Synthesis and Structural Characterization of a Fused Bispyrone and Preparation of
the First Metal Bispyrylium Complexes

Kristopher V. Waynant, James D. White and Lev Zakharov

Department of Chemistry, Oregon State University

Corvallis, OR 97331

james.white@oregonstate.edu

SUPPORTING INFORMATION

General techniques:

All reactions were performed with freshly distilled solvents and recently purchased materials. Infrared spectra were recorded using a thin film supported on KBr discs or dispersed in a KBr pellet. 1H and 13C NMR spectra were recorded in Fourier transform mode at the field strength specified on a 400 MHz Bruker Avance spectrometer. Spectra were obtained in DMSO, CDCl$_3$ or CD$_3$OD solutions in 5 mm diameter tubes, and chemical shifts in ppm are quoted relative to the residual signals of the solvent used DMSO (δH 2.51 ppm or δC 39.9) chloroform (δH 7.26 ppm, or δC 77.0 ppm) methanol (δH 3.31, 4.87 δC 49.1). Multiplicities in the 1H NMR spectra are described as: s = singlet, d = doublet, t = triplet, q= quartet, m = multiplet, br = broad; coupling constants are reported in Hz. High Resolution Mass spectra are reported with ion mass/charge (m/z) ratios as values in atomic mass units.

Table 1: Synthesis and properties of metal bispyrylium perchlorates formed from 4.

<table>
<thead>
<tr>
<th>Reagent Product</th>
<th>Product</th>
<th>λ_{max} (nm) (ϵ 103)</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(ClO$_4$)$_2$</td>
<td>7 (M=Mg)</td>
<td>303 (19.2)</td>
<td>Colorless</td>
</tr>
<tr>
<td>Ni(ClO$_4$)$_2$•6MeCN</td>
<td>7 (M=Ni)</td>
<td>304 (4.48)</td>
<td>Light Blue</td>
</tr>
<tr>
<td>Fe(ClO$_4$)$_2$•6MeCN</td>
<td>7 (M=Fe)</td>
<td>301 (5.99)</td>
<td>Orange</td>
</tr>
<tr>
<td>Li(ClO$_4$)$_2$</td>
<td>8 (M=Li)</td>
<td>[a]</td>
<td>Colorless</td>
</tr>
<tr>
<td>Cu(ClO$_4$)$_2$•6H$_2$O</td>
<td>9 (M=Cu)</td>
<td>318 (5.54)</td>
<td>Light Blue</td>
</tr>
<tr>
<td>Co(ClO$_4$)$_2$•6H$_2$O</td>
<td>9 (M=Co)</td>
<td>298 (30.0)</td>
<td>Red</td>
</tr>
<tr>
<td>Ni(ClO$_4$)$_2$•6H$_2$O</td>
<td>9 (M=Ni)</td>
<td>310 (1.00)</td>
<td>Light Blue</td>
</tr>
<tr>
<td>Zn(ClO$_4$)$_2$•6H$_2$O</td>
<td>9 (M=Zn)</td>
<td>299 (17.1)</td>
<td>Colorless</td>
</tr>
<tr>
<td>Fe(ClO$_4$)$_2$•6H$_2$O</td>
<td>9 (M=Fe)</td>
<td>300 (3.44)</td>
<td>Red</td>
</tr>
<tr>
<td>Ba(ClO$_4$)$_2$</td>
<td>10 (M=Ba)</td>
<td>300 (0.95)</td>
<td>Colorless</td>
</tr>
</tbody>
</table>

[a] not determined.
Fig. 3. Reaction of Fused bispyrone 4 with divalent metal perchlorates.

Fig. 8. Reaction of fused bispyrone 4 with hydrated divalent metal perchlorates.

X-ray Crystallography. X-ray diffraction intensities for 4, 6, 7 (M=Mg), 7 (M=Ni), 8, 9 (M=Cu), 9 (M=Co), 9 (M=Ni), 9 (M=Zn), 9 (M=Fe) and 10 were collected at 173(2) K on a Bruker Apex CCD diffractometer using MoKα radiation λ= 0.71073 Å.¹ Space groups were determined based on systematic absences or intensity statistics. Absorption corrections in all cases were applied by SADABS.² Structures were solved by direct methods and Fourier techniques and refined on \(F^2 \) using full matrix least-squares procedures. All non-H atoms were refined with anisotropic thermal parameters. H atoms in all structures mainly were found from the F-map and refined with isotropic thermal parameters except some cases indicated below. In the crystal structures of 4, and 7 (M=Mg) besides the main molecule there are solvent water molecules. The –OH group and the carbonyl O atom in 6 are disordered over two positions related by a mirror plane. These O atoms were refined as sharing the same position and the H atom in the disordered –OH group was refined with occupation factor \(\mu = 0.5 \). Other H atoms in 6 were found on the residual density and refined with isotropic thermal parameters. \(\text{ClO}_4 \) anions in 7 (M=Mg), 7 (M= Ni), 9 (M = Fe) and 10 are disordered over two positions and were refined with restrictions; the average Cl-O bond length was used as the target for corresponding distances. H atoms in 7 (M=Mg) were found from the F-map and refined with isotropic thermal parameters except those in the terminal Me-groups. H atoms in a solvent water molecule in 7 (M=Mg) involved in H-bonds were found from the F-map and refined with isotropic thermal parameters. The thermal parameters for these H atoms are relatively high and indicate that H atoms in the solvent molecule seem to be disordered, but we did not find a good solution for this disorder. H atoms in the CH₃OH molecules coordinated to the Li-atoms in 8 were refined in calculated positions. H atoms in an insolated solvent methanol molecule in 8 were not found and not taken into consideration in the refinement. All calculations were performed by the Bruker SHELXTL (v. 6.10) package.³
Crystallographic Data for 4•(H$_2$O): C$_{10}$H$_{10}$O$_5$, M = 210.18, 0.27 x 0.25 x 0.06 mm, T = 173(2) K, monoclinic, space group $P2_1/c$, $a = 7.0711(2)$ Å, $b = 25.5598(9)$ Å, $c = 11.1908(4)$ Å, $\beta = 104.521(1)^\circ$, $V = 1957.97(11)$ Å3, $Z = 8$, $D_c = 1.426$ Mg/m3, $\mu = 0.116$ mm$^{-1}$, $F(000) = 880$, $2\theta_{\text{max}} = 54.00^\circ$, 19210 reflections, 4263 independent reflections [R$_{\text{int}} = 0.0315$], R$_1 = 0.0450$, wR$_2 = 0.1021$ and GOF = 1.025 for 4263 reflections (351 parameters) with $I > 2\sigma(I)$, R$_1 = 0.0783$, wR$_2 = 0.1219$ and GOF = 1.025 for all reflections, max/min residual electron density +0.184/-0.193 eÅ3.

Crystallographic Data for 6: C$_{10}$H$_{9}$ClO$_8$, M = 292.62, 0.38 x 0.11 x 0.10 mm, T = 173(2) K, orthorhombic, space group $Pnma$, $a = 10.190(4)$ Å, $b = 12.552(4)$ Å, $c = 8.820(3)$ Å, $V = 1128.1(7)$ Å3, $Z = 4$, $D_c = 1.723$ Mg/m3, $\mu = 0.375$ mm$^{-1}$, $F(000) = 600$, $2\theta_{\text{max}} = 54.00^\circ$, 12297 reflections, 1291 independent reflections [R$_{\text{int}} = 0.0324$], R$_1 = 0.0363$, wR$_2 = 0.0974$ and GOF = 1.086 for 1291 reflections (114 parameters) with $I > 2\sigma(I)$, R$_1 = 0.0411$, wR$_2 = 0.1022$ and GOF = 1.086 for all reflections, max/min residual electron density +0.473/-0.221 eÅ3.

Crystallographic Data for 7 (M=Mg)•H$_2$O: C$_{22}$H$_{26}$Cl$_2$MgO$_{19}$, M = 689.64, 0.23 x 0.19 x 0.12 mm, T = 173(2) K, monoclinic, space group $P2_1/c$, $a = 15.050(3)$ Å, $b = 18.021(3)$ Å, $c = 11.008(2)$ Å, $\beta = 103.023(3)^\circ$, $V = 2908.7(10)$ Å3, $Z = 4$, $Z' = 2$, $D_c = 1.575$ Mg/m3, $\mu = 0.331$ mm$^{-1}$, $F(000) = 1424$, $2\theta_{\text{max}} = 50.00^\circ$, 27023 reflections, 5118 independent reflections [R$_{\text{int}} = 0.0436$], R$_1 = 0.0579$, wR$_2 = 0.1501$ and GOF = 1.065 for 5118 reflections (500 parameters) with $I > 2\sigma(I)$, R$_1 = 0.0794$, wR$_2 = 0.1665$ and GOF = 1.174 for all reflections, max/min residual electron density +0.697/-0.431 eÅ3.

Crystallographic Data for 7 (M=Ni): C$_{22}$H$_{24}$Cl$_2$NiO$_{18}$, M = 706.02, 0.31 x 0.20 x 0.14 mm, T = 173(2) K, monoclinic, space group $P2_1/n$, $a = 7.412(2)$ Å, $b = 14.508(3)$ Å, $c = 13.476(4)$ Å, $\alpha = 95.849(5)^\circ$, $\beta = 87.173(2)^\circ$, $\gamma = 76.390(2)^\circ$, $V = 1441.6(7)$ Å3, $Z = 2$, $Z' = 0.5$, $D_c = 1.627$ Mg/m3, $\mu = 0.940$ mm$^{-1}$, $F(000) = 724$, $2\theta_{\text{max}} = 50.00^\circ$, 9624 reflections, 3129 independent reflections [R$_{\text{int}} = 0.0436$], R$_1 = 0.0579$, wR$_2 = 0.1501$ and GOF = 1.065 for 5118 reflections (500 parameters) with $I > 2\sigma(I)$, R$_1 = 0.0794$, wR$_2 = 0.1665$ and GOF = 1.174 for all reflections, max/min residual electron density +0.697/-0.431 eÅ3.

Crystallographic Data for 8: C$_{32.50}$H$_{32}$Cl$_2$Li$_2$O$_{22.50}$, M = 867.36, 0.38 x 0.27 x 0.16 mm, T = 173(2) K, triclinic, space group $P-1$, $a = 13.6532(18)$ Å, $b = 15.954(2)$ Å, $c = 18.398(2)$ Å, $\alpha = 79.690(2)^\circ$, $\beta = 87.173(2)^\circ$, $\gamma = 76.390(2)^\circ$, $V = 3832.0(9)$ Å3, $Z = 4$, $Z' = 2$, $D_c = 1.503$ Mg/m3, $\mu = 0.259$ mm$^{-1}$, $F(000) = 1788$, $2\theta_{\text{max}} = 50.00^\circ$, 37382 reflections, 13455 independent reflections [R$_{\text{int}} = 0.0402$], R$_1 = 0.0556$, wR$_2 = 0.1523$ and GOF = 1.033 for 13455 reflections (1219 parameters) with $I > 2\sigma(I)$, R$_1 = 0.0898$, wR$_2 = 0.1691$ and GOF = 1.033 for all reflections, max/min residual electron density +0.545/-0.289 eÅ3.

Crystallographic Data for 9 (M=Cu): C$_{20}$H$_{20}$Cl$_2$CuO$_{18}$, M = 682.80, 0.32 x 0.27 x 0.16 mm, T = 173(2) K, monoclinic, space group $P2_1/n$, $a = 9.9449(10)$ Å, $b = 12.6414(13)$ Å, $c = 10.4593(11)$ Å, $\beta = 95.359(2)^\circ$, $V = 1309.2(2)$ Å3, $Z = 2$, $Z' = 0.5$, $D_c = 1.732$
Crystallographic Data for 9 (M=Co): $\text{C}_{20}\text{H}_{20}\text{Cl}_{2}\text{CoO}_{18}$, M = 678.19, 0.19 x 0.16 x 0.12 mm, T = 173(2) K, monoclinic, space group $P2_1/n$, $a = 10.033(6)$ Å, $b = 12.586(8)$ Å, $c = 10.332(6)$ Å, $\beta = 95.922(9)^\circ$, $V = 1297.7(14)$ Å3, $Z = 2$, $Z^\prime = 0.5$, $D_c = 1.736$ Mg/m3, $\mu = 0.955$ mm$^{-1}$, $F(000) = 690$, $2\theta_{\text{max}} = 50.00^\circ$, 11277 reflections, 2279 independent reflections [R int = 0.0425], $R_1 = 0.0509$, wR2 = 0.1218 and GOF = 1.055 for 2279 reflections (227 parameters) with I>2σ(I), $R_1 = 0.0666$, wR2 = 0.1320 and GOF = 1.055 for all reflections, max/min residual electron density +0.924/-0.438 eÅ3.

Crystallographic Data for 9 (M=Ni): $\text{C}_{20}\text{H}_{20}\text{Cl}_{2}\text{NiO}_{18}$, M = 677.97, 0.19 x 0.12 x 0.09 mm, T = 173(2) K, monoclinic, space group $P2_1/n$, $a = 9.952(3)$ Å, $b = 12.636(3)$ Å, $c = 10.439(3)$ Å, $\beta = 95.348(4)^\circ$, $V = 1307.0(6)$ Å3, $Z = 2$, $Z^\prime = 0.5$, $D_c = 1.723$ Mg/m3, $\mu = 1.033$ mm$^{-1}$, $F(000) = 692$, $2\theta_{\text{max}} = 50.00^\circ$, 12556 reflections, 2852 independent reflections [R int = 0.0295], $R_1 = 0.0295$, wR2 = 0.0723 and GOF = 1.066 for 2852 reflections (227 parameters) with I>2σ(I), $R_1 = 0.0368$, wR2 = 0.0775 and GOF = 1.066 for all reflections, max/min residual electron density +0.327/-0.412 eÅ3.

Crystallographic Data for 9 (M=Zn): $\text{C}_{20}\text{H}_{20}\text{Cl}_{2}\text{ZnO}_{18}$, M = 684.63, 0.32 x 0.11 x 0.08 mm, T = 173(2) K, monoclinic, space group $P2_1/n$, $a = 9.973(3)$ Å, $b = 12.636(3)$ Å, $c = 10.432(3)$ Å, $\beta = 95.500(4)^\circ$, $V = 1308.5(6)$ Å3, $Z = 2$, $Z^\prime = 0.5$, $D_c = 1.738$ Mg/m3, $\mu = 1.229$ mm$^{-1}$, $F(000) = 696$, $2\theta_{\text{max}} = 54.00^\circ$, 14755 reflections, 2855 independent reflections [R int = 0.0382], $R_1 = 0.0387$, wR2 = 0.0944 and GOF = 1.082 for 2855 reflections (227 parameters) with I>2σ(I), $R_1 = 0.0530$, wR2 = 0.1044 and GOF = 1.082 for all reflections, max/min residual electron density +0.680/-0.305 eÅ3.

Crystallographic Data for 9 (M=Fe): $\text{C}_{20}\text{H}_{20}\text{Cl}_{2}\text{FeO}_{18}$, M = 675.11, 0.39 x 0.22 x 0.10 mm, T = 173(2) K, monoclinic, space group $P2_1/n$, $a = 10.113(2)$ Å, $b = 12.627(3)$ Å, $c = 10.339(2)$ Å, $\beta = 95.402(4)^\circ$, $V = 1314.5(5)$ Å3, $Z = 2$, $Z^\prime = 0.5$, $D_c = 1.706$ Mg/m3, $\mu = 0.863$ mm$^{-1}$, $F(000) = 688$, $2\theta_{\text{max}} = 54.00^\circ$, 8603 reflections, 2848 independent reflections [R int = 0.0191], $R_1 = 0.0348$, wR2 = 0.0880 and GOF = 1.039 for 2848 reflections (237 parameters) with I>2σ(I), $R_1 = 0.0411$, wR2 = 0.0932 and GOF = 1.039 for all reflections, max/min residual electron density +0.334/-0.361 eÅ3.

Crystallographic Data for 10: $\text{C}_{20}\text{H}_{20}\text{Cl}_{2}\text{BaO}_{18}$, M = 756.60, 0.39 x 0.24 x 0.08 mm, T = 173(2) K, triclinic, space group P-1, $a = 10.1152(15)$ Å, $b = 10.2248(15)$ Å, $c = 12.9429(19)$ Å, $\alpha = 92.527(2)^\circ$, $\beta = 99.751(2)^\circ$, $\gamma = 97.818(2)^\circ$, $V = 1303.9(3)$ Å3, $Z = 2$, $D_c = 1.927$ Mg/m3, $\mu = 1.815$ mm$^{-1}$, $F(000) = 748$, $2\theta_{\text{max}} = 54.00^\circ$, 14739 reflections, 5654 independent reflections [R int = 0.0153], $R_1 = 0.0205$, wR2 = 0.0635 and GOF = 1.186 for 5654 reflections (479 parameters) with I>2σ(I), $R_1 = 0.0209$, wR2 = 0.0639
and GOF = 1.190 for all reflections, max/min residual electron density +0.543/-0.453 eÅ³.

References:

1 Bruker (2000). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA

SHELXTL-6.10 "Program for Structure Solution, Refinement and Presentation"
BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA

General Procedure:

Bis-γ-pyrene 4 was prepared by dissolving 2.00 g (11.8 mmol) of dehydroacetic acid (3) in 5 mL of acetic anhydride and slowly adding the solution to 1.5 mL 60% perchloric acid in 20 mL of acetic anhydride at 0°C. The solution was stirred for 12 hrs at 0°C during which an orange precipitate formed. The solid was collected via filtration, washed with hexanes and identified as the perchlorate salt 6 (1.78 g, 6.09 mmol, 51% yield). The filtrate upon standing for one week, deposited additional crystalline 6, increasing the yield to 65%. NMR – [ppm δH (DMSO) 2.29 s (6H), 6.22 s (1H), 6.58 s (1H) 8.90 br s (1H), δC 19.4, 20.4, 98.9, 104.9, 115.3, 157.4, 164.6, 167.7, 169.7, 174.0] IR cm⁻¹ KBr 1733.8, 1652.7, 1646.4, 1622.8, 1575.6, 1559.1, 1539.7, 1114.3, 1086.4, 623.2. mp > 250°C.

A portion of 6 (500 mg, 1.71 mmol) was carefully neutralized with NaHCO₃ (143 mg 1.71 mmol) in H₂O (7 mL) and the mixture was extracted with CHCl₃, dried over Na₂SO₄ and evaporated to afford solid bis-γ-pyrene 4 as a colorless solid. The solid was recrystallized from either benzene or CHCl₃-cyclohexane to afford 4 as colorless needles. NMR – [ppm δH (CDCl₃) 2.33 s (3H), 6.18 s (1H), δC 19.10, 115.42, 160.55, 175.76]. IR (KBr) cm⁻¹ 1749.8, 1698.1, 1684.4, 1653.0, 1646.8, 1635.5, 1558.4, 1437.2. HRMS – calcd 192.0423 found 192.0431. mp = 200 °C (decomp). λmax 300 nm.
Metal complexes 7 were prepared by dissolving 2 equivalents of 4 (i.e. 10 mg 0.05 mmol) in dry MeOH (300 µL), pouring the solution into a solution of 1 equivalent of the metal perchlorate salt (0.026 mmol) in dry MeOH (300 µL), and allowing the solution to slowly evaporate. This gave crystalline salts 7, 8, and 10 in quantitative yields.

Rearranged metal complexes 9 were prepared as described above, except that 1 equivalent of the hydrated metal perchlorates (0.026 mmol) was used.

