary, resonances were assigned using two-dimensional experiments (COSY, TOCSY, HMBC, HSQC, HMQC). IR spectra were recorded on a Nicolet Avatar 360 FT-IR from a thin film (either neat or combined with nujol) supported between NaCl plates. Optical rotations [α]D are given in 10⁻¹ deg cm² g⁻¹ and were measured using a Perkin Elmer Model 341 polarimeter. Mass spectrometric (m/z) data was acquired by electrospray ionisation (ESI). High resolution mass analyses were recorded on a Micromass LCT TOF mass spectrometer using ES ionization in +ve ion mode.
2D EXSY NMR Spectroscopy

The human blood was spun down (4000 rpm, 5 min) and the plasma and buffy coat were discarded. The cells were washed four times in 3 volumes of saline buffer solution containing 123 mM NaCl, 15 mM Tris-HEPES and 5 mM ascorbic acid (the saline buffer solutions were filtered through sterile filters Nalgene 0.20 µm cellulose acetate membranes before use). At each wash the supernatant was removed and the cells were collected by centrifugation. The red blood cells were then transferred to an eppendorf tube and diluted with one volume of saline buffer containing 123 mM NaCl, 15 mM Tris-HEPES, 5 mM ascorbic acid and 20 mM of fluorinated sugar (final hematocrit 0.5), carefully mixed and transferred into a WILMAD NMR tube with J Joung valve. A sealed capillary tube containing D₂O was then introduced into the NMR tube to provide deuterium signal for lock. A stream of carbon monoxide was bubbled through the cells for 3 minutes before sealing. Immediately after that the sample was sealed and analysed by NMR. 2D ¹⁹F spectra were recorded using Bruker AVANCE 500 MHz spectrometer equipped with double resonances ¹⁹F SEF probe at 310 K. The spectra were acquired using noesypht sequence which was adjusted by adding ¹H decoupling for directly detected dimension and the ¹H 180° refocusing pulse in the middle of t₁ evolution period to achieve decoupling in the F₁ dimension. Each spectrum was digitised using 1024 points in F2 dimension and 256 points in F1 dimension which was later zero-filled to 1024 points. 8 scans were accumulated for each increment with interscan delay 2s. Sine squared window multiplication was used for all the spectra. Every sample was analysed using at least three different mixing times ranging from 0 to 800 ms. The program EXSYCalc (Mestrelab Research) was used to analyse integral intensities of crosspeaks according to a full relaxation matrix analysis.¹
Anomers Assignment

Figure 1 400.13 MHz 1H{19F} NMR spectrum of trifluoro-D-glucose 9 in D$_2$O-Tris-HEPES buffer recorded at room temperature. Two doublets at 5.51 ppm and 5.01 ppm show $^3J_{HH}$ coupling constants 3.8 and 8.2 Hz that enables assignment to hydrogen H1 of α- and β-anomer, respectively. The values of $^3J(H1,H2)$ coupling constants calculated using Altona equation for MMFF optimised geometries of α- and β-anomer are 3.4 and 6.3 Hz, respectively.

Figure 2 500 MHz 1H,19F-HMBC spectrum of trifluoro-D-glucose 9 in D$_2$O-Tris-HEPES recorded at 310 K. The projection traces show 1H and 19F{1H} spectra. Dashed lines highlight $^3J(H1,F2)$ crosspeaks which enable to assign 19F doublets at -199.4 and -200.7 ppm to F2 of α- and β-anomer, respectively.
Figure 3 400.13 MHz 1H (a) and 1H{19F} (b) spectra of trifluoro-δ-altrose 10 in D$_2$O-Tris-HEPES. Overlap of H1 and H3 disables accurate measurement of $^3J_{HH}$ coupling constant and using them to discriminate the anomers. Moreover, the values of 3J(H1,H2) coupling constants calculated using Altona equation for MMFF optimised geometries of α- and β-anomer (2.8 and 0.5 Hz, respectively) show only negligible difference.
Figure 4 1D gradient NOESY spectra of trifluoro-D-altrose 10 in D$_2$O-Tris-HEPES. Spectrum (a) shows NOE between H5 resonance at 4.39 ppm and one H6 proton. Spectrum (b) shows NOE between H5 resonance at 4.13 ppm and H6 and H1 protons. MMFF optimised geometries of α-anomer (c) and β-anomer (d) show distances between H1 and H5 protons 3.667 and 2.424 Å. That enables to assign H5 resonance at 4.39 ppm to α-anomer and one at 4.13 ppm to β-anomer.