General and crystallographic data for complexes 4, 6, 7, 8, 9, and 10.

Bis-γ-pyrone perchlorate salt 6:
NMR – [ppm δH (DMSO) 2.29 s (6H), 6.22 s (1H), 6.58 s (1H) 8.90 br s (1H), δC 19.4, 20.4, 98.9, 104.9, 115.3, 157.4, 164.6, 167.7, 169.7, 174.0] IR cm⁻¹ KBr 1733.8, 1652.7, 1646.4, 1622.8, 1575.6, 1559.1, 1539.7, 1114.3, 1086.4, 623.2. mp > 250°C.

Crystal Structure:
Table 1. Crystal data and structure refinement for 6.

Identification code 6
Empirical formula C10 H9 Cl O8
Formula weight 292.62
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Orthorhombic
Space group Pnma
Unit cell dimensions
\[a = 10.190(4) \text{ Å} \]
\[b = 12.552(4) \text{ Å} \]
\[c = 8.820(3) \text{ Å} \]
Volume 1128.1(7) Å³
Z 4
Density (calculated) 1.723 Mg/m³
Absorption coefficient 0.375 mm⁻¹
F(000) 600
Crystal size 0.38 x 0.11 x 0.10 mm³
Theta range for data collection 2.82 to 26.99°
Index ranges -13≤h≤13, -16≤k≤16, -11≤l≤11
Reflections collected 12297
Independent reflections 1291 [R(int) = 0.0324]
Completeness to theta = 26.99° 100.0 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9634 and 0.8705
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 1291 / 0 / 114
Goodness-of-fit on F² 1.086
Final R indices [I>2σ(I)] R1 = 0.0363, wR2 = 0.0974
R indices (all data) R1 = 0.0411, wR2 = 0.1022
Largest diff. peak and hole 0.473 and -0.221 e.Å⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 6. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>7547(1)</td>
<td>2500</td>
<td>364(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>4911(1)</td>
<td>6632(1)</td>
<td>2401(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>8069(1)</td>
<td>6471(1)</td>
<td>-398(2)</td>
<td>38(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>8367(2)</td>
<td>2500</td>
<td>1667(2)</td>
<td>53(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>O(4)</td>
<td>6200(2)</td>
<td>2500</td>
<td>822(3)</td>
<td>55(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>7791(2)</td>
<td>3435(1)</td>
<td>-535(2)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>5489(2)</td>
<td>7500</td>
<td>1898(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>6554(2)</td>
<td>7500</td>
<td>959(3)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>7081(2)</td>
<td>6501(1)</td>
<td>476(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>6443(2)</td>
<td>5568(1)</td>
<td>1030(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>5395(2)</td>
<td>5652(1)</td>
<td>1964(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>4628(2)</td>
<td>4773(2)</td>
<td>2626(2)</td>
<td>34(1)</td>
</tr>
</tbody>
</table>

Table 3. Bond lengths [Å] and angles [°] for 6.

<table>
<thead>
<tr>
<th>Bond</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)-O(3)</td>
<td>1.421(2)</td>
</tr>
<tr>
<td>Cl(1)-O(4)</td>
<td>1.431(2)</td>
</tr>
<tr>
<td>Cl(1)-O(5)#1</td>
<td>1.4378(14)</td>
</tr>
<tr>
<td>Cl(1)-O(5)</td>
<td>1.4378(14)</td>
</tr>
<tr>
<td>O(1)-C(1)</td>
<td>1.3157(17)</td>
</tr>
<tr>
<td>O(1)-C(5)</td>
<td>1.3810(19)</td>
</tr>
<tr>
<td>O(2)-C(3)</td>
<td>1.268(2)</td>
</tr>
<tr>
<td>O(2)-H(1)</td>
<td>0.81(4)</td>
</tr>
<tr>
<td>C(1)-O(1)#2</td>
<td>1.3157(17)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.365(3)</td>
</tr>
<tr>
<td>C(2)-C(3)#2</td>
<td>1.429(2)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.429(2)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.426(2)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.353(2)</td>
</tr>
<tr>
<td>C(4)-H(2)</td>
<td>0.97(2)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.472(2)</td>
</tr>
<tr>
<td>C(6)-H(3)</td>
<td>0.92(2)</td>
</tr>
<tr>
<td>C(6)-H(4)</td>
<td>0.97(2)</td>
</tr>
<tr>
<td>C(6)-H(5)</td>
<td>0.98(3)</td>
</tr>
<tr>
<td>O(3)-Cl(1)-O(4)</td>
<td>109.63(14)</td>
</tr>
<tr>
<td>O(3)-Cl(1)-O(5)#1</td>
<td>110.15(8)</td>
</tr>
<tr>
<td>O(4)-Cl(1)-O(5)#1</td>
<td>108.77(8)</td>
</tr>
<tr>
<td>O(3)-Cl(1)-O(5)</td>
<td>110.15(8)</td>
</tr>
</tbody>
</table>
O(4)-Cl(1)-O(5) 108.77(8)
O(5)#1-Cl(1)-O(5) 109.34(12)
C(1)-O(1)-C(5) 118.91(13)
C(3)-O(2)-H(1) 109(3)
O(1)-C(1)-O(1)#2 111.74(19)
O(1)-C(1)-C(2) 124.13(10)
O(1)#2-C(1)-C(2) 124.13(10)
C(1)-C(2)-C(3)#2 118.67(11)
C(1)-C(2)-C(3) 118.67(11)
C(3)#2-C(2)-C(3) 122.6(2)
O(2)-C(3)-C(4) 123.07(16)
O(2)-C(3)-C(2) 120.40(16)
C(4)-C(3)-C(2) 116.53(16)
C(5)-C(4)-C(3) 120.36(16)
C(5)-C(4)-H(2) 118.2(11)
C(3)-C(4)-H(2) 121.5(12)
H(3)-C(6)-H(4) 112.2(18)
C(5)-C(6)-H(3) 106.1(14)
C(5)-C(6)-H(4) 109.0(14)
H(3)-C(6)-H(5) 112.7(18)
H(4)-C(6)-H(5) 108.7(18)

Symmetry transformations used to generate equivalent atoms:
#1 x, -y+1/2, z #2 x, -y+3/2, z

Table 4. Anisotropic displacement parameters (Å² x 10³) for 6. The anisotropic
displacement factor exponent takes the form: -2\pi^2 [a^2 U_{11} + ... + 2 h k a^* b^* U_{12}]

<table>
<thead>
<tr>
<th></th>
<th>U₁¹</th>
<th>U₂²</th>
<th>U₃³</th>
<th>U₂₃</th>
<th>U₁₃</th>
<th>U₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>27(1)</td>
<td>28(1)</td>
<td>29(1)</td>
<td>0</td>
<td>2(1)</td>
<td>0</td>
</tr>
<tr>
<td>O(1)</td>
<td>23(1)</td>
<td>27(1)</td>
<td>32(1)</td>
<td>1(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3)
for 4.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>8280(40)</td>
<td>7070(30)</td>
<td>-600(40)</td>
<td>42(13)</td>
</tr>
<tr>
<td>H(2)</td>
<td>6730(19)</td>
<td>4861(16)</td>
<td>740(20)</td>
<td>34(5)</td>
</tr>
<tr>
<td>H(3)</td>
<td>5020(20)</td>
<td>4151(19)</td>
<td>2290(20)</td>
<td>43(6)</td>
</tr>
<tr>
<td>H(4)</td>
<td>4640(20)</td>
<td>4836(18)</td>
<td>3730(30)</td>
<td>52(6)</td>
</tr>
<tr>
<td>H(5)</td>
<td>3720(30)</td>
<td>4844(17)</td>
<td>2280(20)</td>
<td>51(6)</td>
</tr>
</tbody>
</table>

Table 6. Torsion angles [°] for 6.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(5)-O(1)-C(1)-O(1)#2</td>
<td>179.45(11)</td>
</tr>
<tr>
<td>C(5)-O(1)-C(1)-C(2)</td>
<td>-0.1(3)</td>
</tr>
<tr>
<td>O(1)-C(1)-C(2)-C(3)#2</td>
<td>179.15(18)</td>
</tr>
<tr>
<td>O(1)#2-C(1)-C(2)-C(3)#2</td>
<td>-0.3(3)</td>
</tr>
<tr>
<td>O(1)-C(1)-C(2)-C(3)</td>
<td>0.3(3)</td>
</tr>
<tr>
<td>O(1)#2-C(1)-C(2)-C(3)</td>
<td>-179.15(18)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-O(2)</td>
<td>179.93(18)</td>
</tr>
<tr>
<td>C(3)#2-C(2)-C(3)-O(2)</td>
<td>1.2(3)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>-0.3(3)</td>
</tr>
<tr>
<td>C(3)#2-C(2)-C(3)-C(4)</td>
<td>-179.03(14)</td>
</tr>
</tbody>
</table>
O(2)-C(3)-C(4)-C(5) 179.77(16)
C(2)-C(3)-C(4)-C(5) 0.0(2)
C(3)-C(4)-C(5)-O(1) 0.3(2)
C(3)-C(4)-C(5)-C(6) 179.78(16)
C(1)-O(1)-C(5)-C(4) -0.2(2)
C(1)-O(1)-C(5)-C(6) -179.80(16)

Symmetry transformations used to generate equivalent atoms:
#1 x,-y+1/2,z #2 x,-y+3/2,z

Table 7. Hydrogen bonds for 6 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2)-H(1)...O(2)#2</td>
<td>0.81(4)</td>
<td>1.85(4)</td>
<td>2.583(3)</td>
<td>151(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 x,-y+1/2,z #2 x,-y+3/2,z

Dimethyl-bis-γ-pyrone 4:

NMR – [ppm δH (CDCl3) 2.33 s (3H), 6.18 s (1H), δC 19.10, 115.42, 160.55, 175.76]. IR (KBr) cm⁻¹ 1749.8, 1698.1, 1684.4, 1653.0, 1646.8, 1635.5, 1558.4, 1437.2. HRMS – calcd 192.0423 found 192.0431. mp = 200 °C (decomp). λmax 300 nm.

Crystal Structure:
Table 1. Crystal data and structure refinement for 4.

Identification code 4
Empirical formula C10 H10 O5
Formula weight 210.18
Temperature 296 K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/c
Unit cell dimensions
a = 7.0711(2) Å \(\alpha = 90^\circ \)
b = 25.5598(9) Å \(\beta = 104.5210(10)^\circ \)
c = 11.1908(4) Å \(\gamma = 90^\circ \)
Volume 1957.97(11) Å³
Z 8
Density (calculated) 1.426 Mg/m³
Absorption coefficient 0.116 mm⁻¹
F(000) 880
Crystal size 0.27 x 0.25 x 0.06 mm³
Theta range for data collection 1.59 to 27.00°.
Index ranges -9 <= h <= 9, -32 <= k <= 32, -14 <= l <= 14
Reflections collected 19210
Independent reflections 4263 [R(int) = 0.0315]
Completeness to theta = 27.00° 99.9%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9931 and 0.9694
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 4263 / 0 / 351
Goodness-of-fit on F² 1.025
Final R indices [I>2sigma(I)] R₁ = 0.0450, wR₂ = 0.1021
R indices (all data) R₁ = 0.0783, wR₂ = 0.1219
Largest diff. peak and hole 0.184 and -0.193 e.Å⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 4. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>2017(2)</td>
<td>3837(1)</td>
<td>9586(1)</td>
<td>56(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1304(2)</td>
<td>3067(1)</td>
<td>8855(1)</td>
<td>50(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>-230(2)</td>
<td>4589(1)</td>
<td>6362(1)</td>
<td>72(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>-1466(2)</td>
<td>3562(1)</td>
<td>5420(1)</td>
<td>66(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 4.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(1)</td>
<td>1.326(2)</td>
</tr>
<tr>
<td>O(1)-C(2)</td>
<td>1.385(2)</td>
</tr>
<tr>
<td>O(2)-C(1)</td>
<td>1.3321(19)</td>
</tr>
<tr>
<td>O(2)-C(8)</td>
<td>1.384(2)</td>
</tr>
<tr>
<td>O(3)-C(4)</td>
<td>1.228(2)</td>
</tr>
<tr>
<td>O(4)-C(6)</td>
<td>1.230(2)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C(1)-C(5)</td>
<td>1.356(2)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.324(3)</td>
</tr>
<tr>
<td>C(2)-C(10)</td>
<td>1.480(3)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.448(3)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.94(2)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.469(2)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.462(2)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.454(2)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>0.958(19)</td>
</tr>
<tr>
<td>C(8)-C(11)</td>
<td>1.480(2)</td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>0.98(3)</td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>0.96(3)</td>
</tr>
<tr>
<td>C(10)-H(10C)</td>
<td>0.97(3)</td>
</tr>
<tr>
<td>C(11)-H(11A)</td>
<td>0.93(2)</td>
</tr>
<tr>
<td>C(11)-H(11B)</td>
<td>0.98(2)</td>
</tr>
<tr>
<td>C(11)-H(11C)</td>
<td>1.01(2)</td>
</tr>
<tr>
<td>O(1')-C(1')</td>
<td>1.332(2)</td>
</tr>
<tr>
<td>O(1')-C(2')</td>
<td>1.386(2)</td>
</tr>
<tr>
<td>O(2')-C(1')</td>
<td>1.336(2)</td>
</tr>
<tr>
<td>O(2')-C(8')</td>
<td>1.391(2)</td>
</tr>
<tr>
<td>O(3')-C(4')</td>
<td>1.224(2)</td>
</tr>
<tr>
<td>O(4')-C(6')</td>
<td>1.225(2)</td>
</tr>
<tr>
<td>C(1')-C(5')</td>
<td>1.355(2)</td>
</tr>
<tr>
<td>C(2')-C(3')</td>
<td>1.327(3)</td>
</tr>
<tr>
<td>C(2')-C(10')</td>
<td>1.483(3)</td>
</tr>
<tr>
<td>C(3')-C(4')</td>
<td>1.450(3)</td>
</tr>
<tr>
<td>C(3')-H(3')</td>
<td>0.93(2)</td>
</tr>
<tr>
<td>C(4')-C(5')</td>
<td>1.462(2)</td>
</tr>
<tr>
<td>C(5')-C(6')</td>
<td>1.462(2)</td>
</tr>
<tr>
<td>C(6')-C(7')</td>
<td>1.447(3)</td>
</tr>
<tr>
<td>C(7')-C(8')</td>
<td>1.323(3)</td>
</tr>
<tr>
<td>C(7')-H(7')</td>
<td>0.910(19)</td>
</tr>
<tr>
<td>C(8')-C(11')</td>
<td>1.478(3)</td>
</tr>
<tr>
<td>C(10')-H(10D)</td>
<td>0.98(3)</td>
</tr>
<tr>
<td>C(10')-H(10E)</td>
<td>0.94(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C(10')-H(10F)</td>
<td>0.92(3)</td>
</tr>
<tr>
<td>C(11')-H(11D)</td>
<td>0.97(3)</td>
</tr>
<tr>
<td>C(11')-H(11E)</td>
<td>0.90(2)</td>
</tr>
<tr>
<td>C(11')-H(11F)</td>
<td>0.97(2)</td>
</tr>
<tr>
<td>O(1S)-H(1S)</td>
<td>0.77(3)</td>
</tr>
<tr>
<td>O(1S)-H(2S)</td>
<td>0.87(3)</td>
</tr>
<tr>
<td>O(1S')-H(1'S)</td>
<td>0.80(4)</td>
</tr>
<tr>
<td>O(1S')-H(2'S)</td>
<td>0.81(3)</td>
</tr>
<tr>
<td>O(1)-C(1)-O(2)</td>
<td>118.69(14)</td>
</tr>
<tr>
<td>O(1)-C(1)-C(5)</td>
<td>126.07(15)</td>
</tr>
<tr>
<td>O(2)-C(1)-C(5)</td>
<td>126.44(16)</td>
</tr>
<tr>
<td>C(3)-C(2)-O(1)</td>
<td>120.31(17)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(10)</td>
<td>129.52(19)</td>
</tr>
<tr>
<td>O(1)-C(2)-C(10)</td>
<td>110.16(17)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>123.25(18)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3)</td>
<td>117.1(11)</td>
</tr>
<tr>
<td>O(3)-C(4)-C(5)</td>
<td>122.51(17)</td>
</tr>
<tr>
<td>O(3)-C(4)-C(10)</td>
<td>123.03(17)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>114.45(16)</td>
</tr>
<tr>
<td>C(1)-C(5)-C(6)</td>
<td>117.26(15)</td>
</tr>
<tr>
<td>C(1)-C(5)-C(4)</td>
<td>117.14(16)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>125.60(15)</td>
</tr>
<tr>
<td>O(4)-C(6)-C(7)</td>
<td>121.55(17)</td>
</tr>
<tr>
<td>O(4)-C(6)-C(10)</td>
<td>123.92(16)</td>
</tr>
<tr>
<td>C(7)-C(6)-C(5)</td>
<td>114.52(15)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(6)</td>
<td>122.90(17)</td>
</tr>
<tr>
<td>C(8)-C(7)-H(7)</td>
<td>117.5(11)</td>
</tr>
<tr>
<td>C(6)-C(7)-H(7)</td>
<td>119.5(11)</td>
</tr>
<tr>
<td>C(7)-C(8)-O(2)</td>
<td>120.76(15)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(11)</td>
<td>128.23(17)</td>
</tr>
<tr>
<td>O(2)-C(8)-C(11)</td>
<td>111.00(16)</td>
</tr>
<tr>
<td>C(2)-C(10)-H(10A)</td>
<td>109.1(16)</td>
</tr>
</tbody>
</table>
C(2)-C(10)-H(10B) 109.6(16)
H(10A)-C(10)-H(10B) 110(2)
C(2)-C(10)-H(10C) 110.6(14)
H(10A)-C(10)-H(10C) 111(2)
H(10B)-C(10)-H(10C) 106(2)
C(8)-C(11)-H(11A) 111.1(13)
C(8)-C(11)-H(11B) 111.1(13)
H(11A)-C(11)-H(11B) 107.6(19)
C(8)-C(11)-H(11C) 110.2(11)
H(11A)-C(11)-H(11C) 107.3(17)
H(11B)-C(11)-H(11C) 109.4(17)
C(1')-O(1')-C(2') 118.37(14)
C(1')-O(2')-C(8') 117.88(13)
O(1')-C(1')-O(2') 108.22(14)
O(1')-C(1')-C(5') 125.85(16)
O(2')-C(1')-C(5') 125.93(16)
C(3')-C(2')-O(1') 120.49(18)
C(3')-C(2')-C(10') 128.9(2)
O(1')-C(2')-C(10') 110.58(19)
C(2')-C(3')-C(4') 123.17(19)
C(2')-C(3')-H(3') 117.6(12)
C(4')-C(3')-H(3') 119.2(12)
O(3')-C(4')-C(3') 122.96(18)
O(3')-C(4')-C(5') 122.70(18)
C(3')-C(4')-C(5') 114.34(17)
C(1')-C(5')-C(6') 117.70(16)
C(1')-C(5')-C(4') 117.75(16)
C(6')-C(5')-C(4') 124.53(16)
O(4')-C(6')-C(7') 122.24(17)
O(4')-C(6')-C(5') 123.48(17)
C(7')-C(6')-C(5') 114.26(16)
C(8')-C(7')-C(6') 123.27(18)
C(8')-C(7')-H(7') 119.2(12)
C(6')-C(7')-H(7') 117.5(12)
C(7')-C(8')-O(2') 120.69(16)
C(7')-C(8')-C(11') 127.60(19)
Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010

\[
\begin{align*}
O(2')-C(8')-C(11') & \quad 111.71(17) \\
C(2')-C(10')-H(10D) & \quad 109.8(19) \\
C(2')-C(10')-H(10E) & \quad 112.2(16) \\
H(10D)-C(10')-H(10E) & \quad 107(3) \\
C(2')-C(10')-H(10F) & \quad 108.8(16) \\
H(10E)-C(10')-H(10F) & \quad 113(2) \\
C(8')-C(11')-H(11D) & \quad 108.2(15) \\
C(8')-C(11')-H(11E) & \quad 110.2(15) \\
H(11D)-C(11')-H(11E) & \quad 111(2) \\
C(8')-C(11')-H(11F) & \quad 110.9(14) \\
H(11D)-C(11')-H(11F) & \quad 111(2) \\
H(11E)-C(11')-H(11F) & \quad 106(2) \\
H(15)-O(15)-H(25) & \quad 107(3) \\
H(15)-O(15)-H(25) & \quad 106(3)
\end{align*}
\]

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å² x 10³) for jw33. The anisotropic displacement factor exponent takes the form: -2π² [h²a*²U₁₁ + ... + 2 h k a* b* U₁₂]

<table>
<thead>
<tr>
<th>Atom</th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₃</th>
<th>U₂₃</th>
<th>U₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>77(1)</td>
<td>36(1)</td>
<td>48(1)</td>
<td>0(1)</td>
<td>3(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>65(1)</td>
<td>34(1)</td>
<td>48(1)</td>
<td>2(1)</td>
<td>10(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>96(1)</td>
<td>48(1)</td>
<td>62(1)</td>
<td>16(1)</td>
<td>1(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>86(1)</td>
<td>56(1)</td>
<td>48(1)</td>
<td>3(1)</td>
<td>3(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>51(1)</td>
<td>35(1)</td>
<td>47(1)</td>
<td>0(1)</td>
<td>13(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>72(1)</td>
<td>35(1)</td>
<td>59(1)</td>
<td>-2(1)</td>
<td>13(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>71(1)</td>
<td>33(1)</td>
<td>64(1)</td>
<td>2(1)</td>
<td>13(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>55(1)</td>
<td>42(1)</td>
<td>57(1)</td>
<td>8(1)</td>
<td>12(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>45(1)</td>
<td>39(1)</td>
<td>48(1)</td>
<td>4(1)</td>
<td>14(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>50(1)</td>
<td>46(1)</td>
<td>46(1)</td>
<td>1(1)</td>
<td>14(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>54(1)</td>
<td>43(1)</td>
<td>49(1)</td>
<td>-6(1)</td>
<td>14(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>46(1)</td>
<td>37(1)</td>
<td>53(1)</td>
<td>-4(1)</td>
<td>18(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>110(2)</td>
<td>47(1)</td>
<td>61(1)</td>
<td>-8(1)</td>
<td>6(1)</td>
<td>-9(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 4.
<table>
<thead>
<tr>
<th></th>
<th>2130(50)</th>
<th>908(12)</th>
<th>-690(30)</th>
<th>143(13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(10D)</td>
<td>4200(40)</td>
<td>790(10)</td>
<td>-850(30)</td>
<td>113(10)</td>
</tr>
<tr>
<td>H(10E)</td>
<td>3320(40)</td>
<td>397(10)</td>
<td>-180(20)</td>
<td>98(9)</td>
</tr>
<tr>
<td>H(10F)</td>
<td>2070(30)</td>
<td>2095(8)</td>
<td>8760(20)</td>
<td>77(7)</td>
</tr>
<tr>
<td>H(11A)</td>
<td>40(30)</td>
<td>2112(8)</td>
<td>9030(20)</td>
<td>87(7)</td>
</tr>
<tr>
<td>H(11B)</td>
<td>310(30)</td>
<td>1911(8)</td>
<td>7706(18)</td>
<td>69(6)</td>
</tr>
<tr>
<td>H(11C)</td>
<td>5180(40)</td>
<td>3494(10)</td>
<td>2580(20)</td>
<td>99(8)</td>
</tr>
<tr>
<td>H(11D)</td>
<td>3350(40)</td>
<td>3286(9)</td>
<td>1650(20)</td>
<td>84(8)</td>
</tr>
<tr>
<td>H(11E)</td>
<td>5170(30)</td>
<td>3312(9)</td>
<td>1210(20)</td>
<td>89(8)</td>
</tr>
</tbody>
</table>

Table 6. Torsion angles [°] for 4.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)-O(1)-C(1)-O(2)</td>
<td>-179.49(14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-O(1)-C(1)-C(5)</td>
<td>1.4(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-O(2)-C(1)-O(1)</td>
<td>-179.43(13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-O(2)-C(1)-C(5)</td>
<td>-0.4(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-O(1)-C(2)-C(10)</td>
<td>-180.0(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-C(2)-C(3)-C(4)</td>
<td>-1.1(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(2)-C(3)-C(4)</td>
<td>177.3(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-O(3)</td>
<td>-175.3(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>3.1(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-C(1)-C(5)-C(6)</td>
<td>-179.36(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-C(1)-C(5)-C(6)</td>
<td>1.7(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-C(1)-C(5)-C(4)</td>
<td>0.8(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-C(1)-C(5)-C(4)</td>
<td>-178.15(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)-C(4)-C(5)-C(1)</td>
<td>175.59(18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(1)</td>
<td>-2.9(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)-C(4)-C(5)-C(6)</td>
<td>-4.3(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(6)</td>
<td>177.27(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(5)-C(6)-O(4)</td>
<td>176.02(17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-O(4)</td>
<td>-4.1(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(5)-C(6)-C(7)</td>
<td>-2.9(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-C(7)</td>
<td>176.92(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)-C(6)-C(7)-C(8)</td>
<td>-175.75(18)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C(5)-C(6)-C(7)-C(8) = 3.2(2)
C(6)-C(7)-C(8)-O(2) = -2.0(3)
C(6)-C(7)-C(8)-C(11) = 176.99(19)
C(1)-O(2)-C(8)-C(7) = 0.4(2)
C(1)-O(2)-C(8)-C(11) = -178.73(16)
C(2')-O(1')-C(1')-O(2') = 179.31(14)
C(2')-O(1')-C(1')-C(5') = -0.5(3)
C(8')-O(2')-C(1')-C(5') = 178.46(13)
C(1')-O(1')-C(2')-C(3') = 1.3(3)
C(1')-O(1')-C(2')-C(10') = -178.50(19)
C(2')-C(3')-C(4')-O(3') = -0.6(3)
C(2')-C(3')-C(4')-C(5') = 179.1(2)
O(1')-C(1')-C(5')-C(6') = 177.46(15)
O(2')-C(1')-C(5')-C(6') = -2.4(3)
O(1')-C(1')-C(5')-C(4') = -0.8(3)
O(2')-C(1')-C(5')-C(4') = 179.37(16)
O(3')-C(4')-C(5')-C(1') = -178.28(18)
C(3')-C(4')-C(5')-C(1') = 1.4(2)
O(3')-C(4')-C(5')-C(6') = 3.6(3)
C(3')-C(4')-C(5')-C(6') = -176.78(16)
C(1')-C(5')-C(6')-O(4') = -173.08(17)
C(4')-C(5')-C(6')-O(4') = 5.1(3)
C(1')-C(5')-C(6')-C(7) = 5.5(2)
C(4')-C(5')-C(6')-C(7) = -176.31(16)
O(4')-C(6')-C(7')-C(8') = 173.27(19)
C(5')-C(6')-C(7')-C(8') = -5.4(3)
C(6')-C(7')-C(8')-O(2') = 1.6(3)
C(6')-C(7')-C(8')-C(11') = -178.6(2)
C(1')-O(2')-C(8')-C(7) = 2.1(2)
C(1')-O(2')-C(8')-C(11') = -177.66(18)

Symmetry transformations used to generate equivalent atoms:
Table 7. Hydrogen bonds for 4 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1S)-H(1S)...O(4)#1</td>
<td>0.77(3)</td>
<td>2.22(3)</td>
<td>2.948(2)</td>
<td>157(3)</td>
</tr>
<tr>
<td>O(1S)-H(1S)...O(3)#1</td>
<td>0.77(3)</td>
<td>2.50(3)</td>
<td>3.031(2)</td>
<td>128(3)</td>
</tr>
<tr>
<td>O(1S')-H(1'S)...O(3')</td>
<td>0.80(4)</td>
<td>2.40(4)</td>
<td>3.116(3)</td>
<td>150(3)</td>
</tr>
<tr>
<td>O(1S')-H(1'S)...O(4')</td>
<td>0.80(4)</td>
<td>2.45(3)</td>
<td>3.081(3)</td>
<td>136(3)</td>
</tr>
<tr>
<td>O(1S)-H(2S)...O(3)#2</td>
<td>0.87(3)</td>
<td>2.13(3)</td>
<td>2.993(3)</td>
<td>168(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 x+1,y,z #2 -x+1,-y+1,-z+1

Metal Bis-γ-pyrene Complex 7 (M=Mg): General Procedure followed with 10 mg (0.0520 mmol) bis-γ-pyrene 5 and 5.8 mg (0.026 mmol) of Mg(II)(ClO₄)₂ yielding 15.8 mg of white crystals (quant.). NMR [δH (DMSO) 2.28 s (3H), 6.21 s (1H), δC 18.86, 106.33, 114.87, 161.63, 167.88, 175.72]. IR (KBr) cm⁻¹ 1674.4, 1640.4, 1487.2, 1256.7, 1182.8, 1120.4, 1023.8. HRMS calcd 507.0181 found 507.0160. mp > 250.

Crystal Structure:
Table 1. Crystal data and structure refinement for 7 (M=Mg)•H₂O

<table>
<thead>
<tr>
<th>Identification code</th>
<th>7 (M=Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C22 H26 Cl2 Mg O19</td>
</tr>
<tr>
<td>Formula weight</td>
<td>689.64</td>
</tr>
</tbody>
</table>
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/c
Unit cell dimensions
\[\begin{align*}
a &= 15.050(3) \text{ Å} \\
b &= 18.021(3) \text{ Å} \\
c &= 11.008(2) \text{ Å}
\end{align*}\]
\[a= 90^\circ, \quad b= 103.023(3)^\circ, \quad g = 90^\circ.\]
Volume 2908.7(10) Å³
Z 4
Density (calculated) 1.575 Mg/m³
Absorption coefficient 0.331 mm⁻¹
F(000) 1424
Crystal size 0.23 x 0.19 x 0.12 mm³
Theta range for data collection 1.39 to 25.00°
Index ranges -17<=h<=17, -21<=k<=21, -13<=l<=13
Reflections collected 27023
Independent reflections 5118 [R(int) = 0.0436]
Completeness to theta = 25.00° 100.0 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9613 and 0.9277
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 5118 / 18 / 500
Goodness-of-fit on F² 1.065
Final R indices [I>2sigma(I)] R1 = 0.0579, wR2 = 0.1501
R indices (all data) R1 = 0.0794, wR2 = 0.1665
Largest diff. peak and hole 0.697 and -0.431 e.Å⁻³
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters ($\AA^2 x 10^3$) for 7 (M= Mg). U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(1)</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>24(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>5590(2)</td>
<td>6014(1)</td>
<td>5558(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>4595(2)</td>
<td>4999(1)</td>
<td>6673(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>5438(2)</td>
<td>7362(1)</td>
<td>8464(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>4658(2)</td>
<td>6589(1)</td>
<td>9302(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>3834(2)</td>
<td>5563(2)</td>
<td>4205(3)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>6373(4)</td>
<td>8300(2)</td>
<td>7952(4)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>5927(3)</td>
<td>7575(2)</td>
<td>7599(3)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>5967(3)</td>
<td>7137(2)</td>
<td>6624(3)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>5536(2)</td>
<td>6424(2)</td>
<td>6452(3)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>5055(2)</td>
<td>6206(2)</td>
<td>7407(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>5050(2)</td>
<td>6698(2)</td>
<td>8345(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>4623(2)</td>
<td>5491(2)</td>
<td>7470(3)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>4226(2)</td>
<td>5383(2)</td>
<td>8534(3)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>4243(2)</td>
<td>5917(2)</td>
<td>9391(3)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>3851(3)</td>
<td>5894(3)</td>
<td>10506(4)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>3025(3)</td>
<td>5319(3)</td>
<td>3386(5)</td>
<td>56(1)</td>
</tr>
<tr>
<td>Mg(1')</td>
<td>0</td>
<td>10000</td>
<td>10000</td>
<td>23(1)</td>
</tr>
<tr>
<td>O(1')</td>
<td>503(2)</td>
<td>9992(1)</td>
<td>8410(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(2')</td>
<td>-480(2)</td>
<td>8956(1)</td>
<td>9526(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(3')</td>
<td>244(2)</td>
<td>8484(1)</td>
<td>5609(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>O(4')</td>
<td>-523(2)</td>
<td>7704(1)</td>
<td>6446(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>O(5')</td>
<td>1208(2)</td>
<td>9539(2)</td>
<td>10982(3)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(1')</td>
<td>1095(3)</td>
<td>9161(3)</td>
<td>4442(4)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(2')</td>
<td>730(2)</td>
<td>9131(2)</td>
<td>5581(3)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(3')</td>
<td>817(2)</td>
<td>9629(2)</td>
<td>6503(3)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(4')</td>
<td>431(2)</td>
<td>9513(2)</td>
<td>7572(3)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(5')</td>
<td>-33(2)</td>
<td>8813(2)</td>
<td>7600(3)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(6')</td>
<td>-101(2)</td>
<td>8351(2)</td>
<td>6599(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(7')</td>
<td>-473(2)</td>
<td>8571(2)</td>
<td>8583(3)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(8')</td>
<td>-917(3)</td>
<td>7863(2)</td>
<td>8389(3)</td>
<td>26(1)</td>
</tr>
<tr>
<td>Atom</td>
<td>u(1)</td>
<td>u(2)</td>
<td>u(3)</td>
<td>u(4)</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C(9')</td>
<td>-943(2)</td>
<td>7458(2)</td>
<td>7362(3)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(10')</td>
<td>-1401(3)</td>
<td>6737(2)</td>
<td>7007(4)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(11')</td>
<td>2069(3)</td>
<td>9867(3)</td>
<td>11392(6)</td>
<td>70(2)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>2111(1)</td>
<td>7668(1)</td>
<td>2106(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>2867(3)</td>
<td>7999(3)</td>
<td>2822(5)</td>
<td>108(2)</td>
</tr>
<tr>
<td>O(7)</td>
<td>1389(7)</td>
<td>7713(8)</td>
<td>2684(12)</td>
<td>164(5)</td>
</tr>
<tr>
<td>O(8)</td>
<td>1875(6)</td>
<td>8070(4)</td>
<td>967(6)</td>
<td>94(2)</td>
</tr>
<tr>
<td>O(9)</td>
<td>2227(5)</td>
<td>6935(3)</td>
<td>1810(8)</td>
<td>79(2)</td>
</tr>
<tr>
<td>O(7A)</td>
<td>2298(12)</td>
<td>7327(15)</td>
<td>1090(20)</td>
<td>164(5)</td>
</tr>
<tr>
<td>O(8A)</td>
<td>1831(11)</td>
<td>7048(8)</td>
<td>2736(13)</td>
<td>94(2)</td>
</tr>
<tr>
<td>O(9A)</td>
<td>1324(8)</td>
<td>8090(6)</td>
<td>1720(16)</td>
<td>79(2)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>2573(1)</td>
<td>1208(1)</td>
<td>5021(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>2518(2)</td>
<td>1991(2)</td>
<td>5146(3)</td>
<td>58(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>3491(2)</td>
<td>1062(2)</td>
<td>4874(4)</td>
<td>45(1)</td>
</tr>
<tr>
<td>O(12)</td>
<td>1966(3)</td>
<td>964(2)</td>
<td>3975(5)</td>
<td>74(2)</td>
</tr>
<tr>
<td>O(13)</td>
<td>2499(4)</td>
<td>829(2)</td>
<td>6119(4)</td>
<td>71(2)</td>
</tr>
<tr>
<td>O(11A)</td>
<td>1681(9)</td>
<td>1052(9)</td>
<td>5217(15)</td>
<td>45(1)</td>
</tr>
<tr>
<td>O(12A)</td>
<td>3162(14)</td>
<td>898(10)</td>
<td>5780(20)</td>
<td>74(2)</td>
</tr>
<tr>
<td>O(13A)</td>
<td>2492(18)</td>
<td>841(11)</td>
<td>3934(16)</td>
<td>71(1)</td>
</tr>
<tr>
<td>O(1S)</td>
<td>3596(2)</td>
<td>6937(2)</td>
<td>4949(3)</td>
<td>57(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 7 (M=Mg).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(1)-O(5)#1</td>
<td>2.046(3)</td>
</tr>
<tr>
<td>Mg(1)-O(5)</td>
<td>2.046(3)</td>
</tr>
<tr>
<td>Mg(1)-O(1)#1</td>
<td>2.064(2)</td>
</tr>
<tr>
<td>Mg(1)-O(1)</td>
<td>2.064(2)</td>
</tr>
<tr>
<td>Mg(1)-O(2)#1</td>
<td>2.066(2)</td>
</tr>
<tr>
<td>Mg(1)-O(2)</td>
<td>2.066(2)</td>
</tr>
<tr>
<td>Mg(1)-H(5O)</td>
<td>2.60(5)</td>
</tr>
<tr>
<td>O(1)-C(4)</td>
<td>1.248(4)</td>
</tr>
<tr>
<td>O(2)-C(7)</td>
<td>1.241(4)</td>
</tr>
<tr>
<td>O(3)-C(6)</td>
<td>1.324(4)</td>
</tr>
<tr>
<td>O(3)-C(2)</td>
<td>1.383(4)</td>
</tr>
<tr>
<td>O(4)-C(6)</td>
<td>1.332(4)</td>
</tr>
<tr>
<td>O(4)-C(9)</td>
<td>1.376(4)</td>
</tr>
<tr>
<td>O(5)-C(11)</td>
<td>1.411(5)</td>
</tr>
<tr>
<td>O(5)-H(5O)</td>
<td>0.95(2)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.479(5)</td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>0.92(5)</td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.85(5)</td>
</tr>
<tr>
<td>C(1)-H(1C)</td>
<td>1.01(5)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.345(5)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.432(5)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.92(4)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.459(5)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.363(5)</td>
</tr>
<tr>
<td>C(5)-C(7)</td>
<td>1.450(5)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.443(5)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.344(5)</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.99(4)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.477(5)</td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>1.01(5)</td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>0.96(5)</td>
</tr>
<tr>
<td>C(10)-H(10C)</td>
<td>0.93(5)</td>
</tr>
<tr>
<td>C(11)-H(11A)</td>
<td>0.980</td>
</tr>
<tr>
<td>C(11)-H(11B)</td>
<td>0.980</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C(11)-H(11C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>Mg(1')-O(2')</td>
<td>2.041(2)</td>
</tr>
<tr>
<td>Mg(1')-O(2')#2</td>
<td>2.041(2)</td>
</tr>
<tr>
<td>Mg(1')-O(1')#2</td>
<td>2.057(2)</td>
</tr>
<tr>
<td>Mg(1')-O(1')</td>
<td>2.057(2)</td>
</tr>
<tr>
<td>Mg(1')-O(5')</td>
<td>2.068(3)</td>
</tr>
<tr>
<td>Mg(1')-O(5')#2</td>
<td>2.068(3)</td>
</tr>
<tr>
<td>O(1')-C(4')</td>
<td>1.250(4)</td>
</tr>
<tr>
<td>O(2')-C(7')</td>
<td>1.250(4)</td>
</tr>
<tr>
<td>O(3')-C(6')</td>
<td>1.330(4)</td>
</tr>
<tr>
<td>O(3')-C(2')</td>
<td>1.381(4)</td>
</tr>
<tr>
<td>O(4')-C(6')</td>
<td>1.320(4)</td>
</tr>
<tr>
<td>O(4')-C(9')</td>
<td>1.378(4)</td>
</tr>
<tr>
<td>O(5')-C(11')</td>
<td>1.403(6)</td>
</tr>
<tr>
<td>O(5')-H(5'O)</td>
<td>0.93(2)</td>
</tr>
<tr>
<td>C(1')-C(2')</td>
<td>1.478(5)</td>
</tr>
<tr>
<td>C(1')-H(1'A)</td>
<td>1.06(5)</td>
</tr>
<tr>
<td>C(1')-H(1'B)</td>
<td>0.97(5)</td>
</tr>
<tr>
<td>C(1')-H(1'C)</td>
<td>0.90(5)</td>
</tr>
<tr>
<td>C(2')-C(3')</td>
<td>1.340(5)</td>
</tr>
<tr>
<td>C(3')-C(4')</td>
<td>1.440(5)</td>
</tr>
<tr>
<td>C(3')-H(3')</td>
<td>0.96(4)</td>
</tr>
<tr>
<td>C(4')-C(5')</td>
<td>1.445(5)</td>
</tr>
<tr>
<td>C(5')-C(6')</td>
<td>1.367(5)</td>
</tr>
<tr>
<td>C(5')-C(7')</td>
<td>1.458(5)</td>
</tr>
<tr>
<td>C(7')-C(8')</td>
<td>1.433(5)</td>
</tr>
<tr>
<td>C(8')-C(9')</td>
<td>1.339(5)</td>
</tr>
<tr>
<td>C(8')-H(8')</td>
<td>0.94(4)</td>
</tr>
<tr>
<td>C(9')-C(10')</td>
<td>1.481(5)</td>
</tr>
<tr>
<td>C(10')-H(10D)</td>
<td>0.86(5)</td>
</tr>
<tr>
<td>C(10')-H(10E)</td>
<td>0.97(5)</td>
</tr>
<tr>
<td>C(10')-H(10F)</td>
<td>1.00(5)</td>
</tr>
<tr>
<td>C(11')-H(11D)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(11')-H(11E)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(11')-H(11F)</td>
<td>0.9800</td>
</tr>
<tr>
<td>Cl(1)-O(7A)</td>
<td>1.362(11)</td>
</tr>
</tbody>
</table>
Cl(1)-O(6) 1.367(4)
Cl(1)-O(7) 1.379(7)
Cl(1)-O(9) 1.382(6)
Cl(1)-O(9A) 1.391(10)
Cl(1)-O(8) 1.422(6)
Cl(1)-O(8A) 1.428(11)
Cl(2)-O(12A) 1.211(14)
Cl(2)-O(12) 1.371(4)
Cl(2)-O(13) 1.414(4)
Cl(2)-O(10) 1.422(3)
Cl(2)-O(11) 1.451(3)
Cl(2)-O(13A) 1.349(16)
Cl(2)-O(11A) 1.435(12)
O(1S)-H(1S) 1.00(2)
O(1S)-H(2S) 0.98(2)