Figure 5 500 MHz 1H,19F-HMBC spectrum of trifluoro-D-altrose in D$_2$O-Tris-HEPES buffer recorded. The projection traces show 1H and 19F{1H} spectra. Dashed lines highlight 3J(H5,F4) and 4J(H5,F3) crosspeaks which enable to assign F3 and F4 resonances to corresponding anomers. F2 resonances were assigned using 19F,19F-COSY (not shown).
19F1H NMR showing the α/β anomer ratios of D-glucose analogue 9 in (a) THF-d_8, (b) CDCl$_3$, (c) CD$_3$CN.
Experimental procedures and physical data of the obtained compounds

2,3,4-Tridehydroxy-2,3,4-trifluoroglucose (9). A mixture of crude 17 (0.035 g, 0.15 mmol) and anhydrous tin(II) chloride (0.058 g, 0.30 mmol) were stirred in dry CH2Cl2 (3.85 cm3) at RT for 1 h. The undissolved tin(II) chloride was removed by filtration. Silica gel (1 g) was added to the filtrate. The resultant suspension was evaporated to dryness and purified over silica gel (9:1→1:9 hexane/ethyl acetate) to give 9 (0.016 g, 58%, mixture of α- and β-anomers) as a transparent oil. The product was recrystallised from CHCl3. The relative stereochemistry of the β-anomer was determined by x-ray structure analysis, mp 103–105 °C (from CHCl3). The anomeric ratio in the anomeric mixture was α/β: 1/0.13 by 19F NMR (376.50 MHz, CDCl3) and α/β: 1/0.2 by 1H-NMR (400.13 MHz, CDCl3).

Data for the anomeric mixture: [α]D22 +40.1 (c 1.15 in THF-d8, 1/0.98 anomeric ratio); δH(400.13 MHz, CDCl3) 5.56–4.78 (m, 4H), 4.77–4.21 (m, 4H), 4.20–3.26 (m, 6H), 3.30 (br s, OH), 1.78 (br s, OH); MS (ESI, +ve) m/z 208.99 [M-Na]+ (100); HRMS (ESI, +ve) C6H9F3O3Na+ requires m/z 209.0401, found 209.0405.

Data for α-anomer: δC(100.61 MHz, CDCl3) 91.5–89.2 (m, CH), 90.5 (dd, J = 21.1, 9.7, CH), 88.0 (dd, J = 192.8, 16.7, 8.1, CH), 86.6 (ddd, J = 186.0, 18.4, 7.7, CH), 68.7 (dd, J = 24.3, 6.3, CH), 60.9 (CH2); δF(376.50 MHz, CDCl3) -199.9 (dm, J = 51.0, 1F), -201.6 (dm, J = 55.0, 1F), -202.0 (dm, J = 49.6, 1F); δF{H}(376.50 MHz, CDCl3) -199.9 (dd, J = 12.7, 1F), -201.6 (dd, J = 13.2, 1F), -202.0 (dd, J = 13.2, 1F).

Data for β-anomer: δC(100.61 MHz, CDCl3) 91.4 (d, J = 17.4, CH), 88.5–81.8 (m, CH), 72.2 (dd, J = 25.0, 2.8, CH), 61.4 (CH2); δF(376.50 MHz, CDCl3) 213.4 (dm, J = 44.4, 1F), -214.3 (dm, J = 48.8, 1F), -219.3 (dt, J = 46.5, 17.3, 1F); δF{H}(376.50 MHz, CDCl3) -213.4 (d, J = 11.7, 1F), -214.3 (dd, J = 17.3, 11.7, 1F), -219.3 (d, J = 17.3, 1F).

2,3,4-Tridehydroxy-2,3,4-trifluoroaltrose (10). A mixture of crude 20 (0.035 g, 0.15 mmol) and anhydrous tin(II) chloride (0.058 g, 0.30 mmol) were stirred in dry CH2Cl2 (3.84 cm3) at RT for 1 h. The undissolved tin(II) chloride was removed by filtration. Silica gel (1 g) was added to the filtrate. The resultant suspension was evaporated to dryness and purified over silica gel (9:1→1:9 hexane/ethyl acetate) to give 10 (0.013 g, 48%, mixture of α- and β-anomers) as a transparent oil. The product was recrystallised from CHCl3. The relative stereochemistry of the β-anomer was determined by x-ray structure analysis, mp 78–80 °C (from CHCl3). The anomeric ratio in the anomeric mixture was α/β: 0.8/1 by 19F NMR (376.50 MHz, CDCl3) and α/β: 0.2 by 1H-NMR (400.13 MHz, CDCl3).

Data for the anomeric mixture: [α]D22 +4.6 (c 1.15 in THF-d8, 1/0.98 anomeric ratio); δH(400.13 MHz, CDCl3) 5.51–5.02 (m, 4H), 5.00–4.59 (m, 4H), 4.51–4.33 (m, 1H), 4.09–3.76 (m, 5H), 2.84 (br s, 2 x OH); MS (ESI, +ve) m/z 208.98 [M-Na]+ (100); HRMS (ESI, +ve) C6H9F3O3Na+ requires m/z 209.0401, found 209.0403.

Data for β-anomer: δC(100.61 MHz, CDCl3) 91.4 (d, J = 17.4, CH), 88.5–81.8 (m, CH), 72.2 (dd, J = 25.0, 2.8, CH), 61.4 (CH2); δF(376.50 MHz, CDCl3) 213.4 (dm, J = 44.4, 1F), -214.3 (dm, J = 48.8, 1F), -219.3 (dt, J = 46.5, 17.3, 1F); δF{H}(376.50 MHz, CDCl3) -213.4 (d, J = 11.7, 1F), -214.3 (dd, J = 17.3, 11.7, 1F), -219.3 (d, J = 17.3, 1F). Data for α-anomer: δC(100.61 MHz, CDCl3) 91.9 (d, J = 32.1, CH), 88.5–81.8 (m, CH), 66.1 (dd, J = 24.6, 2.8, CH), 61.5 (CH2); δF(376.50 MHz, CDCl3) -200.5
(dm, J = 44.2, 1F), -209.7 (dm, J = 45.4, 1F), -213.9 (dm, J = 48.7, 1F); δF{H}(376.50 MHz, CDCl3) -200.5 (dd, J = 17.7, 2.1, 1F), -209.7 (dd, J = 11.1, 2.1, 1F), -213.9 (dd, J = 17.7, 11.1, 1F).

(R)-4-((R)-(3-(Benzyloxy)methyl)oxiran-2-yl)fluoromethyl)-2,2-dimethyl-1,3-dioxolane (12a, 12b). m-CPBA (4.994 g, 15.1 mmol) was added to a solution of (R)-11 (2.109 g, 7.5 mmol) in CH2Cl2 (38 cm3) at 0 °C. After 1 minute the ice/water bath was removed and the solution was stirred for 5 days at RT. The resultant solution was then stirred with a mixture of 10% (w/v) aqueous Na2SO3 (50 cm3) for 15 min then washed with saturated aqueous NaHCO3 (50 cm3). The organic layer was dried over Na2SO4. The product was purified over silica gel (9:1 → 3:1 hex:EtOAc) to give the inseparable mixture 12a/12b (1.995 g, 89%, dr 1:0.7) as a clear oil.