O(5)#1-Mg(1)-O(5) 180.0
O(5)#1-Mg(1)-O(1)#1 87.60(11)
O(5)-Mg(1)-O(1)#1 92.40(11)
O(5)#1-Mg(1)-O(1) 92.40(11)
O(5)-Mg(1)-O(1) 87.60(11)
O(1)#1-Mg(1)-O(1) 180.000(1)
O(5)#1-Mg(1)-O(2)#1 89.12(11)
O(5)-Mg(1)-O(2)#1 90.88(11)
O(1)#1-Mg(1)-O(2)#1 85.92(9)
O(1)-Mg(1)-O(2)#1 94.08(9)
O(5)#1-Mg(1)-O(2) 90.89(11)
O(5)-Mg(1)-O(2) 89.11(11)
O(1)#1-Mg(1)-O(2) 94.08(9)
O(1)-Mg(1)-O(2) 85.92(9)
O(2)#1-Mg(1)-O(2) 180.000(1)
O(5)#1-Mg(1)-H(5O) 160.8(11)
O(5)-Mg(1)-H(5O) 19.2(10)
O(1)#1-Mg(1)-H(5O) 111.3(11)
O(1)-Mg(1)-H(5O) 68.7(10)
O(2)#1-Mg(1)-H(5O) 95.5(13)
<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2)-Mg(1)-H(5O)</td>
<td>84.5(13)</td>
</tr>
<tr>
<td>C(4)-O(1)-Mg(1)</td>
<td>131.2(2)</td>
</tr>
<tr>
<td>C(7)-O(2)-Mg(1)</td>
<td>131.3(2)</td>
</tr>
<tr>
<td>C(6)-O(3)-C(2)</td>
<td>118.3(3)</td>
</tr>
<tr>
<td>C(6)-O(4)-C(9)</td>
<td>118.4(3)</td>
</tr>
<tr>
<td>C(11)-O(5)-Mg(1)</td>
<td>130.6(3)</td>
</tr>
<tr>
<td>C(11)-O(5)-H(5O)</td>
<td>114(4)</td>
</tr>
<tr>
<td>Mg(1)-O(5)-H(5O)</td>
<td>115(4)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1A)</td>
<td>109(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1B)</td>
<td>116(3)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1B)</td>
<td>110(4)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1C)</td>
<td>109(3)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1C)</td>
<td>109(4)</td>
</tr>
<tr>
<td>H(1B)-C(1)-H(1C)</td>
<td>102(4)</td>
</tr>
<tr>
<td>C(3)-C(2)-O(3)</td>
<td>120.8(3)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>129.0(3)</td>
</tr>
<tr>
<td>O(3)-C(2)-C(1)</td>
<td>110.2(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>122.2(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3)</td>
<td>118(2)</td>
</tr>
<tr>
<td>C(4)-C(3)-H(3)</td>
<td>120(2)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(3)</td>
<td>121.8(3)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)</td>
<td>122.7(3)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>115.5(3)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(7)</td>
<td>117.6(3)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>117.3(3)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(4)</td>
<td>125.0(3)</td>
</tr>
<tr>
<td>O(3)-C(6)-O(4)</td>
<td>108.7(3)</td>
</tr>
<tr>
<td>O(3)-C(6)-C(5)</td>
<td>125.8(3)</td>
</tr>
<tr>
<td>O(4)-C(6)-C(5)</td>
<td>125.5(3)</td>
</tr>
<tr>
<td>O(2)-C(7)-C(8)</td>
<td>121.5(3)</td>
</tr>
<tr>
<td>O(2)-C(7)-C(5)</td>
<td>123.0(3)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(5)</td>
<td>115.5(3)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(7)</td>
<td>121.9(3)</td>
</tr>
<tr>
<td>C(9)-C(8)-H(8)</td>
<td>119(2)</td>
</tr>
<tr>
<td>C(7)-C(8)-H(8)</td>
<td>119(2)</td>
</tr>
<tr>
<td>C(8)-C(9)-O(4)</td>
<td>121.1(3)</td>
</tr>
</tbody>
</table>
C(8)-C(9)-C(10) 128.1(3)
O(4)-C(9)-C(10) 110.8(3)
C(9)-C(10)-H(10A) 110(3)
C(9)-C(10)-H(10B) 111(3)
H(10A)-C(10)-H(10B) 107(4)
C(9)-C(10)-H(10C) 106(3)
H(10A)-C(10)-H(10C) 110(4)
H(10B)-C(10)-H(10C) 113(4)
O(5)-C(11)-H(11A) 109.5
O(5)-C(11)-H(11B) 109.5
H(11A)-C(11)-H(11B) 109.5
O(5)-C(11)-H(11C) 109.5
H(11A)-C(11)-H(11C) 109.5
H(11B)-C(11)-H(11C) 109.5
O(2')-Mg(1')-O(2')#2 180.000(1)
O(2')-Mg(1')-O(1')#2 92.72(9)
O(2')#2-Mg(1')-O(1')#2 87.28(9)
O(2')-Mg(1')-O(1') 92.72(9)
O(1')#2-Mg(1')-O(1') 180.000(1)
O(2')-Mg(1')-O(5') 89.62(12)
O(2')#2-Mg(1')-O(5')#2 88.95(11)
O(1')#2-Mg(1')-O(5')#2 91.05(11)
O(1')#2-Mg(1')-O(5') 90.38(11)
O(1')-Mg(1')-O(5') 89.62(12)
O(2')-Mg(1')-O(5')#2 89.62(12)
O(1')-Mg(1')-O(5')#2 90.38(12)
C(4')-O(1')-Mg(1') 130.2(2)
C(7')-O(2')-Mg(1') 131.0(2)
C(6')-O(3')-C(2') 118.5(3)
C(6')-O(4')-C(9') 118.5(3)
C(11')-O(5')-Mg(1') 129.6(3)
C(11')-O(5')-H(5'O) 112(3)
Mg(1')-O(5')-H(5'O) 118(3)
C(2')-C(1')-H(1'A) 109(3)
C(2')-C(1')-H(1'B) 110(3)
H(1'A)-C(1')-H(1'B) 108(4)
C(2')-C(1')-H(1'C) 107(3)
H(1'A)-C(1')-H(1'C) 115(4)
H(1'B)-C(1')-H(1'C) 108(4)
C(3')-C(2')-O(3') 120.7(3)
C(3')-C(2')-C(1') 128.8(3)
O(3')-C(2')-C(1') 110.5(3)
C(2')-C(3')-C(4') 122.2(3)
C(2')-C(3')-H(3') 117(2)
C(4')-C(3')-H(3') 120(2)
O(1')-C(4')-C(3') 121.3(3)
O(1')-C(4')-C(5') 123.3(3)
C(3')-C(4')-C(5') 115.4(3)
C(6')-C(5')-C(4') 117.7(3)
C(6')-C(5')-C(7') 116.8(3)
C(4')-C(5')-C(7') 125.4(3)
O(4')-C(6')-O(3') 108.6(3)
O(4')-C(6')-C(5') 126.1(3)
O(3')-C(6')-C(5') 125.3(3)
O(2')-C(7')-C(8') 121.8(3)
O(2')-C(7')-C(5') 122.7(3)
C(8')-C(7')-C(5') 115.5(3)
C(9')-C(8')-C(7') 122.3(3)
C(9')-C(8')-H(8') 116(2)
C(7')-C(8')-H(8') 121(2)
C(8')-C(9')-O(4') 120.8(3)
C(8')-C(9')-C(10') 128.6(3)
O(4')-C(9')-C(10') 110.6(3)
C(9')-C(10')-H(10D) 110(3)
C(9')-C(10')-H(10E) 113(3)
H(10D)-C(10')-H(10E) 107(4)
C(9')-C(10')-H(10F) 107(2)
H(10D)-C(10')-H(10F) 112(4)
H(10E)-C(10')-H(10F) 108(4)
O(5')-C(11')-H(11D) 109.5
O(5')-C(11')-H(11E) 109.5
H(11D)-C(11')-H(11E) 109.5
O(5')-C(11')-H(11F) 109.5
H(11D)-C(11')-H(11F) 109.5
H(11E)-C(11')-H(11F) 109.5
O(7A)-Cl(1)-O(6) 111.8(7)
O(7A)-Cl(1)-O(7) 137.4(7)
O(6)-Cl(1)-O(7) 110.4(4)
O(7A)-Cl(1)-O(9) 46.7(11)
O(6)-Cl(1)-O(9) 114.8(4)
O(7)-Cl(1)-O(9) 108.6(6)
O(7A)-Cl(1)-O(9A) 108.4(13)
O(6)-Cl(1)-O(9A) 118.6(5)
O(7)-Cl(1)-O(9A) 53.4(7)
O(9)-Cl(1)-O(9A) 126.6(5)
O(7A)-Cl(1)-O(8) 64.0(13)
O(6)-Cl(1)-O(8) 107.3(4)
O(7)-Cl(1)-O(8) 108.1(7)
O(9)-Cl(1)-O(8) 107.4(4)
O(9A)-Cl(1)-O(8) 55.0(7)
O(7A)-Cl(1)-O(8A) 100.7(12)
O(6)-Cl(1)-O(8A) 111.1(6)
O(7)-Cl(1)-O(8A) 58.1(7)
O(9)-Cl(1)-O(8A) 55.4(7)
O(9A)-Cl(1)-O(8A) 104.6(8)
O(8)-Cl(1)-O(8A) 141.7(6)
O(12A)-Cl(2)-O(12) 132.8(9)
O(12A)-Cl(2)-O(13) 51.1(13)
O(12)-Cl(2)-O(13) 113.4(3)
O(12A)-Cl(2)-O(10) 116.1(9)
O(12)-Cl(2)-O(10) 110.9(2)
O(13)-Cl(2)-O(10) 112.3(2)
O(12A)-Cl(2)-O(11) 55.0(13)
O(12)-Cl(2)-O(11) 108.6(3)
O(13)-Cl(2)-O(11) 105.5(3)
<table>
<thead>
<tr>
<th></th>
<th>(\text{U}^{11})</th>
<th>(\text{U}^{22})</th>
<th>(\text{U}^{33})</th>
<th>(\text{U}^{23})</th>
<th>(\text{U}^{13})</th>
<th>(\text{U}^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Mg}(1))</td>
<td>31(1)</td>
<td>23(1)</td>
<td>19(1)</td>
<td>-5(1)</td>
<td>8(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>(\text{O}(1))</td>
<td>37(1)</td>
<td>24(1)</td>
<td>20(1)</td>
<td>-5(1)</td>
<td>12(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>(\text{O}(2))</td>
<td>44(2)</td>
<td>24(1)</td>
<td>26(1)</td>
<td>-6(1)</td>
<td>14(1)</td>
<td>-9(1)</td>
</tr>
<tr>
<td>(\text{O}(3))</td>
<td>36(1)</td>
<td>20(1)</td>
<td>24(1)</td>
<td>-4(1)</td>
<td>15(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>(\text{O}(4))</td>
<td>30(1)</td>
<td>25(1)</td>
<td>21(1)</td>
<td>-4(1)</td>
<td>12(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>(\text{O}(5))</td>
<td>35(2)</td>
<td>36(2)</td>
<td>45(2)</td>
<td>-5(1)</td>
<td>-2(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>(\text{C}(1))</td>
<td>54(3)</td>
<td>23(2)</td>
<td>36(3)</td>
<td>-4(2)</td>
<td>21(2)</td>
<td>-10(2)</td>
</tr>
<tr>
<td>(\text{C}(2))</td>
<td>37(2)</td>
<td>22(2)</td>
<td>23(2)</td>
<td>5(2)</td>
<td>13(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>(\text{C}(3))</td>
<td>33(2)</td>
<td>24(2)</td>
<td>19(2)</td>
<td>2(2)</td>
<td>9(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>(\text{C}(4))</td>
<td>25(2)</td>
<td>22(2)</td>
<td>20(2)</td>
<td>1(1)</td>
<td>5(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>(\text{C}(5))</td>
<td>24(2)</td>
<td>22(2)</td>
<td>18(2)</td>
<td>0(1)</td>
<td>6(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>(\text{C}(6))</td>
<td>22(2)</td>
<td>22(2)</td>
<td>20(2)</td>
<td>0(1)</td>
<td>5(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>(\text{C}(7))</td>
<td>28(2)</td>
<td>20(2)</td>
<td>20(2)</td>
<td>-1(1)</td>
<td>6(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>(\text{C}(8))</td>
<td>28(2)</td>
<td>23(2)</td>
<td>25(2)</td>
<td>3(2)</td>
<td>8(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>23(2)</td>
<td>26(2)</td>
<td>21(2)</td>
<td>3(2)</td>
<td>7(1)</td>
<td>2(2)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>C(10)</td>
<td>39(2)</td>
<td>33(2)</td>
<td>31(2)</td>
<td>-2(2)</td>
<td>20(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>48(3)</td>
<td>58(3)</td>
<td>53(3)</td>
<td>0(2)</td>
<td>-6(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>Mg(1')</td>
<td>31(1)</td>
<td>22(1)</td>
<td>18(1)</td>
<td>-3(1)</td>
<td>8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(1')</td>
<td>40(2)</td>
<td>24(1)</td>
<td>25(1)</td>
<td>-5(1)</td>
<td>13(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>O(2')</td>
<td>41(2)</td>
<td>26(1)</td>
<td>18(1)</td>
<td>-5(1)</td>
<td>13(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(3')</td>
<td>32(1)</td>
<td>28(1)</td>
<td>20(1)</td>
<td>-5(1)</td>
<td>13(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(4')</td>
<td>32(1)</td>
<td>22(1)</td>
<td>22(1)</td>
<td>-3(1)</td>
<td>11(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(5')</td>
<td>34(2)</td>
<td>41(2)</td>
<td>49(2)</td>
<td>7(1)</td>
<td>-1(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(1')</td>
<td>40(2)</td>
<td>34(2)</td>
<td>31(2)</td>
<td>-3(2)</td>
<td>19(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(2')</td>
<td>27(2)</td>
<td>26(2)</td>
<td>23(2)</td>
<td>2(2)</td>
<td>10(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(3')</td>
<td>28(2)</td>
<td>24(2)</td>
<td>25(2)</td>
<td>3(2)</td>
<td>9(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(4')</td>
<td>23(2)</td>
<td>23(2)</td>
<td>20(2)</td>
<td>2(1)</td>
<td>4(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(5')</td>
<td>23(2)</td>
<td>21(2)</td>
<td>17(2)</td>
<td>0(1)</td>
<td>5(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(6')</td>
<td>21(2)</td>
<td>23(2)</td>
<td>21(2)</td>
<td>2(1)</td>
<td>8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(7')</td>
<td>25(2)</td>
<td>22(2)</td>
<td>19(2)</td>
<td>2(1)</td>
<td>4(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(8')</td>
<td>34(2)</td>
<td>23(2)</td>
<td>23(2)</td>
<td>3(2)</td>
<td>12(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(9')</td>
<td>29(2)</td>
<td>21(2)</td>
<td>24(2)</td>
<td>5(1)</td>
<td>10(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(10')</td>
<td>48(3)</td>
<td>25(2)</td>
<td>34(2)</td>
<td>-3(2)</td>
<td>18(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(11')</td>
<td>39(3)</td>
<td>72(4)</td>
<td>90(4)</td>
<td>-11(3)</td>
<td>-4(3)</td>
<td>6(3)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>47(1)</td>
<td>37(1)</td>
<td>47(1)</td>
<td>-2(1)</td>
<td>8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>76(3)</td>
<td>84(3)</td>
<td>139(4)</td>
<td>3(3)</td>
<td>-26(3)</td>
<td>-38(3)</td>
</tr>
<tr>
<td>O(7)</td>
<td>119(7)</td>
<td>231(12)</td>
<td>176(9)</td>
<td>-150(9)</td>
<td>108(7)</td>
<td>-84(8)</td>
</tr>
<tr>
<td>O(8)</td>
<td>126(6)</td>
<td>82(5)</td>
<td>67(4)</td>
<td>24(3)</td>
<td>8(4)</td>
<td>16(4)</td>
</tr>
<tr>
<td>O(9)</td>
<td>73(4)</td>
<td>38(3)</td>
<td>117(6)</td>
<td>-8(3)</td>
<td>5(4)</td>
<td>11(3)</td>
</tr>
<tr>
<td>O(7A)</td>
<td>119(7)</td>
<td>231(12)</td>
<td>176(9)</td>
<td>-150(9)</td>
<td>108(7)</td>
<td>-84(8)</td>
</tr>
<tr>
<td>O(8A)</td>
<td>126(6)</td>
<td>82(5)</td>
<td>67(4)</td>
<td>24(3)</td>
<td>8(4)</td>
<td>16(4)</td>
</tr>
<tr>
<td>O(9A)</td>
<td>73(4)</td>
<td>38(3)</td>
<td>117(6)</td>
<td>-8(3)</td>
<td>5(4)</td>
<td>11(3)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>37(1)</td>
<td>25(1)</td>
<td>35(1)</td>
<td>1(1)</td>
<td>14(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>52(2)</td>
<td>24(2)</td>
<td>96(3)</td>
<td>0(2)</td>
<td>11(2)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>33(2)</td>
<td>56(2)</td>
<td>50(2)</td>
<td>-8(2)</td>
<td>17(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>O(12)</td>
<td>55(3)</td>
<td>49(3)</td>
<td>91(4)</td>
<td>-10(2)</td>
<td>-35(3)</td>
<td>2(2)</td>
</tr>
<tr>
<td>O(13)</td>
<td>116(4)</td>
<td>53(3)</td>
<td>66(3)</td>
<td>18(2)</td>
<td>64(3)</td>
<td>9(3)</td>
</tr>
<tr>
<td>O(11A)</td>
<td>33(2)</td>
<td>56(2)</td>
<td>50(2)</td>
<td>-8(2)</td>
<td>17(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>O(12A)</td>
<td>55(3)</td>
<td>49(3)</td>
<td>91(4)</td>
<td>-10(2)</td>
<td>-35(3)</td>
<td>2(2)</td>
</tr>
<tr>
<td>O(13A)</td>
<td>116(1)</td>
<td>55(1)</td>
<td>65(1)</td>
<td>16(2)</td>
<td>63(2)</td>
<td>9(2)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 7 (M=Mg).