Data for both diastereoisomers: δH(400.13 MHz, CDCl3) 7.42–7.26 (m, 10H), 4.65–4.17 (m, 8H), 4.16–4.08 (m, 2H), 4.06–3.98 (m, 2H), 3.85–3.75 (m, 2H), 3.60–3.46 (m, 2H), 3.38–3.12 (m, 4H), 1.44 (s, 3H), 1.42 (s, 3H), 1.36 (s, 6H); MS (ESI, +ve) m/z 319.02 [M-Na]+ (100), 320.08 (20%); HRMS (ESI, +ve) C16H21FO4Na+ requires m/z 319.1322, found 319.1331.

Data for major diastereoisomer: δC(100.61 MHz, CDCl3) 137.9 (C), 128.6 (CH), 128.0 (CH), 127.9 (CH), 110.1 (C), 90.8 (d, J = 180.1, CH), 74.26 (d, J = 29.0, CH), 73.5 (CH2), 69.4 (CH2), 66.1 (d, J = 2.8, CH), 54.4–53.3 (m, CH), 26.7 (CH3), 25.2 (CH3); δF(376.50 MHz, CDCl3) -201.3 (dm, J = 47.7, 1F); δF{H}(376.50 MHz, CDCl3) -201.3 (s, 1F).

Data for minor diastereoisomer: δC(100.61 MHz, CDCl3) 137.8 (C), 128.6 (CH), 128.0 (CH), 127.9 (CH), 110.3 (C), 90.2 (d, J = 178.1, CH), 74.3 (d, J = 25.7, CH), 73.5 (CH2), 69.2 (CH2), 65.7 (d, J = 4.8, CH), 54.4–53.3 (m, CH), 26.6 (CH3), 25.3 (CH3); δF(376.50 MHz, CDCl3) -199.6 (dt, J = 47.7, 12.7, 1F); δF{H}(376.50 MHz, CDCl3) -199.6 (s, 1F).

(1S,2R,3R)-4-(Benzyloxy)-1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-1,3-difluorobutan-2-ol (13) and (1S,2S,3S)-4-(benzyloxy)-1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-1,3-difluorobutan-2-ol (14). A solution of 12a/12b (0.114 g, 0.40 mmol, dr 1:0.7) in dry CHCl3 (1288 µl) was introduced in a microwave reaction glass vessel under an atmosphere of argon. Et3N·3HF (514 µl, 3.12 mmol) and dry Et3N (118 µl, 0.86 mmol) were then added and the reaction mixture was stirred for 2 h at 120 °C under microwave irradiation. After cooling, further Et3N·3HF (514 µl, 3.12 mmol) was added and the reaction mixture was stirred for 3 h at 100 °C, for 12 h at 120 °C, for 3 h at 130 °C and for 3 h at 140 °C under microwave irradiation. After cooling the reaction mixture was concentrated onto silica gel (9:1 → 4:1 hexane/ethyl acetate) to give separately 13 (0.02 g, 16%) and 14 (0.036 g, 29%) as clear oils. Data for 13: [α]D22 –6.23 (c
1.25 in CHCl₃), ν_max (NaCl)/cm⁻¹ 3445, 3086, 3058, 3025, 2980, 2936, 1497, 1455, 1410, 1373, 1256, 1217, 1150, 1102, 1063, 845, 738, 699; δ_H(400.13 MHz, CDCl₃) 7.42–7.26 (m, 5H), 4.83 (dm, J = 46.4, 1H), 4.68–4.49 (m, 3H), 4.48–4.35 (m, 1H), 4.33–4.17 (m, 1H), 4.17–4.09 (m, 1H), 4.09–4.02 (m, 1H), 3.91–3.87 (m, 1H), 3.84–3.77 (m, 1H), 2.83 (d, J = 4.9, OH), 1.44 (s, 3H), 1.36 (s, 3H); δ_C(100.61 MHz, CDCl₃) 137.5 (C), 128.7 (CH), 128.2 (CH), 128.0 (CH), 110.1 (C), 91.7 (dd, J = 176.3, 3.6, CH), 90.6 (dd, J = 175.2, 6.2, CH), 73.9 (CH₂), 73.8 (d, J = 29.2, CH), 70.9 (dd, J = 24.1, 22.2, CH), 69.3 (d, J = 21.7, CH₂), 66.2 (d, J = 4.4, CH₂), 26.7 (CH₃), 25.3 (CH₃); δ_F(376.50 MHz, CDCl₃) -196.6 (dddd, J = 46.4, 27.2, 24.7, 9.4, F), -200.7 (ddd, J = 46.5, 14.0, 12.6, F); δ_F{H}(376.50 MHz, CDCl₃) -196.6 (s, F), -200.7 (s, F); MS (ESI, +ve) m/z 339.07 [M-Na]⁺ (100); HRMS (ESI, +ve) C₁₆H₂₂F₂O₄Na⁺ requires m/z 339.1384, found 339.1389.