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(11A)</td>
<td>2599</td>
<td>5735</td>
<td>3182</td>
<td>84</td>
</tr>
<tr>
<td>H(11B)</td>
<td>2747</td>
<td>4925</td>
<td>3787</td>
<td>84</td>
</tr>
<tr>
<td>H(11C)</td>
<td>3170</td>
<td>5128</td>
<td>2620</td>
<td>84</td>
</tr>
<tr>
<td>H(11D)</td>
<td>2499</td>
<td>9498</td>
<td>11839</td>
<td>105</td>
</tr>
<tr>
<td>H(11E)</td>
<td>2023</td>
<td>10281</td>
<td>11952</td>
<td>105</td>
</tr>
<tr>
<td>H(11F)</td>
<td>2285</td>
<td>10051</td>
<td>10672</td>
<td>105</td>
</tr>
<tr>
<td>H(1A)</td>
<td>5930(30)</td>
<td>8640(30)</td>
<td>8020(40)</td>
<td>56(15)</td>
</tr>
<tr>
<td>H(1B)</td>
<td>6710(30)</td>
<td>8470(30)</td>
<td>7480(50)</td>
<td>54(15)</td>
</tr>
<tr>
<td>H(1C)</td>
<td>6820(30)</td>
<td>8250(20)</td>
<td>8780(40)</td>
<td>45(13)</td>
</tr>
<tr>
<td>H(1'A)</td>
<td>550(30)</td>
<td>9070(30)</td>
<td>3650(50)</td>
<td>61(14)</td>
</tr>
<tr>
<td>H(1'B)</td>
<td>1540(30)</td>
<td>8770(30)</td>
<td>4470(40)</td>
<td>49(13)</td>
</tr>
<tr>
<td>H(1'C)</td>
<td>1380(30)</td>
<td>9600(20)</td>
<td>4450(40)</td>
<td>45(13)</td>
</tr>
<tr>
<td>H(3)</td>
<td>6260(20)</td>
<td>7315(19)</td>
<td>6040(30)</td>
<td>20(9)</td>
</tr>
<tr>
<td>H(3')</td>
<td>1160(30)</td>
<td>10070(20)</td>
<td>6430(30)</td>
<td>26(10)</td>
</tr>
<tr>
<td>H(SO)</td>
<td>1240(30)</td>
<td>9024(12)</td>
<td>11050(40)</td>
<td>58(15)</td>
</tr>
<tr>
<td>H(5O)</td>
<td>3830(40)</td>
<td>6072(15)</td>
<td>4410(60)</td>
<td>100(20)</td>
</tr>
<tr>
<td>H(8)</td>
<td>3950(30)</td>
<td>4900(20)</td>
<td>8650(40)</td>
<td>34(11)</td>
</tr>
<tr>
<td>H(8')</td>
<td>-1210(20)</td>
<td>7660(20)</td>
<td>8980(30)</td>
<td>25(9)</td>
</tr>
<tr>
<td>H(10A)</td>
<td>4350(30)</td>
<td>5980(20)</td>
<td>11280(40)</td>
<td>48(13)</td>
</tr>
<tr>
<td>H(10B)</td>
<td>3410(30)</td>
<td>6280(30)</td>
<td>10470(40)</td>
<td>50(13)</td>
</tr>
<tr>
<td>H(10C)</td>
<td>3610(30)</td>
<td>5420(30)</td>
<td>10530(40)</td>
<td>48(13)</td>
</tr>
<tr>
<td>H(10D)</td>
<td>-1010(30)</td>
<td>6410(30)</td>
<td>6890(40)</td>
<td>42(13)</td>
</tr>
<tr>
<td>H(10E)</td>
<td>-1700(30)</td>
<td>6540(30)</td>
<td>7630(40)</td>
<td>48(13)</td>
</tr>
<tr>
<td>H(10F)</td>
<td>-1880(30)</td>
<td>6820(20)</td>
<td>6230(40)</td>
<td>41(12)</td>
</tr>
<tr>
<td>H(1S)</td>
<td>3170(50)</td>
<td>6970(50)</td>
<td>5520(70)</td>
<td>200(40)</td>
</tr>
<tr>
<td>H(2S)</td>
<td>3400(50)</td>
<td>7210(40)</td>
<td>4160(40)</td>
<td>130(30)</td>
</tr>
</tbody>
</table>
Table 6. Torsion angles [°] for 7 (M= Mg).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Torsion Angle ± Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(5)#1-Mg(1)-O(1)-C(4)</td>
<td>-100.0(3)</td>
</tr>
<tr>
<td>O(5)-Mg(1)-O(1)-C(4)</td>
<td>80.0(3)</td>
</tr>
<tr>
<td>O(1)#1-Mg(1)-O(1)-C(4)</td>
<td>94(100)</td>
</tr>
<tr>
<td>O(2)#1-Mg(1)-O(1)-C(4)</td>
<td>170.7(3)</td>
</tr>
<tr>
<td>O(2)-Mg(1)-O(1)-C(4)</td>
<td>-9.3(3)</td>
</tr>
<tr>
<td>O(5)#1-Mg(1)-O(2)-C(7)</td>
<td>101.7(3)</td>
</tr>
<tr>
<td>O(5)-Mg(1)-O(2)-C(7)</td>
<td>-78.3(3)</td>
</tr>
<tr>
<td>O(1)#1-Mg(1)-O(2)-C(7)</td>
<td>-170.6(3)</td>
</tr>
<tr>
<td>O(1)-Mg(1)-O(2)-C(7)</td>
<td>9.4(3)</td>
</tr>
<tr>
<td>O(2)#1-Mg(1)-O(2)-C(7)</td>
<td>-56(100)</td>
</tr>
<tr>
<td>O(5)#1-Mg(1)-O(5)-C(11)</td>
<td>112(100)</td>
</tr>
<tr>
<td>O(1)#1-Mg(1)-O(5)-C(11)</td>
<td>-10.8(4)</td>
</tr>
<tr>
<td>O(1)-Mg(1)-O(5)-C(11)</td>
<td>169.2(4)</td>
</tr>
<tr>
<td>O(2)#1-Mg(1)-O(5)-C(11)</td>
<td>75.2(4)</td>
</tr>
<tr>
<td>O(2)-Mg(1)-O(5)-C(11)</td>
<td>-104.8(4)</td>
</tr>
<tr>
<td>C(6)-O(3)-C(2)-C(3)</td>
<td>3.6(5)</td>
</tr>
<tr>
<td>C(6)-O(3)-C(2)-C(1)</td>
<td>-175.0(3)</td>
</tr>
<tr>
<td>O(3)-C(2)-C(3)-C(4)</td>
<td>-2.1(6)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>176.2(4)</td>
</tr>
<tr>
<td>Mg(1)-O(1)-C(4)-C(3)</td>
<td>-176.1(2)</td>
</tr>
<tr>
<td>Mg(1)-O(1)-C(4)-C(5)</td>
<td>5.5(5)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-O(1)</td>
<td>-178.6(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>-0.2(5)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)-C(6)</td>
<td>179.4(3)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(6)</td>
<td>0.9(5)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)-C(7)</td>
<td>2.8(5)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(7)</td>
<td>-175.6(3)</td>
</tr>
<tr>
<td>C(2)-O(3)-C(6)-O(4)</td>
<td>176.7(3)</td>
</tr>
<tr>
<td>C(2)-O(3)-C(6)-C(5)</td>
<td>-2.9(5)</td>
</tr>
<tr>
<td>C(9)-O(4)-C(6)-O(3)</td>
<td>-177.4(3)</td>
</tr>
<tr>
<td>C(9)-O(4)-C(6)-C(5)</td>
<td>2.2(5)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(6)-O(3)</td>
<td>177.4(3)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-O(3)</td>
<td>0.6(5)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(6)-O(4)</td>
<td>-2.1(5)</td>
</tr>
</tbody>
</table>
C(4)-C(5)-C(6)-O(4) -179.0(3)
Mg(1)-O(2)-C(7)-C(8) 174.7(2)
Mg(1)-O(2)-C(7)-C(5) -5.6(5)
C(6)-C(5)-C(7)-O(2) -179.3(3)
C(4)-C(5)-C(7)-O(2) -2.7(6)
C(6)-C(5)-C(7)-C(8) 0.3(5)
C(4)-C(5)-C(7)-C(8) 176.9(3)
O(2)-C(7)-C(8)-C(9) -179.1(3)
C(5)-C(7)-C(8)-C(9) 1.2(5)
C(7)-C(8)-C(9)-O(2) -1.2(5)
C(7)-C(8)-C(9)-C(10) 178.5(4)
C(6)-O(4)-C(9)-C(8) -0.5(5)
C(6)-O(4)-C(9)-C(10) 179.8(3)
O(2')#2-Mg(1')-O(1')-C(4') 3.5(3)
O(2')#2-Mg(1')-O(1')-C(4') -176.5(3)
O(5')#2-Mg(1')-O(1')-C(4') -64(100)
O(5')#2-Mg(1')-O(1')-C(4') 92.4(3)
O(5')#2-Mg(1')-O(1')-C(4') -87.6(3)
O(2')#2-Mg(1')-O(2')-C(7') 75(80)
O(2')#2-Mg(1')-O(2')-C(7') 175.7(3)
O(1')#2-Mg(1')-O(2')-C(7') -4.3(3)
O(5')#2-Mg(1')-O(2')-C(7') -94.0(3)
O(5')#2-Mg(1')-O(2')-C(7') 86.0(3)
O(2')#2-Mg(1')-O(5')-C(11') 161.6(4)
O(2')#2-Mg(1')-O(5')-C(11') -18.4(4)
O(1')#2-Mg(1')-O(5')-C(11') -105.7(4)
O(1')-Mg(1')-O(5')-C(11') 74.3(4)
O(5')#2-Mg(1')-O(5')-C(11') -31(100)
C(6')-O(3')-C(2')-C(3') -3.0(5)
C(6')-O(3')-C(2')-C(1') 177.2(3)
O(3')-C(2')-C(3')-C(4') 1.3(5)
C(1')-C(2')-C(3')-C(4') -179.0(4)
Mg(1')-O(1')-C(4')-C(3') 178.0(2)
Mg(1')-O(1')-C(4')-C(5') -2.2(5)
C(2')-C(3')-C(4')-O(1') -178.4(3)
C(2')-C(3')-C(4')-C(5') 1.8(5)
O(1')-C(4')-C(5')-C(6') 177.1(3)
C(3')-C(4')-C(5')-C(6') -3.2(5)
O(1')-C(4')-C(5')-C(7') 0.1(5)
C(3')-C(4')-C(5')-C(7') 179.8(3)
C(9')-O(4')-C(6')-O(3') -179.2(3)
C(9')-O(4')-C(6')-C(5') 0.3(5)
C(2')-O(3')-C(6')-O(4') -179.0(3)
C(2')-O(3')-C(6')-C(5') 1.5(5)
C(4')-C(5')-C(6')-O(4') -177.8(3)
C(7')-C(5')-C(6')-O(4') -0.5(5)
C(4')-C(5')-C(6')-O(3') 1.7(5)
C(7')-C(5')-C(6')-O(3') 178.9(3)
Mg(1')-O(2')-C(7')-C(8') -175.0(2)
Mg(1')-O(2')-C(7')-C(5') 3.9(5)
C(6')-C(5')-C(7')-O(2') -177.9(3)
C(4')-C(5')-C(7')-O(2') -0.9(5)
C(6')-C(5')-C(7')-C(8') 1.0(5)
C(4')-C(5')-C(7')-C(8') 178.0(3)
O(2')-C(7')-C(8')-C(9') 177.5(3)
C(5')-C(7')-C(8')-C(9') -1.4(5)
C(7')-C(8')-C(9')-O(2') 1.2(5)
C(7')-C(8')-C(9')-C(10') -177.4(4)
C(6')-O(4')-C(9')-C(8') -0.6(5)
C(6')-O(4')-C(9')-C(10') 178.3(3)

Symmetry transformations used to generate equivalent atoms:
#1 -x+1,-y+1,-z+1 #2 -x,-y+2,-z+2

Table 7. Hydrogen bonds for 7 (M= Mg) [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(5')-H(5'O)...O(9A)#3</td>
<td>0.93(2)</td>
<td>1.83(3)</td>
<td>2.728(12)</td>
<td>161(4)</td>
</tr>
<tr>
<td>O(5')-H(5'O)...O(8)#3</td>
<td>0.93(2)</td>
<td>1.98(3)</td>
<td>2.832(8)</td>
<td>151(4)</td>
</tr>
<tr>
<td>O(5)-H(5O)...O(1S)</td>
<td>0.95(2)</td>
<td>1.73(3)</td>
<td>2.656(4)</td>
<td>165(6)</td>
</tr>
<tr>
<td>O(1S)-H(1S)...O(7A)#4</td>
<td>1.00(2)</td>
<td>2.02(7)</td>
<td>2.872(19)</td>
<td>142(8)</td>
</tr>
</tbody>
</table>
Metal Bis-γ-pyrones complex 7 (M=Ni)

General Procedure was followed using 10 mg (0.0520 mmole) of bis-γ-pyrones 5 and 13.06 mg (0.026 mmole) of Ni(ClO₄)₂•6CH₃CN to yield 23 mg of light blue crystals (quant.). IR (KBr) cm⁻¹ 1670.8, 1625.5, 1486.8, 1256.9, 1183.4, 1120.0, 1024.5. HRMS calc 540.9684 found 540.9677. mp > 250°C.

Crystal structure:

<table>
<thead>
<tr>
<th>Distance</th>
<th>Bond Angle</th>
<th>Bond Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1S)-H(1S)...O(8)</td>
<td>1.00(2)</td>
<td>2.12(5)</td>
</tr>
<tr>
<td>O(1S)-H(1S)...O(6)</td>
<td>1.00(2)</td>
<td>2.67(5)</td>
</tr>
<tr>
<td>O(1S)-H(2S)...O(6)</td>
<td>0.98(2)</td>
<td>2.07(3)</td>
</tr>
<tr>
<td>O(1S)-H(2S)...O(8A)</td>
<td>0.98(2)</td>
<td>2.55(7)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x,-y+2,-z+2 #3 x,y,z+1
#4 x,-y+3/2,z+1/2

Table 1. Crystal data and structure refinement for 7 (M=Ni)