Data for 14: [α]D²² –8.3 (c 1.25 in CHCl₃), ν_max (NaCl)/cm⁻¹ 3440, 3087, 3070, 3025, 2986, 2930, 1455, 1373, 1256, 1217, 1069, 842, 738, 699; δ_H(400.13 MHz, CDCl₃) 7.42–7.26 (m, 5H), 4.82–4.48 (m, 4H), 4.46–4.33 (m, 1H), 4.23–4.00 (m, 3H), 3.94–3.78 (m, 2H), 2.54 (d, J = 6.2, OH), 1.42 (s, 3H), 1.37 (s, 3H); δ_C(125 MHz, CDCl₃) 137.5 (C), 128.7 (CH), 128.1 (CH), 128.0 (CH), 110.0 (C), 90.5 (dd, J = 178.1, 2.6, CH), 89.8 (dd, J = 176.3, 3.7, CH), 73.9 (CH₂), 73.0 (d, J = 29.8, CH), 69.4 (d, J = 21.0, CH₂), 68.5 (dd, J = 25.9, 17.6, CH), 66.5 (d, J = 2.7, CH₂), 26.9 (CH₃), 25.2 (CH₃); δ_F(376.50 MHz, CDCl₃) -195.3 (dm, J = 46.8, F), -212.0 (dm, J = 46.6, F); δ_F{H} (376.50 MHz, CDCl₃) -195.3 (d, J = 3.0, F), -212.0 (d, J = 3.0, F); MS (ESI, +ve) m/z 339.05 [M-Na]⁺ (100); HRMS (ESI, +ve) C₁₆H₂₁F₃O₃Na⁺ requires m/z 339.1395, found 339.1394.

(R)-4-(((1R,2R,3S)-4-(Benzyloxy)-1,2,3-trifluorobutyl)-2,2-dimethyl-1,3-dioxolane (15).