<table>
<thead>
<tr>
<th>Identification code</th>
<th>7 (M= Ni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C22 H24 Cl2 Ni O18</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Formula weight</td>
<td>706.02</td>
</tr>
<tr>
<td>Temperature</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)/n</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>7.412(2) Å</td>
</tr>
<tr>
<td>a°</td>
<td>90°</td>
</tr>
<tr>
<td>b</td>
<td>14.508(4) Å</td>
</tr>
<tr>
<td>b°</td>
<td>95.849(5)°</td>
</tr>
<tr>
<td>c</td>
<td>13.476(4) Å</td>
</tr>
<tr>
<td>g°</td>
<td>90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1441.6(7) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.627 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.940 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>724</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.31 x 0.20 x 0.14 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.07 to 27.00°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-9 ≤ h ≤ 6, -18 ≤ k ≤ 18, -17 ≤ l ≤ 17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>9624</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3129 [R(int) = 0.0306]</td>
</tr>
<tr>
<td>Completeness to theta = 27.00°</td>
<td>99.1 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.8796 and 0.7592</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3129 / 7 / 254</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.040</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0428, wR2 = 0.1012</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0542, wR2 = 0.1099</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.733 and -0.530 e.Å⁻³</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for 7 (M= Ni). U(eq) is defined as one third of the trace of the orthogonalized U^ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(1)</td>
<td>0</td>
<td>5000</td>
<td>0</td>
<td>28(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>2048(1)</td>
<td>3463(1)</td>
<td>3263(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1503(2)</td>
<td>3870(1)</td>
<td>-193(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>-1631(2)</td>
<td>4288(1)</td>
<td>831(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>600(3)</td>
<td>1232(1)</td>
<td>595(2)</td>
<td>37(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>-1684(2)</td>
<td>1547(1)</td>
<td>1406(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>1681(3)</td>
<td>5316(2)</td>
<td>1284(2)</td>
<td>40(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>910(4)</td>
<td>4214(2)</td>
<td>2883(2)</td>
<td>75(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>1665(4)</td>
<td>3289(2)</td>
<td>4275(2)</td>
<td>63(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>1663(6)</td>
<td>2640(3)</td>
<td>2718(3)</td>
<td>103(2)</td>
</tr>
<tr>
<td>O(9)</td>
<td>3906(4)</td>
<td>3688(2)</td>
<td>3287(3)</td>
<td>81(1)</td>
</tr>
<tr>
<td>O(7A)</td>
<td>2870(20)</td>
<td>3319(13)</td>
<td>2323(10)</td>
<td>63(1)</td>
</tr>
<tr>
<td>O(8A)</td>
<td>3030(40)</td>
<td>3684(17)</td>
<td>4107(17)</td>
<td>103(2)</td>
</tr>
<tr>
<td>O(9A)</td>
<td>830(20)</td>
<td>2702(13)</td>
<td>3181(19)</td>
<td>81(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>2855(6)</td>
<td>603(2)</td>
<td>-301(4)</td>
<td>62(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>1968(4)</td>
<td>1449(2)</td>
<td>15(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>2292(4)</td>
<td>2323(2)</td>
<td>-218(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>1188(3)</td>
<td>3068(2)</td>
<td>62(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>-301(3)</td>
<td>2812(2)</td>
<td>635(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>-454(3)</td>
<td>1905(2)</td>
<td>865(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>-1606(3)</td>
<td>3439(2)</td>
<td>997(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>-2935(4)</td>
<td>3026(2)</td>
<td>1561(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>-2960(4)</td>
<td>2121(2)</td>
<td>1750(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>-4222(5)</td>
<td>1590(2)</td>
<td>2306(3)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>3618(5)</td>
<td>5419(3)</td>
<td>1316(3)</td>
<td>59(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 7 (M= Ni).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(1)-O(1)#1</td>
<td>2.0143(17)</td>
</tr>
<tr>
<td>Ni(1)-O(1)</td>
<td>2.0143(17)</td>
</tr>
<tr>
<td>Ni(1)-O(2)</td>
<td>2.0146(17)</td>
</tr>
<tr>
<td>Ni(1)-O(2)#1</td>
<td>2.0146(17)</td>
</tr>
<tr>
<td>Ni(1)-O(5)#1</td>
<td>2.078(2)</td>
</tr>
<tr>
<td>Ni(1)-O(5)</td>
<td>2.078(2)</td>
</tr>
<tr>
<td>Cl(1)-O(8A)</td>
<td>1.325(14)</td>
</tr>
<tr>
<td>Cl(1)-O(9)</td>
<td>1.412(3)</td>
</tr>
<tr>
<td>Cl(1)-O(8)</td>
<td>1.416(4)</td>
</tr>
<tr>
<td>Cl(1)-O(9A)</td>
<td>1.423(16)</td>
</tr>
<tr>
<td>Cl(1)-O(6)</td>
<td>1.440(2)</td>
</tr>
<tr>
<td>Cl(1)-O(7)</td>
<td>1.442(3)</td>
</tr>
<tr>
<td>Cl(1)-O(7A)</td>
<td>1.476(13)</td>
</tr>
<tr>
<td>O(1)-C(4)</td>
<td>1.241(3)</td>
</tr>
<tr>
<td>O(2)-C(7)</td>
<td>1.251(3)</td>
</tr>
<tr>
<td>O(3)-C(6)</td>
<td>1.324(3)</td>
</tr>
<tr>
<td>O(3)-C(2)</td>
<td>1.378(3)</td>
</tr>
<tr>
<td>O(4)-C(6)</td>
<td>1.329(3)</td>
</tr>
<tr>
<td>O(4)-C(9)</td>
<td>1.375(3)</td>
</tr>
<tr>
<td>O(5)-C(11)</td>
<td>1.440(4)</td>
</tr>
<tr>
<td>O(5)-H(5)</td>
<td>0.73(3)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.475(4)</td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>0.88(4)</td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.95(5)</td>
</tr>
<tr>
<td>C(1)-H(1C)</td>
<td>0.97(5)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.334(4)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.430(3)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.88(3)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.458(3)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.359(3)</td>
</tr>
<tr>
<td>C(5)-C(7)</td>
<td>1.448(3)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.435(4)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.338(4)</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.91(3)</td>
</tr>
</tbody>
</table>
C(9)-C(10) 1.474(4)
C(10)-H(10A) 0.87(4)
C(10)-H(10B) 0.92(4)
C(10)-H(10C) 0.97(4)
C(11)-H(11A) 0.93(5)
C(11)-H(11B) 0.94(5)
C(11)-H(11C) 0.93(6)
O(1)#1-Ni(1)-O(1) 180.00(10)
O(1)#1-Ni(1)-O(2) 88.55(7)
O(1)-Ni(1)-O(2) 91.45(7)
O(1)#1-Ni(1)-O(2)#1 91.45(7)
O(1)-Ni(1)-O(2)#1 88.55(7)
O(2)-Ni(1)-O(2)#1 180.00(8)
O(1)#1-Ni(1)-O(5)#1 89.70(8)
O(1)-Ni(1)-O(5)#1 90.30(8)
O(2)-Ni(1)-O(5)#1 90.40(9)
O(2)#1-Ni(1)-O(5)#1 89.60(9)
O(1)#1-Ni(1)-O(5) 90.30(8)
O(1)-Ni(1)-O(5) 89.70(8)
O(2)-Ni(1)-O(5) 89.60(9)
O(2)#1-Ni(1)-O(5) 90.40(9)
O(5)#1-Ni(1)-O(5) 180.0
O(8A)-Cl(1)-O(9) 58.4(15)
O(8A)-Cl(1)-O(8) 135.5(10)
O(9)-Cl(1)-O(8) 110.6(3)
O(8A)-Cl(1)-O(9A) 122.9(17)
O(9)-Cl(1)-O(9A) 142.2(8)
O(8)-Cl(1)-O(9A) 38.0(9)
O(8A)-Cl(1)-O(6) 111.9(10)
O(9)-Cl(1)-O(6) 111.56(19)
O(8)-Cl(1)-O(6) 112.0(2)
O(9A)-Cl(1)-O(6) 102.4(9)
O(8A)-Cl(1)-O(7) 51.4(15)
O(9)-Cl(1)-O(7) 107.7(2)
O(8)-Cl(1)-O(7) 107.1(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(9A)-Cl(1)-O(7)</td>
<td>75.8(10)</td>
</tr>
<tr>
<td>O(6)-Cl(1)-O(7)</td>
<td>107.72(15)</td>
</tr>
<tr>
<td>O(8A)-Cl(1)-O(7A)</td>
<td>122.1(16)</td>
</tr>
<tr>
<td>O(9)-Cl(1)-O(7A)</td>
<td>64.2(7)</td>
</tr>
<tr>
<td>O(8)-Cl(1)-O(7A)</td>
<td>61.0(8)</td>
</tr>
<tr>
<td>O(9A)-Cl(1)-O(7A)</td>
<td>97.9(12)</td>
</tr>
<tr>
<td>O(6)-Cl(1)-O(7A)</td>
<td>94.5(6)</td>
</tr>
<tr>
<td>O(7)-Cl(1)-O(7A)</td>
<td>157.6(6)</td>
</tr>
<tr>
<td>C(4)-O(1)-Ni(1)</td>
<td>127.19(16)</td>
</tr>
<tr>
<td>C(7)-O(2)-Ni(1)</td>
<td>127.25(16)</td>
</tr>
<tr>
<td>C(6)-O(3)-C(2)</td>
<td>118.49(19)</td>
</tr>
<tr>
<td>C(6)-O(4)-C(9)</td>
<td>118.83(19)</td>
</tr>
<tr>
<td>C(11)-O(5)-Ni(1)</td>
<td>124.0(2)</td>
</tr>
<tr>
<td>C(11)-O(5)-H(5)</td>
<td>109(3)</td>
</tr>
<tr>
<td>Ni(1)-O(5)-H(5)</td>
<td>107(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1A)</td>
<td>109(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1B)</td>
<td>109(3)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1B)</td>
<td>112(4)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1C)</td>
<td>107(4)</td>
</tr>
<tr>
<td>H(1B)-C(1)-H(1C)</td>
<td>109(4)</td>
</tr>
<tr>
<td>C(3)-C(2)-O(3)</td>
<td>120.7(2)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>128.8(3)</td>
</tr>
<tr>
<td>O(3)-C(2)-C(1)</td>
<td>110.5(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>122.4(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3)</td>
<td>118(2)</td>
</tr>
<tr>
<td>C(4)-C(3)-H(3)</td>
<td>120(2)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(3)</td>
<td>120.4(2)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)</td>
<td>124.1(2)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>115.5(2)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(7)</td>
<td>117.2(2)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>116.9(2)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(4)</td>
<td>125.8(2)</td>
</tr>
<tr>
<td>O(3)-C(6)-O(4)</td>
<td>108.7(2)</td>
</tr>
<tr>
<td>O(3)-C(6)-C(5)</td>
<td>125.8(2)</td>
</tr>
<tr>
<td>O(4)-C(6)-C(5)</td>
<td>125.5(2)</td>
</tr>
</tbody>
</table>
Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z

Table 4. Anisotropic displacement parameters (Å²x 10³) for 7 (M= Ni). The anisotropic displacement factor exponent takes the form: -2\pi²[h*a²U_{11} + ... + 2 h k a*b* U_{12}]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(1)</td>
<td>39(1)</td>
<td>18(1)</td>
<td>31(1)</td>
<td>2(1)</td>
<td>14(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>47(1)</td>
<td>58(1)</td>
<td>42(1)</td>
<td>-1(1)</td>
<td>2(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>41(1)</td>
<td>21(1)</td>
<td>40(1)</td>
<td>3(1)</td>
<td>16(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>43(1)</td>
<td>22(1)</td>
<td>41(1)</td>
<td>5(1)</td>
<td>18(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>37(1)</td>
<td>23(1)</td>
<td>52(1)</td>
<td>5(1)</td>
<td>13(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>39(1)</td>
<td>24(1)</td>
<td>35(1)</td>
<td>3(1)</td>
<td>10(1)</td>
<td>-2(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for 7 (M= Ni).

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>3810(60)</td>
<td>760(30)</td>
<td>-600(30)</td>
<td>71(12)</td>
</tr>
<tr>
<td>H(1B)</td>
<td>3180(70)</td>
<td>230(30)</td>
<td>270(40)</td>
<td>99(16)</td>
</tr>
<tr>
<td>H(1C)</td>
<td>2060(70)</td>
<td>250(30)</td>
<td>-780(40)</td>
<td>97(16)</td>
</tr>
<tr>
<td>H(3)</td>
<td>3180(50)</td>
<td>2430(20)</td>
<td>-590(20)</td>
<td>52(9)</td>
</tr>
<tr>
<td>H(5)</td>
<td>1480(50)</td>
<td>4990(20)</td>
<td>1660(30)</td>
<td>37(10)</td>
</tr>
<tr>
<td>H(8)</td>
<td>-3750(40)</td>
<td>3400(20)</td>
<td>1820(20)</td>
<td>45(8)</td>
</tr>
<tr>
<td>H(10A)</td>
<td>-5070(50)</td>
<td>1940(30)</td>
<td>2520(30)</td>
<td>61(11)</td>
</tr>
<tr>
<td>H(10B)</td>
<td>-4760(50)</td>
<td>1160(30)</td>
<td>1860(30)</td>
<td>68(11)</td>
</tr>
<tr>
<td>H(10C)</td>
<td>-3550(50)</td>
<td>1310(20)</td>
<td>2880(30)</td>
<td>58(10)</td>
</tr>
</tbody>
</table>
Table 6. Torsion angles [°] for 7 (M= Ni).

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O(1)#1-Ni(1)-O(1)-C(4)</td>
<td>O(2)-Ni(1)-O(1)-C(4)</td>
<td>O(2)#1-Ni(1)-O(1)-C(4)</td>
<td>O(5)#1-Ni(1)-O(1)-C(4)</td>
</tr>
<tr>
<td></td>
<td>176(68)</td>
<td>7.0(2)</td>
<td>-173.0(2)</td>
<td>-83.4(2)</td>
</tr>
<tr>
<td></td>
<td>O(5)-Ni(1)-O(1)-C(4)</td>
<td>O(1)#1-Ni(1)-O(2)-C(7)</td>
<td>O(1)-Ni(1)-O(2)-C(7)</td>
<td>O(2)#1-Ni(1)-O(2)-C(7)</td>
</tr>
<tr>
<td></td>
<td>96.6(2)</td>
<td>174.2(2)</td>
<td>-5.8(2)</td>
<td>18(100)</td>
</tr>
<tr>
<td></td>
<td>O(5)#1-Ni(1)-O(2)-C(7)</td>
<td>O(5)-Ni(1)-O(2)-C(7)</td>
<td>O(5)-Ni(1)-O(2)-C(7)</td>
<td>O(1)#1-Ni(1)-O(5)-C(11)</td>
</tr>
<tr>
<td></td>
<td>84.5(2)</td>
<td>-95.5(2)</td>
<td>-124.7(3)</td>
<td>55.3(3)</td>
</tr>
<tr>
<td></td>
<td>O(1)-Ni(1)-O(5)-C(11)</td>
<td>O(2)-Ni(1)-O(5)-C(11)</td>
<td>O(2)#1-Ni(1)-O(5)-C(11)</td>
<td>O(5)#1-Ni(1)-O(5)-C(11)</td>
</tr>
<tr>
<td></td>
<td>O(5)-Ni(1)-O(5)-C(11)</td>
<td>C(6)-O(3)-C(2)-C(3)</td>
<td>C(6)-O(3)-C(2)-C(1)</td>
<td>O(3)-C(2)-C(3)-C(4)</td>
</tr>
<tr>
<td></td>
<td>36(13)</td>
<td>4.0(4)</td>
<td>-173.7(3)</td>
<td>-4.0(4)</td>
</tr>
<tr>
<td></td>
<td>Ni(1)-O(1)-O(5)-C(3)</td>
<td>Ni(1)-O(1)-O(5)-C(5)</td>
<td>Ni(1)-O(1)-O(5)-C(5)</td>
<td>Ni(1)-O(1)-C(4)-C(5)</td>
</tr>
<tr>
<td></td>
<td>173.68(18)</td>
<td>-5.1(3)</td>
<td>-177.9(3)</td>
<td>1.0(4)</td>
</tr>
<tr>
<td></td>
<td>C(2)-C(3)-C(4)-O(1)</td>
<td>O(1)-C(4)-C(5)-C(6)</td>
<td>O(1)-C(4)-C(5)-C(6)</td>
<td>O(1)-C(4)-C(5)-C(6)</td>
</tr>
<tr>
<td></td>
<td>-179.4(2)</td>
<td>1.8(3)</td>
<td>1.8(3)</td>
<td>1.8(3)</td>
</tr>
<tr>
<td></td>
<td>C(3)-C(4)-C(5)-C(6)</td>
<td>O(1)-C(4)-C(5)-C(7)</td>
<td>O(1)-C(4)-C(5)-C(7)</td>
<td>O(1)-C(4)-C(5)-C(7)</td>
</tr>
<tr>
<td></td>
<td>-179.6(2)</td>
<td>-0.7(4)</td>
<td>-179.6(2)</td>
<td>-0.7(4)</td>
</tr>
<tr>
<td></td>
<td>C(2)-O(3)-C(6)-O(4)</td>
<td>C(3)-C(4)-C(5)-C(7)</td>
<td>C(3)-C(4)-C(5)-C(7)</td>
<td>C(3)-C(4)-C(5)-C(7)</td>
</tr>
<tr>
<td></td>
<td>179.3(2)</td>
<td>179.3(2)</td>
<td>179.3(2)</td>
<td>179.3(2)</td>
</tr>
<tr>
<td></td>
<td>C(2)-O(3)-C(6)-C(5)</td>
<td>C(2)-O(3)-C(6)-C(5)</td>
<td>C(2)-O(3)-C(6)-C(5)</td>
<td>C(2)-O(3)-C(6)-C(5)</td>
</tr>
<tr>
<td></td>
<td>-1.1(4)</td>
<td>-1.1(4)</td>
<td>-1.1(4)</td>
<td>-1.1(4)</td>
</tr>
</tbody>
</table>
Table 7. Hydrogen bonds for 7 (M=Ni) [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(5)-H(5)...O(6)</td>
<td>0.73(3)</td>
<td>2.07(3)</td>
<td>2.788(3)</td>
<td>172(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z

Metal-bispyrone Complex 7 (M=Fe): IR KBr cm⁻¹ 1733.6, 1717.7, 1628.6, 1545.1, 1457.6, 1436.1, 1388.2, 1081.8, 621.8. HRMS – calcd 538.9680 found 538.9672. mp > 250 °C.

Lithium tris(bis-γ-pyrone) metal complex 8:
General Procedure was followed in which 10 mg (0.0520 mmoles) of bis-γ-pyrone 4 was poured into a solution of 2.8 mg (0.026 mmoles) LiClO₄ in dry MeOH yielding 12.8 mg of colorless crystals (quant.). IR (KBr) cm⁻¹ 1673.2, 1637.7, 1480.3, 1257.8, 1182.4, 1112.1, 1085.6, 624.8. HRMS – calcd 903.4295 found 903.1784 mp > 250 °C.

Crystal Structure:

Table 1. Crystal data and structure refinement for 8 (M = Li)

<table>
<thead>
<tr>
<th>Identification code</th>
<th>8 (M = Li)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₃₂.₅₀ H₃₂ Cl₂ Li₂ O₂₂.₅₀</td>
</tr>
<tr>
<td>Formula weight</td>
<td>867.36</td>
</tr>
<tr>
<td>Temperature</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 13.6532(18) Å, b = 15.954(2) Å, c = 18.398(2) Å, α = 79.690(2)°, β = 87.173(2)°, γ = 76.390(2)°</td>
</tr>
</tbody>
</table>
Volume 3832.0(9) Å³
Z 4
Density (calculated) 1.503 Mg/m³
Absorption coefficient 0.259 mm⁻¹
F(000) 1788
Crystal size 0.38 x 0.27 x 0.16 mm³
Theta range for data collection 1.12 to 25.00°
Index ranges -16<=h<=16, -18<=k<=18, -21<=l<=21
Reflections collected 37382
Independent reflections 13455 [R(int) = 0.0402]
Completeness to theta = 25.00° 99.8 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9597 and 0.9078
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 13455 / 2 / 1219
Goodness-of-fit on F² 1.033
Final R indices [I>2sigma(I)] R1 = 0.0556, wR2 = 0.1523
R indices (all data) R1 = 0.0898, wR2 = 0.1691
Largest diff. peak and hole 0.545 and -0.289 e.Å⁻³
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for 8. U(eq) is defined as one third of the trace of the orthogonalized U^ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li(1)</td>
<td>2479(4)</td>
<td>3394(4)</td>
<td>2050(3)</td>
<td>34(1)</td>
</tr>
<tr>
<td>Li(2)</td>
<td>4698(4)</td>
<td>2975(4)</td>
<td>2007(3)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>3674(2)</td>
<td>3351(2)</td>
<td>1261(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1625(2)</td>
<td>3354(2)</td>
<td>1227(1)</td>
<td>56(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>3421(2)</td>
<td>4178(1)</td>
<td>-957(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>1861(2)</td>
<td>4115(1)</td>
<td>-988(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>3696(2)</td>
<td>2834(2)</td>
<td>2776(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>1641(2)</td>
<td>2827(2)</td>
<td>2817(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>3828(2)</td>
<td>1266(1)</td>
<td>4782(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>2277(2)</td>
<td>1181(2)</td>
<td>4774(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>5744(2)</td>
<td>3536(1)</td>
<td>2110(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>5561(2)</td>
<td>1871(2)</td>
<td>1891(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>8757(2)</td>
<td>2579(1)</td>
<td>1877(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>O(12)</td>
<td>8609(2)</td>
<td>1326(1)</td>
<td>1684(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(13)</td>
<td>2254(2)</td>
<td>4655(2)</td>
<td>2029(2)</td>
<td>60(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>5090(3)</td>
<td>4347(3)</td>
<td>-1139(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>4324(2)</td>
<td>4075(2)</td>
<td>-611(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>4422(3)</td>
<td>3775(2)</td>
<td>116(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>3595(2)</td>
<td>3589(2)</td>
<td>574(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2658(2)</td>
<td>3704(2)</td>
<td>193(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2646(2)</td>
<td>3986(2)</td>
<td>-549(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>1723(3)</td>
<td>3557(3)</td>
<td>551(2)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>901(3)</td>
<td>3674(3)</td>
<td>46(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>972(2)</td>
<td>3939(2)</td>
<td>-673(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>175(3)</td>
<td>4110(3)</td>
<td>-1236(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>5456(3)</td>
<td>1364(3)</td>
<td>5073(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>4638(2)</td>
<td>1626(2)</td>
<td>4521(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>4603(2)</td>
<td>2135(2)</td>
<td>3863(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>3715(2)</td>
<td>2385(2)</td>
<td>3404(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>2857(2)</td>
<td>2069(2)</td>
<td>3731(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>2976(2)</td>
<td>1537(2)</td>
<td>4396(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td></td>
<td>C(17)</td>
<td>C(18)</td>
<td>C(19)</td>
<td>C(20)</td>
</tr>
</tbody>
</table>
| | 1850(3) | 2325(2) | 3407(2) | 30(1) | 1102(3) | 1944(3) | 3844(2) | 35(1) | 1310(3) | 1404(2) | 4487(2) | 33(1) | 620(4) | 968(4) | 4988(3) | 49(1) | 9218(3) | 3834(3) | 2098(3) | 41(1) | 8383(3) | 3412(2) | 2040(2) | 27(1) | 7400(3) | 3721(2) | 2121(2) | 28(1) | 6671(2) | 3229(2) | 2047(2) | 26(1) | 7084(2) | 2354(2) | 1892(2) | 23(1) | 8100(2) | 2101(2) | 1821(2) | 24(1) | 6497(2) | 1712(2) | 1839(2) | 28(1) | 7086(3) | 871(2) | 1726(2) | 29(1) | 8080(3) | 692(2) | 1652(2) | 28(1) | 8782(3) | -134(3) | 1538(3) | 36(1) | 2217(5) | 5119(3) | 2602(2) | 99(2) | 2518(4) | 7343(4) | 3034(3) | 42(2) | 407(4) | 7246(4) | 3027(3) | 35(1) | 1488(2) | 6816(2) | 3737(1) | 34(1) | 3535(2) | 6813(2) | 3810(1) | 49(1) | 1741(2) | 5751(1) | 5918(1) | 25(1) | 3311(2) | 5769(1) | 5976(1) | 26(1) | 1374(2) | 7439(2) | 2247(1) | 33(1) | 3455(2) | 7379(2) | 2174(1) | 42(1) | 1293(2) | 8763(1) | 140(1) | 26(1) | 2870(2) | 8778(2) | 106(1) | 33(1) | -500(2) | 8295(2) | 3210(1) | 35(1) | -610(2) | 6638(1) | 2911(1) | 32(1) | -3557(2) | 8788(1) | 3306(1) | 32(1) | -3643(2) | 7537(1) | 3068(1) | 31(1) | 2091(2) | 8592(2) | 3104(2) | 62(1) | 53(3) | 5598(3) | 6061(2) | 33(1) | 840(2) | 5889(2) | 5557(2) | 27(1) | 742(3) | 6254(2) | 4843(2) | 30(1) | 1569(2) | 6487(2) | 4408(2) | 28(1) | 2510(2) | 6326(2) | 4799(2) | 27(1) | 2518(2) | 5966(2) | 5528(2) | 24(1)
C(7') 3452(3) 6503(2) 4468(2) 33(1)
C(8') 4297(3) 6267(2) 4968(2) 33(1)
C(9') 4217(2) 5921(2) 5679(2) 28(1)
C(10') 5021(3) 5639(3) 6243(2) 33(1)
C(11') -376(3) 8725(3) -89(2) 38(1)
C(12') 456(2) 8479(2) 451(2) 26(1)
C(13') 477(2) 8039(2) 1142(2) 27(1)
C(14') 1364(2) 7816(2) 1593(2) 26(1)
C(15') 2254(2) 8053(2) 1226(2) 25(1)
C(16') 2150(2) 8507(2) 526(2) 24(1)
C(17') 3269(3) 7796(2) 1545(2) 33(1)
C(18') 4035(3) 8080(3) 1061(2) 36(1)
C(19') 3840(3) 8552(2) 387(2) 36(1)
C(20') 4550(3) 8897(4) -157(3) 47(1)
C(21') -3775(3) 10226(3) 3532(3) 39(1)
C(22') -3050(3) 9417(2) 3396(2) 31(1)
C(23') -2060(3) 9266(2) 3358(2) 31(1)
C(24') -1440(3) 8434(2) 3231(2) 28(1)
C(25') -1995(2) 7797(2) 3120(2) 25(1)
C(26') -3016(3) 8026(2) 3165(2) 28(1)
C(27') -1542(3) 6922(2) 2962(2) 28(1)
C(28') -2250(3) 6420(2) 2855(2) 30(1)
C(29') -3236(3) 6709(2) 2914(2) 28(1)
C(30') -4054(3) 6268(3) 2831(3) 42(1)
C(31') 1828(5) 8885(4) 3780(3) 108(2)
Cl(1) 2279(1) 6214(1) 9983(1) 32(1)
Cl(2) 7069(1) 8300(1) 1083(1) 35(1)
Cl(3) 7392(1) 6304(1) 4915(1) 30(1)
Cl(4) 8013(1) 1786(1) 3869(1) 30(1)
O(14) 2330(2) 6024(2) 10778(1) 45(1)
O(15) 1920(3) 7120(2) 9751(2) 65(1)
O(16) 3240(2) 5907(2) 9672(2) 51(1)
O(17) 1586(2) 5766(2) 9737(2) 60(1)
O(18) 7075(3) 8808(3) 383(2) 126(2)
O(19) 6587(2) 8859(2) 1585(2) 82(1)
O(20) 6515(2) 7658(2) 1091(2) 74(1)
<table>
<thead>
<tr>
<th>O(21)</th>
<th>8083(2)</th>
<th>7900(2)</th>
<th>1319(1)</th>
<th>41(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(22)</td>
<td>6968(2)</td>
<td>7211(2)</td>
<td>4690(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(23)</td>
<td>8378(2)</td>
<td>6066(2)</td>
<td>4601(1)</td>
<td>47(1)</td>
</tr>
<tr>
<td>O(24)</td>
<td>6753(2)</td>
<td>5823(2)</td>
<td>4653(2)</td>
<td>52(1)</td>
</tr>
<tr>
<td>O(25)</td>
<td>7434(2)</td>
<td>6096(2)</td>
<td>5705(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>O(26)</td>
<td>7990(2)</td>
<td>1202(2)</td>
<td>4540(2)</td>
<td>73(1)</td>
</tr>
<tr>
<td>O(27)</td>
<td>8587(2)</td>
<td>2395(2)</td>
<td>3937(2)</td>
<td>76(1)</td>
</tr>
<tr>
<td>O(28)</td>
<td>8474(2)</td>
<td>1282(2)</td>
<td>3324(2)</td>
<td>57(1)</td>
</tr>
<tr>
<td>O(29)</td>
<td>7006(2)</td>
<td>2240(2)</td>
<td>3653(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>O(1S)</td>
<td>1313(3)</td>
<td>9984(2)</td>
<td>1992(2)</td>
<td>86(1)</td>
</tr>
<tr>
<td>C(1S)</td>
<td>960(5)</td>
<td>10764(4)</td>
<td>2337(4)</td>
<td>115(2)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length [Å]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1)-O(13)</td>
<td>1.957(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1)-O(2)</td>
<td>1.975(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1)-O(6)</td>
<td>1.997(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1)-O(5)</td>
<td>2.105(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1)-O(1)</td>
<td>2.127(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1)-Li(2)</td>
<td>2.944(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(2)-O(9)</td>
<td>1.889(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(2)-O(10)</td>
<td>1.916(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(2)-O(1)</td>
<td>1.923(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-C(4)</td>
<td>1.255(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-C(7)</td>
<td>1.237(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)-C(6)</td>
<td>1.330(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)-C(2)</td>
<td>1.377(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)-C(6)</td>
<td>1.328(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)-C(9)</td>
<td>1.386(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5)-C(14)</td>
<td>1.243(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(6)-C(17)</td>
<td>1.230(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7)-C(16)</td>
<td>1.335(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7)-C(12)</td>
<td>1.390(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(8)-C(16)</td>
<td>1.329(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(8)-C(19)</td>
<td>1.389(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(9)-C(24)</td>
<td>1.252(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(10)-C(27)</td>
<td>1.246(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(11)-C(26)</td>
<td>1.326(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(11)-C(22)</td>
<td>1.388(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(12)-C(26)</td>
<td>1.328(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(12)-C(29)</td>
<td>1.385(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(13)-C(31)</td>
<td>1.386(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(13)-H(13A)</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.478(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>0.94(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.97(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-H(1C)</td>
<td>0.95(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.341(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.429(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.82(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.448(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.358(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)-C(7)</td>
<td>1.456(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.449(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.320(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.82(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.484(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>0.85(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>1.02(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-H(10C)</td>
<td>1.02(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.482(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-H(11A)</td>
<td>0.99(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-H(11B)</td>
<td>0.96(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-H(11C)</td>
<td>0.93(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.327(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.447(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-H(13)</td>
<td>0.93(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.446(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.353(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(17)</td>
<td>1.463(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.447(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.332(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-H(18)</td>
<td>0.92(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.487(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-H(20A)</td>
<td>0.90(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-H(20B)</td>
<td>0.94(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-H(20C)</td>
<td>0.94(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.471(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-H(21A)</td>
<td>0.81(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-H(21B)</td>
<td>0.94(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-H(21C)</td>
<td>0.99(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.326(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.430(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)-H(23)</td>
<td>0.86(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.451(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)-C(26)</td>
<td>1.357(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)-C(27)</td>
<td>1.460(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27)-C(28)</td>
<td>1.437(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(28)-C(29)</td>
<td>1.324(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(28)-H(28)</td>
<td>0.93(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29)-C(30)</td>
<td>1.479(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(30)-H(30A)</td>
<td>0.96(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(30)-H(30B)</td>
<td>0.90(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(30)-H(30C)</td>
<td>0.90(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31)-H(31A)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31)-H(31B)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31)-H(31C)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1')-O(13')</td>
<td>1.966(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1')-O(2')</td>
<td>1.974(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1')-O(6')</td>
<td>1.987(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1')-O(11')</td>
<td>2.085(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1')-O(5')</td>
<td>2.142(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(1')-Li(2')</td>
<td>2.923(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(2')-O(9')</td>
<td>1.906(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(2')-O(10')</td>
<td>1.911(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(2')-O(5')</td>
<td>1.935(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li(2')-O(11')</td>
<td>1.935(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1')-C(4')</td>
<td>1.252(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2')-C(7')</td>
<td>1.233(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3')-C(6')</td>
<td>1.329(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3')-C(2')</td>
<td>1.380(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4')-C(6')</td>
<td>1.337(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4')-C(9')</td>
<td>1.383(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5')-C(14')</td>
<td>1.246(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(6')-C(17')</td>
<td>1.232(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7')-C(16')</td>
<td>1.340(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7')-C(12')</td>
<td>1.387(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(8')-C(16')</td>
<td>1.326(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(8')-C(19')</td>
<td>1.389(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(9')-C(24')</td>
<td>1.250(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(10')-C(27')</td>
<td>1.250(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(11')-C(26')</td>
<td>1.327(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(11')-C(22')</td>
<td>1.383(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(12')-C(26')</td>
<td>1.325(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(12')-C(29')</td>
<td>1.380(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(13')-C(31')</td>
<td>1.406(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(13')-H(13B)</td>
<td>0.9500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1')-C(2')</td>
<td>1.486(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1')-H(1D)</td>
<td>0.92(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1')-H(1E)</td>
<td>1.02(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1')-H(1F)</td>
<td>1.01(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2')-C(3')</td>
<td>1.338(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3')-C(4')</td>
<td>1.434(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3')-H(3')</td>
<td>0.99(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4')-C(5')</td>
<td>1.452(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5')-C(6')</td>
<td>1.360(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5')-C(7')</td>
<td>1.462(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7')-C(8')</td>
<td>1.446(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8')-C(9')</td>
<td>1.336(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8')-H(8')</td>
<td>0.92(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9')-C(10')</td>
<td>1.483(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10')-H(10D)</td>
<td>1.00(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10')-H(10E)</td>
<td>0.86(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10')-H(10F)</td>
<td>1.03(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11')-C(12')</td>
<td>1.482(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11')-H(11D)</td>
<td>0.87(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11')-H(11E)</td>
<td>0.94(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11')-H(11F)</td>
<td>0.93(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12')-C(13')</td>
<td>1.336(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13')-C(14')</td>
<td>1.439(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13')-H(13')</td>
<td>0.95(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14')-C(15')</td>
<td>1.456(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15')-C(16')</td>
<td>1.356(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15')-C(17')</td>
<td>1.469(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17')-C(18')</td>
<td>1.442(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18')-C(19')</td>
<td>1.333(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18')-H(18')</td>
<td>0.96(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19')-C(20')</td>
<td>1.483(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20')-H(20D)</td>
<td>0.89(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20')-H(20E)</td>
<td>0.99(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20')-H(20F)</td>
<td>0.95(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21')-C(22')</td>
<td>1.483(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21')-H(21D)</td>
<td>0.88(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21')-H(21E)</td>
<td>1.00(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21')-H(21F)</td>
<td>0.97(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22')-C(23')</td>
<td>1.317(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23')-C(24')</td>
<td>1.447(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23')-H(23')</td>
<td>1.00(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24')-C(25')</td>
<td>1.450(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25')-C(26')</td>
<td>1.357(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25')-C(27')</td>
<td>1.462(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27')-C(28')</td>
<td>1.433(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(28')-C(29')</td>
<td>1.323(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(28')-H(28')</td>
<td>0.84(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29')-C(30')</td>
<td>1.479(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(30')-H(30D)</td>
<td>1.04(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(30')-H(30E)</td>
<td>0.95(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(30')-H(30F)</td>
<td>0.92(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31')-H(31D)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31')-H(31E)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31')-H(31F)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(15)</td>
<td>1.405(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(16)</td>
<td>1.419(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(14)</td>
<td>1.442(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(17)</td>
<td>1.445(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(2)-O(18)</td>
<td>1.395(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(2)-O(20)</td>
<td>1.408(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(2)-O(19)</td>
<td>1.429(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(2)-O(21)</td>
<td>1.434(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(3)-O(22)</td>
<td>1.419(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(3)-O(23)</td>
<td>1.433(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cl(3)-O(25) 1.433(2)
Cl(3)-O(24) 1.441(3)
Cl(4)-O(27) 1.408(3)
Cl(4)-O(26) 1.412(3)
Cl(4)-O(28) 1.428(3)
Cl(4)-O(29) 1.434(2)
O(1S)-C(1S) 1.467(6)