Deoxofluor™ (1.340 cm³, 3.15 mmol) was added to a solution of 13 (0.400 g, 1.26 mmol) in dry CH₂Cl₂ (25 cm³) at 0 ºC. After addition the mixture was heated at vigorous reflux (oil bath temperature 70 ºC) for 14 h. The reaction mixture was allowed to cool to RT, concentrated onto silica and subjected to flash chromatography over silica gel (9:1 → 5:1 hexane/ethyl acetate) to give 15 (0.229 g, 57%) as a yellow oil containing some impurities; ν_max (NaCl)/cm⁻¹ 3033, 2989, 2941, 2868, 1497, 1452, 1382, 1371, 1250, 1216, 1150, 1119, 1071, 839, 741, 699; δ_H(400.13 MHz, CDCl₃) 7.43–7.27 (m, 5H), 5.18–4.76 (m, 2H), 4.66–4.50 (m, 3H), 4.41–4.30 (m, 1H), 4.23–4.01 (m, 3H), 3.95–3.70 (m, 2H), 1.37 (s, 3H), 1.36 (s, 3H); δ_C(125 MHz, CDCl₃) 137.3 (C), 128.6 (CH), 128.2 (CH), 127.9 (CH), 110.1 (C), 88.5–98.2 (m, CH), 74.0 (CH₂), 72.5 (dd, J = 29.1, 5.0, CH), 68.5 (dd, J = 25.9, 17.6, CH₂), 66.1 (m, CH) 26.8 (CH₃), 25.2 (CH₃); δ_F(376.50 MHz, CDCl₃) -198.3 (dm, J = 47.3, F), -209.4 (dm, J = 46.7, F), -214.2 (dm, J = 47.1, F); δ_F{H} (376.50 MHz, CDCl₃) -198.3 (d, J = 14.2, F), -209.4 (d, J = 9.9, F), -214.21 (dd, J = 14.2, 9.9, F); MS (ESI, +ve) m/z 340.98 [M-Na]⁺ (100); HRMS (ESI, +ve) C₁₆H₂₁F₃O₃Na⁺ requires m/z 341.1340, found 341.1334.
(2S,3R,4R)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3,4-trifluorobutan-1-ol (16). A solution of NaBrO₃ (0.096 g, 0.63 mmol) in water (2.1 cm³) was added to a solution of 15 (0.068 g, 0.21 mmol) in ethyl acetate (2.85 cm³). This mixture was stirred at RT for 10 min and a solution of Na₂S₂O₄ (0.111 g, 0.54 mmol) in water (4.3 cm³) was added dropwise over 20 min at RT. The mixture was stirred for 1 h at RT. The mixture was then diluted with EtOAc and the organic phase was washed with aq. Na₂S₂O₃. The product was purified by silica gel chromatography (9:1→5:1 hexane/ethyl acetate) to give 16 (0.026 g, 53%) as a clear oil; [α]D²² −20.1 (c 0.57 in CHCl₃);

νmax (NaCl)/cm⁻¹ 3434, 2986, 2958, 2936, 1634, 1457, 1385, 1373, 1256, 1222, 1150, 1113, 1066, 1049, 987, 945, 917, 842, 870, 786, 766, 708, 666); δH(400.13 MHz, CDCl₃) 5.13–4.73 (m, 2H), 4.60 (dm, J = 46.7, 1H), 4.45–4.31 (m, 1H), 4.22–3.79 (m, 4H) 1.91 (t, J = 6.3, OH), 1.43 (s, 3H), 1.37 (s, 3H); δC(125 MHz, CDCl₃) 110.2 (C), 93.3–88.2 (m, CH), 72.5 (dd, J = 29.0, 4.9, CH), 66.1 (m, CH), 61.7 (dd, J = 21.9, 8.1, CH₂) 26.9 (CH₃), 25.2 (CH₃); δF(282.34 MHz, CDCl₃) -204.3 (dd, J = 11.1, 4.8, 1F); -212.5 (dd, J = 12.8, 11.1, 1F), -213.5 (dd, J = 12.8, 4.8, 1F).

(2S,3S,4R)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3,4-trifluorobutanal (17). A solution of Dess-Martin periodinane reagent (0.133 g, 0.30 mmol) in dry CH₂Cl₂ (1.06 cm³) was placed in an oven-dried round-bottom flask and stirred at RT for 5 min. Then a solution of 16 (0.035 g, 0.15 mmol) in dry CH₂Cl₂ (1.06 cm³) was added. After stirring for 40 min at RT, a mixture of hexane/ethyl acetate (9:1, 5 cm³) was added and the resultant suspension was quickly filtered through a silica plug (2.5 cm) by flushing 125 cm³ of 9:1 hexane/ethyl acetate. This provided aldehyde 17 (0.043 g) as a yellow oil containing impurities which was used in the next reaction without further purification due to its instability; δF (282.34 MHz, CDCl₃) -204.3 (dd, J = 11.1, 4.8, 1F); -212.5 (dd, J = 12.8, 11.1, 1F), -213.5 (dd, J = 12.8, 4.8, 1F).

(R)-4-((1R,2S,3R)-4-(Benzyloxy)-1,2,3-trifluorobutyl)-2,2-dimethyl-1,3-dioxolane (18). Deoxofluor™ (1.340 cm³, 3.15 mmol) was added to a solution of 14 (0.400 g, 1.26 mmol) in dry CH₂Cl₂ (25 cm³) at 0 °C. After addition the mixture was heated at vigorous reflux (oil bath temperature 70 °C) for 14 h. The reaction mixture was allowed to cool to RT, concentrated onto silica and subjected to flash chromatography over silica gel (9:1→5:1 hexane/ethyl acetate) to give 18 (0.241 g, 60%) as a yellow oil.
containing some impurities; ν max (NaCl)/cm⁻¹ 3089, 3058, 3025, 2986, 2930, 2874, 1497, 1455, 1379, 1370, 1259, 1214, 1147, 1108, 1066, 845, 744; δ H(400.13 MHz, CDCl₃) 7.43–7.27 (m, 5H), 5.06–4.52 (m, 5H), 4.48–4.36 (m, 1H), 4.15–4.05 (m, 1H), 4.05–3.95 (m, 1H), 3.84–3.72 (m, 2H), 1.39 (s, 3H), 1.36 (s, 3H); δ C(125 MHz, CDCl₃) 137.4 (C), 128.0 (CH), 128.2 (CH), 110.1 (C), 91.1–87.8 (m, CH), 73.8 (CH₂), 73.4 (dd, J = 25.1, 3.7, CH), 67.6 (dd, J = 25.2, 7.0, CH₂), 65.3 (dd, J = 5.7, 2.9, CH₂), 26.2 (CH₃), 25.3 (CH₃); δ F(376.50 MHz, CDCl₃) -201.3 (dm, J = 45.5, F₁), -205.4 (m, F₃), -212.8 (dm, J = 47.0, F₂); δ F{H}(376.50 MHz, CDCl₃) -201.3 (dd, J = 12.7, 5.9, F₁), -205.4 (dd, J = 10.9, 5.9, F₃), -212.8 (dd, J = 12.7, 10.9, F₂); MS (ESI, +ve) m/z 341.07 [M-Na]⁺ (100), 413.20 (30); HRMS (ESI, +ve) C₁₆H₂₁F₃O₃Na⁺ requires m/z 341.1340, found 341.1344.

(2R,3S,4R)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3,4-trifluorobutan-1-ol (19). A solution of NaBrO₃ (0.096 g, 0.63 mmol) in water (2.1 cm³) was added to a solution of 18 (0.068 g, 0.21 mmol) in ethyl acetate (2.85 cm³). This mixture was stirred for 10 min at RT and a solution of Na₂S₂O₄ (0.111 g, 0.54 mmol) in water (4.3 cm³) was added dropwise over 20 min at room temperature. The mixture was stirred for 1 h at RT. The mixture was then diluted with EtOAc and the organic phase was washed with aq. Na₂S₂O₃. The product was purified by silica gel chromatography (9:1 → 5:1 hexane/ethyl acetate) to give 19 (0.024 g, 51%) as a clear oil; [α]D ²² = -4.4 (c 0.39 in CHCl₃); ν max (NaCl)/cm⁻¹ 3446, 2986, 2930, 2891, 1636, 1483, 1457, 1382, 1376, 1258, 1211, 1152, 1063, 848; δ H(400.13 MHz, CDCl₃) 5.03–4.64 (m, 3H), 4.52–4.36 (m, 1H), 4.18–4.10 (m, 1H), 3.99–3.84 (m, 2H), 1.97 (t, J = 6.4, OH), 1.44 (s, 3H), 1.37 (s, 3H); δ C(125 MHz, CDCl₃) 110.3 (C), 92.0–87.8 (m, CH), 73.4 (dd, J = 25.3, 4.1, CH), 65.4 (dd, J = 5.7, 2.9, CH₂), 61.3 (dd, J = 24.4, 7.2, CH₂), 26.3 (CH₃), 25.2 (CH₃); δ F(376.50 MHz, CDCl₃) -201.3 (dm, J = 45.5, F₁), -205.4 (dm, J = 47.0, F₂), -212.8 (dm, J = 47.0, F₂); δ F{H}(376.50 MHz, CDCl₃) -201.3 (dd, J = 12.7, 5.9, F₁), -205.4 (dd, J = 10.9, 5.9, F₃), -212.8 (dd, J = 12.7, 10.9, F₂); MS (ESI, +ve) m/z 251.00 [M-Na]⁺ (100); HRMS (ESI, +ve) C₁₀H₁₅F₃O₃Na⁺ requires m/z 251.0871, found 251.0877.

(2R,3R,4R)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,3,4-trifluorobutanal (20). A solution of Dess-Martin periodinane reagent (0.133 g, 0.30 mmol) in dry CH₂Cl₂ (1.06 cm³) was placed in an oven-dried round-bottom flask and stirred at RT for 5 min. Then a solution of 19 (0.035 g, 0.15 mmol) in dry CH₂Cl₂ (1.06 cm³) was added. After stirring for 40 min, a mixture of hexane/ethyl acetate (9:1, 5 cm³) was added and the resultant suspension was quickly filtered through a silica plug (2.5 cm) by flushing 125 cm³ of 9:1 hexane/ethyl acetate. This provided aldehyde 20 (0.04 g) as a yellow oil containing impurities which was used in the next reaction without further
puriﬁcation due to its instability; δ (282.34 MHz, CDCl$_3$) -201.5 (dd, $J = 13.4$, 7.6, 1F), -210.7 (dd, $J = 10.1$, 13.4, 1F), -217.0 (dd, $J = 10.1$, 7.6, 1F).

Reproduction NMR spectra for ﬁnal products and intermediates
19F, 376 MHz, CDCl$_3$
1H, 400 MHz, CDCl$_3$

1F, 1H dec, 470 MHz, D$_2$O buffer

1H, α-anomer, 5.3 ppm (dd, $J = 11.1, 1.6$)

1H, β-anomer, 5.2 ppm (ddd, $J = 17.0, 3.8, 1.1$)
$^{19}\text{F}^\text{[H dec]}, 376 \text{ MHz, CDCl}_3$

$^{19}\text{F}^\text{[H dec]}, 470 \text{ MHz, D}_2\text{O buffer}$
^{1}H, 400 MHz, CDCl$_3$

^{13}C, 100 MHz, CDCl$_3$
19F, 376 MHz, CDCl$_3$
$\begin{align*}
\text{H, 400 MHz, CDCl}_3
\end{align*}$

$\begin{align*}
\text{C, 100 MHz, CDCl}_3
\end{align*}$
1H, 400 MHz, CDCl$_3$

13C, 100 MHz, CDCl$_3$
19F NMR, 376 MHz, CDCl$_3$
1H, 400 MHz, CDCl$_3$

13C, 100 MHz, CDCl$_3$
19F, 376 MHz, CDCl$_3$
1H, 400 MHz, CDCl$_3$

13C, 100 MHz, CDCl$_3$
19F, 376 MHz, CDCl$_3$

19F$^{'_H\text{dec}}$, 376 MHz, CDCl$_3$
$^{19}F\left[^1H\right]dec, 282 MHz, CDCl$_3$ \n
1H, 400 MHz, CDCl$_3$
13C, 100 MHz, CDCl$_3$

19F, 376 MHz, CDCl$_3$
1H (H-dec), 376 MHz, CDCl$_3$

1H, 400 MHz, CDCl$_3$
13C, 100 MHz, CDCl$_3$

19F, 376 MHz, CDCl$_3$
19F{1H dec}, 376 MHz, CDCl$_3$

19F{1H dec}, 262 MHz, CDCl$_3$
References for Supplementary Information

See primary manuscript for references leading to the synthesis and the background to the 19F-EXSY NMR experiments.