O(13)-Li(1)-O(2) 101.6(3)
O(13)-Li(1)-O(6) 112.6(3)
O(2)-Li(1)-O(6) 93.6(3)
O(13)-Li(1)-O(5) 104.7(3)
O(2)-Li(1)-O(5) 151.6(4)
O(6)-Li(1)-O(5) 86.2(2)
O(13)-Li(1)-O(1) 94.3(3)
O(2)-Li(1)-O(1) 86.1(2)
O(6)-Li(1)-O(1) 152.6(3)
O(5)-Li(1)-O(1) 81.4(2)
O(13)-Li(1)-Li(2) 98.1(3)
O(2)-Li(1)-Li(2) 124.3(3)
O(6)-Li(1)-Li(2) 125.1(3)
O(5)-Li(1)-Li(2) 41.13(16)
O(1)-Li(1)-Li(2) 40.70(16)
O(9)-Li(2)-O(10) 96.0(3)
O(9)-Li(2)-O(1) 125.8(3)
O(10)-Li(2)-O(1) 111.0(3)
O(9)-Li(2)-O(5) 122.1(3)
O(10)-Li(2)-O(5) 111.3(3)
O(1)-Li(2)-O(5) 91.2(3)
O(9)-Li(2)-Li(1) 137.7(3)
O(10)-Li(2)-Li(1) 126.2(3)
O(1)-Li(2)-Li(1) 46.16(18)
O(5)-Li(2)-Li(1) 45.54(17)
C(4)-O(1)-Li(2) 139.6(3)
C(4)-O(1)-Li(1) 126.9(3)
Li(2)-O(1)-Li(1) 93.1(2)
C(7)-O(2)-Li(1) 131.0(3)
C(6)-O(3)-C(2) 118.4(2)
C(6)-O(4)-C(9) 118.0(3)
C(14)-O(5)-Li(2) 134.3(3)
C(14)-O(5)-Li(1) 130.0(3)
Li(2)-O(5)-Li(1) 93.3(2)
C(17)-O(6)-Li(1) 132.7(3)
C(16)-O(7)-C(12) 117.7(2)
C(16)-O(8)-C(19) 117.9(3)
C(24)-O(9)-Li(2) 126.8(3)
C(27)-O(10)-Li(2) 125.7(3)
C(26)-O(11)-C(22) 117.6(2)
C(26)-O(12)-C(29) 118.3(2)
C(31)-O(13)-Li(2) 130.1(3)
C(31)-O(13)-H(13A) 114.9
Li(1)-O(13)-H(13A) 114.9
C(2)-C(1)-H(1A) 106(2)
C(2)-C(1)-H(1B) 111.0(18)
H(1A)-C(1)-H(1B) 111(3)
C(2)-C(1)-H(1C) 118(2)
H(1A)-C(1)-H(1C) 101(3)
H(1B)-C(1)-H(1C) 110(3)
C(3)-C(2)-O(3) 120.7(3)
C(3)-C(2)-C(1) 128.1(3)
O(3)-C(2)-C(1) 111.2(3)
C(2)-C(3)-C(4) 122.3(3)
C(2)-C(3)-H(3) 115(2)
C(4)-C(3)-H(3) 122(2)
O(1)-C(4)-C(3) 122.3(3)
O(1)-C(4)-C(5) 122.2(3)
C(3)-C(4)-C(5) 115.5(3)
C(6)-C(5)-C(4) 117.6(3)
C(6)-C(5)-C(7) 117.8(3)
C(4)-C(5)-C(7) 124.6(3)
O(4)-C(6)-O(3) 108.7(3)
O(4)-C(6)-C(5) 125.8(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(3)-C(6)-C(5)</td>
<td>125.5(3)</td>
</tr>
<tr>
<td>O(2)-C(7)-C(8)</td>
<td>122.2(3)</td>
</tr>
<tr>
<td>O(2)-C(7)-C(5)</td>
<td>123.6(3)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(5)</td>
<td>114.2(3)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(7)</td>
<td>129.1(3)</td>
</tr>
<tr>
<td>C(9)-C(8)-H(8)</td>
<td>115(3)</td>
</tr>
<tr>
<td>C(7)-C(8)-H(8)</td>
<td>122(3)</td>
</tr>
<tr>
<td>C(8)-C(9)-O(4)</td>
<td>120.9(3)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>127.8(3)</td>
</tr>
<tr>
<td>O(4)-C(9)-C(10)</td>
<td>111.3(3)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10A)</td>
<td>109(3)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10B)</td>
<td>108.5(18)</td>
</tr>
<tr>
<td>H(10A)-C(10)-H(10B)</td>
<td>110(3)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10C)</td>
<td>110(2)</td>
</tr>
<tr>
<td>H(10A)-C(10)-H(10C)</td>
<td>109(3)</td>
</tr>
<tr>
<td>H(10B)-C(10)-H(10C)</td>
<td>109(3)</td>
</tr>
<tr>
<td>C(12)-C(11)-H(11A)</td>
<td>110.3(17)</td>
</tr>
<tr>
<td>C(12)-C(11)-H(11B)</td>
<td>114(2)</td>
</tr>
<tr>
<td>H(11A)-C(11)-H(11B)</td>
<td>104(3)</td>
</tr>
<tr>
<td>C(12)-C(11)-H(11C)</td>
<td>112(2)</td>
</tr>
<tr>
<td>H(11A)-C(11)-H(11C)</td>
<td>109(3)</td>
</tr>
<tr>
<td>H(11B)-C(11)-H(11C)</td>
<td>107(3)</td>
</tr>
<tr>
<td>C(13)-C(12)-O(7)</td>
<td>120.8(3)</td>
</tr>
<tr>
<td>C(13)-C(12)-C(11)</td>
<td>128.9(3)</td>
</tr>
<tr>
<td>O(7)-C(12)-C(11)</td>
<td>110.3(3)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)</td>
<td>122.5(3)</td>
</tr>
<tr>
<td>C(12)-C(13)-H(13)</td>
<td>116(2)</td>
</tr>
<tr>
<td>C(14)-C(13)-H(13)</td>
<td>122(2)</td>
</tr>
<tr>
<td>O(5)-C(14)-C(15)</td>
<td>122.7(3)</td>
</tr>
<tr>
<td>O(5)-C(14)-C(13)</td>
<td>122.5(3)</td>
</tr>
<tr>
<td>C(15)-C(14)-C(13)</td>
<td>114.8(3)</td>
</tr>
<tr>
<td>C(16)-C(15)-C(14)</td>
<td>118.1(3)</td>
</tr>
<tr>
<td>C(16)-C(15)-C(17)</td>
<td>117.6(3)</td>
</tr>
<tr>
<td>C(14)-C(15)-C(17)</td>
<td>124.2(3)</td>
</tr>
<tr>
<td>O(8)-C(16)-O(7)</td>
<td>108.1(3)</td>
</tr>
<tr>
<td>O(8)-C(16)-C(15)</td>
<td>126.4(3)</td>
</tr>
</tbody>
</table>
O(7)-C(16)-C(15) 125.6(3)
O(6)-C(17)-C(18) 122.0(3)
O(6)-C(17)-C(15) 123.6(3)
C(18)-C(17)-C(15) 114.4(3)
C(19)-C(18)-C(17) 123.0(3)
C(19)-C(18)-H(18) 118(2)
C(17)-C(18)-H(18) 119(2)
C(18)-C(19)-O(8) 120.6(3)
C(18)-C(19)-C(20) 128.6(3)
O(8)-C(19)-C(20) 110.8(3)
C(19)-C(20)-H(20A) 109(3)
C(19)-C(20)-H(20B) 108(3)
H(20A)-C(20)-H(20B) 104(4)
C(19)-C(20)-H(20C) 112(2)
H(20A)-C(20)-H(20C) 112(4)
H(20B)-C(20)-H(20C) 105(4)
C(22)-C(21)-H(21A) 113(3)
C(22)-C(21)-H(21B) 114(2)
H(21A)-C(21)-H(21B) 104(4)
C(22)-C(21)-H(21C) 108.8(19)
H(21A)-C(21)-H(21C) 112(4)
H(21B)-C(21)-H(21C) 105(3)
C(23)-C(22)-O(11) 120.8(3)
C(23)-C(22)-C(21) 129.3(3)
O(11)-C(22)-C(21) 109.9(3)
C(22)-C(23)-C(24) 122.9(3)
C(22)-C(23)-H(23) 112(2)
C(24)-C(23)-H(23) 125(2)
O(9)-C(24)-C(23) 122.1(3)
O(9)-C(24)-C(25) 122.8(3)
C(23)-C(24)-C(25) 115.1(3)
C(26)-C(25)-C(24) 117.3(3)
C(26)-C(25)-C(27) 117.5(3)
C(24)-C(25)-C(27) 125.1(3)
O(11)-C(26)-O(12) 108.1(3)
O(11)-C(26)-C(25) 126.2(3)
O(12)-C(26)-C(25) 125.7(3)
O(10)-C(27)-C(28) 122.2(3)
O(10)-C(27)-C(25) 123.2(3)
C(28)-C(27)-C(25) 114.6(3)
C(29)-C(28)-C(27) 123.3(3)
C(29)-C(28)-H(28) 116.6(19)
C(27)-C(28)-H(28) 120.0(19)
C(28)-C(29)-O(12) 120.4(3)
C(28)-C(29)-C(30) 129.4(3)
O(12)-C(29)-C(30) 110.2(3)
C(29)-C(30)-H(30A) 109(2)
C(29)-C(30)-H(30B) 109(3)
H(30A)-C(30)-H(30B) 113(4)
C(29)-C(30)-H(30C) 109(2)
H(30A)-C(30)-H(30C) 107(3)
H(30B)-C(30)-H(30C) 109(4)
O(13)-C(31)-H(31A) 109.5
O(13)-C(31)-H(31B) 109.5
H(31A)-C(31)-H(31B) 109.5
O(13)-C(31)-H(31C) 109.5
H(31A)-C(31)-H(31C) 109.5
H(31B)-C(31)-H(31C) 109.5
O(13')-Li(1')-O(2') 106.2(3)
O(13')-Li(1')-O(6') 101.1(3)
O(2')-Li(1')-O(6') 97.8(3)
O(13')-Li(1')-O(1') 101.8(3)
O(2')-Li(1')-O(1') 87.4(2)
O(6')-Li(1')-O(1') 154.1(4)
O(13')-Li(1')-O(5') 92.8(3)
O(2')-Li(1')-O(5') 159.3(4)
O(6')-Li(1')-O(5') 86.0(2)
O(1')-Li(1')-O(5') 80.9(2)
O(13')-Li(1')-Li(2') 89.9(3)
O(2')-Li(1')-Li(2') 128.7(3)
O(6')-Li(1')-Li(2') 127.0(3)
O(1')-Li(1')-Li(2') 41.38(17)
O(5')-Li(1')-Li(2') 41.43(17)
O(9')-Li(2')-O(10') 95.9(3)
O(9')-Li(2')-O(5') 113.6(3)
O(10')-Li(2')-O(5') 121.0(3)
O(9')-Li(2')-O(1') 113.3(3)
O(11')-Li(2')-O(1') 124.2(3)
O(5')-Li(2')-O(1') 90.2(3)
O(9')-Li(2')-Li(1') 112.7(3)
O(10')-Li(2')-Li(1') 151.4(3)
O(5')-Li(2')-Li(1') 47.09(19)
O(1')-Li(2')-Li(1') 45.42(18)
C(4')-O(1')-Li(2') 136.6(3)
C(4')-O(1')-Li(1') 129.2(3)
Li(2')-O(1')-Li(1') 93.2(3)
C(7')-O(2')-Li(1') 131.6(3)
C(6')-O(3')-C(2') 117.9(2)
C(6')-O(4')-C(9') 117.9(3)
C(14')-O(5')-Li(2') 137.7(3)
C(14')-O(5')-Li(1') 125.3(3)
Li(2')-O(5')-Li(1') 91.5(3)
C(17')-O(6')-Li(1') 127.4(3)
C(16')-O(7')-C(12') 117.8(2)
C(16')-O(8')-C(19') 117.9(3)
C(24')-O(9')-Li(2') 126.1(3)
O(10')-Li(2')-Li(1') 126.5(3)
C(26')-O(11')-C(22') 118.0(3)
C(26')-O(12')-C(29') 118.0(3)
C(31')-O(13')-Li(1') 122.5(4)
C(31')-O(13')-H(13B) 118.7
Li(1')-O(13')-H(13B) 118.7
C(2')-C(1')-H(1D) 115(3)
C(2')-C(1')-H(1E) 109(2)
H(1D)-C(1')-H(1E) 105(3)
C(2')-C(1')-H(1F) 108(2)
H(1D)-C(1')-H(1F) 106(3)
H(1E)-C(1')-H(1F) 114(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(3')-C(2')-O(3')</td>
<td>121.0(3)</td>
</tr>
<tr>
<td>C(3')-C(2')-C(1')</td>
<td>127.4(3)</td>
</tr>
<tr>
<td>O(3')-C(2')-C(1')</td>
<td>111.6(3)</td>
</tr>
<tr>
<td>C(2')-C(3')-C(4')</td>
<td>122.2(3)</td>
</tr>
<tr>
<td>C(2')-C(3')-H(3')</td>
<td>118.0(18)</td>
</tr>
<tr>
<td>C(4')-C(3')-H(3')</td>
<td>119.7(18)</td>
</tr>
<tr>
<td>O(1')-C(4')-C(3')</td>
<td>122.6(3)</td>
</tr>
<tr>
<td>O(1')-C(4')-C(5')</td>
<td>121.9(3)</td>
</tr>
<tr>
<td>C(3')-C(4')-C(5')</td>
<td>115.6(3)</td>
</tr>
<tr>
<td>C(6')-C(5')-C(4')</td>
<td>117.2(3)</td>
</tr>
<tr>
<td>C(6')-C(5')-C(7')</td>
<td>117.7(3)</td>
</tr>
<tr>
<td>C(4')-C(5')-C(7)</td>
<td>125.1(3)</td>
</tr>
<tr>
<td>O(3')-C(6')-O(4')</td>
<td>108.2(3)</td>
</tr>
<tr>
<td>O(3')-C(6')-C(5)</td>
<td>126.1(3)</td>
</tr>
<tr>
<td>O(4')-C(6')-C(5')</td>
<td>125.7(3)</td>
</tr>
<tr>
<td>O(2')-C(7')-C(8')</td>
<td>122.0(3)</td>
</tr>
<tr>
<td>O(2')-C(7')-C(5')</td>
<td>123.1(3)</td>
</tr>
<tr>
<td>C(8')-C(7')-C(5)</td>
<td>114.9(3)</td>
</tr>
<tr>
<td>C(9')-C(8')-C(7)</td>
<td>122.4(3)</td>
</tr>
<tr>
<td>C(9')-C(8')-H(8')</td>
<td>118(2)</td>
</tr>
<tr>
<td>C(7')-C(8')-H(8')</td>
<td>120(2)</td>
</tr>
<tr>
<td>C(8')-C(9')-O(4')</td>
<td>121.2(3)</td>
</tr>
<tr>
<td>C(8')-C(9')-C(10')</td>
<td>127.8(3)</td>
</tr>
<tr>
<td>O(4')-C(9')-C(10')</td>
<td>111.0(3)</td>
</tr>
<tr>
<td>C(9')-C(10')-H(10D)</td>
<td>113(2)</td>
</tr>
<tr>
<td>C(9')-C(10')-H(10E)</td>
<td>112(2)</td>
</tr>
<tr>
<td>H(10D)-C(10')-H(10E)</td>
<td>109(3)</td>
</tr>
<tr>
<td>C(9')-C(10')-H(10F)</td>
<td>111.5(18)</td>
</tr>
<tr>
<td>H(10D)-C(10')-H(10F)</td>
<td>103(3)</td>
</tr>
<tr>
<td>H(10E)-C(10')-H(10F)</td>
<td>107(3)</td>
</tr>
<tr>
<td>C(12')-C(11')-H(11D)</td>
<td>113(3)</td>
</tr>
<tr>
<td>C(12')-C(11')-H(11E)</td>
<td>112(3)</td>
</tr>
<tr>
<td>H(11D)-C(11')-H(11E)</td>
<td>110(4)</td>
</tr>
<tr>
<td>C(12')-C(11')-H(11F)</td>
<td>109(3)</td>
</tr>
<tr>
<td>H(11D)-C(11')-H(11F)</td>
<td>107(4)</td>
</tr>
<tr>
<td>H(11E)-C(11')-H(11F)</td>
<td>105(4)</td>
</tr>
</tbody>
</table>
C(13')-C(12')-O(7') 121.0(3)
C(13')-C(12')-C(11') 128.7(3)
O(7')-C(12')-C(11') 110.3(3)
C(12')-C(13')-C(14') 122.3(3)
C(12')-C(13')-H(13') 113(2)
C(14')-C(13')-H(13') 125(2)
O(5')-C(14')-C(13') 122.5(3)
O(5')-C(14')-C(15') 122.2(3)
C(13')-C(14')-C(15') 115.3(3)
C(16')-C(15')-C(14') 117.7(3)
C(16')-C(15')-C(17') 117.5(3)
C(14')-C(15')-C(17') 124.7(3)
O(8')-C(16')-O(7') 108.0(3)
O(8')-C(16')-C(15') 126.4(3)
O(7')-C(16')-C(15') 125.6(3)
O(6')-C(17')-C(18') 122.5(3)
O(6')-C(17')-C(15') 123.3(3)
C(18')-C(17')-C(15') 114.2(3)
C(19')-C(18')-C(17') 123.2(3)
C(19')-C(18')-H(18') 119(2)
C(17')-C(18')-H(18') 118(2)
C(18')-C(19')-O(8') 120.7(3)
C(18')-C(19')-C(20') 128.5(3)
O(8')-C(19')-C(20') 110.8(3)
C(19')-C(20')-H(20D) 109(3)
C(19')-C(20')-H(20E) 114(2)
H(20D)-C(20')-H(20E) 109(4)
C(19')-C(20')-H(20F) 110(3)
H(20D)-C(20')-H(20F) 114(4)
H(20E)-C(20')-H(20F) 101(3)
C(22')-C(21')-H(21D) 113(2)
C(22')-C(21')-H(21E) 112(2)
H(21D)-C(21')-H(21E) 111(3)
C(22')-C(21')-H(21F) 113(2)
H(21D)-C(21')-H(21F) 99(3)
H(21E)-C(21')-H(21F) 107(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(23')-C(22')-O(11')</td>
<td>121.5(3)</td>
</tr>
<tr>
<td>C(23')-C(22')-C(21')</td>
<td>128.2(4)</td>
</tr>
<tr>
<td>O(11')-C(22')-C(21')</td>
<td>110.3(3)</td>
</tr>
<tr>
<td>C(22')-C(23')-C(24')</td>
<td>122.3(3)</td>
</tr>
<tr>
<td>C(22')-C(23')-H(23')</td>
<td>123(2)</td>
</tr>
<tr>
<td>C(24')-C(23')-H(23')</td>
<td>115(2)</td>
</tr>
<tr>
<td>O(9')-C(24')-C(23')</td>
<td>121.5(3)</td>
</tr>
<tr>
<td>O(9')-C(24')-C(25')</td>
<td>123.7(3)</td>
</tr>
<tr>
<td>C(23')-C(24')-C(25')</td>
<td>114.8(3)</td>
</tr>
<tr>
<td>C(26')-C(25')-C(24')</td>
<td>117.9(3)</td>
</tr>
<tr>
<td>C(26')-C(25')-C(27')</td>
<td>117.1(3)</td>
</tr>
<tr>
<td>C(24')-C(25')-C(27')</td>
<td>125.0(3)</td>
</tr>
<tr>
<td>O(12')-C(26')-O(11')</td>
<td>108.3(3)</td>
</tr>
<tr>
<td>O(12')-C(26')-C(25')</td>
<td>126.2(3)</td>
</tr>
<tr>
<td>O(11')-C(26')-C(25')</td>
<td>125.5(3)</td>
</tr>
<tr>
<td>O(10')-C(27')-C(28')</td>
<td>122.5(3)</td>
</tr>
<tr>
<td>O(10')-C(27')-C(25')</td>
<td>122.8(3)</td>
</tr>
<tr>
<td>C(28')-C(27')-C(25')</td>
<td>114.7(3)</td>
</tr>
<tr>
<td>C(29')-C(28')-C(27')</td>
<td>123.2(3)</td>
</tr>
<tr>
<td>C(29')-C(28')-H(28')</td>
<td>119(2)</td>
</tr>
<tr>
<td>C(27')-C(28')-H(28')</td>
<td>118(2)</td>
</tr>
<tr>
<td>C(28')-C(29')-O(12')</td>
<td>120.8(3)</td>
</tr>
<tr>
<td>C(28')-C(29')-C(30')</td>
<td>129.4(3)</td>
</tr>
<tr>
<td>O(12')-C(29')-C(30')</td>
<td>109.8(3)</td>
</tr>
<tr>
<td>C(29')-C(30')-H(30D)</td>
<td>113(3)</td>
</tr>
<tr>
<td>C(29')-C(30')-H(30E)</td>
<td>115(3)</td>
</tr>
<tr>
<td>H(30D)-C(30')-H(30E)</td>
<td>95(4)</td>
</tr>
<tr>
<td>C(29')-C(30')-H(30F)</td>
<td>110(2)</td>
</tr>
<tr>
<td>H(30D)-C(30')-H(30F)</td>
<td>113(3)</td>
</tr>
<tr>
<td>H(30E)-C(30')-H(30F)</td>
<td>110(4)</td>
</tr>
<tr>
<td>O(13')-C(31')-H(31D)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(13')-C(31')-H(31E)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(31D)-C(31')-H(31E)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(13')-C(31')-H(31F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(31D)-C(31')-H(31F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(31E)-C(31')-H(31F)</td>
<td>109.5</td>
</tr>
</tbody>
</table>
O(15)-Cl(1)-O(16) 111.38(19)
O(15)-Cl(1)-O(14) 109.48(16)
O(16)-Cl(1)-O(14) 110.17(16)
O(15)-Cl(1)-O(17) 108.58(19)
O(16)-Cl(1)-O(17) 107.95(17)
O(14)-Cl(1)-O(17) 109.22(17)
O(18)-Cl(2)-O(20) 111.4(3)
O(18)-Cl(2)-O(19) 108.3(3)
O(20)-Cl(2)-O(19) 107.5(2)
O(18)-Cl(2)-O(21) 109.94(18)
O(20)-Cl(2)-O(21) 110.43(16)
O(19)-Cl(2)-O(21) 109.26(18)
O(22)-Cl(3)-O(23) 110.48(17)
O(22)-Cl(3)-O(25) 109.90(16)
O(23)-Cl(3)-O(25) 110.47(15)
O(22)-Cl(3)-O(24) 108.08(18)
O(23)-Cl(3)-O(24) 108.75(16)
O(25)-Cl(3)-O(24) 109.12(16)
O(27)-Cl(4)-O(26) 111.1(2)
O(27)-Cl(4)-O(28) 108.68(19)
O(26)-Cl(4)-O(28) 107.65(19)
O(27)-Cl(4)-O(29) 109.74(17)
O(26)-Cl(4)-O(29) 109.71(16)
O(28)-Cl(4)-O(29) 109.96(16)

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (Å² x 10³) for 8. The anisotropic displacement factor exponent takes the form: -2π² [h²a²U₁¹ + ... + 2 h k a* b* U₁²]

<table>
<thead>
<tr>
<th></th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U²³</th>
<th>U¹³</th>
<th>U¹²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li(1)</td>
<td>24(3)</td>
<td>47(4)</td>
<td>28(3)</td>
<td>3(3)</td>
<td>0(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>Li(2)</td>
<td>25(3)</td>
<td>43(4)</td>
<td>27(3)</td>
<td>-2(3)</td>
<td>0(2)</td>
<td>-4(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>27(1)</td>
<td>51(2)</td>
<td>24(1)</td>
<td>1(1)</td>
<td>-3(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>30(2)</td>
<td>114(3)</td>
<td>24(2)</td>
<td>1(2)</td>
<td>4(1)</td>
<td>-24(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>21(1)</td>
<td>29(1)</td>
<td>24(1)</td>
<td>-3(1)</td>
<td>-1(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>21(1)</td>
<td>35(1)</td>
<td>24(1)</td>
<td>-5(1)</td>
<td>-4(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>24(1)</td>
<td>40(1)</td>
<td>24(1)</td>
<td>2(1)</td>
<td>2(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>24(1)</td>
<td>50(2)</td>
<td>28(1)</td>
<td>8(1)</td>
<td>-4(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>21(1)</td>
<td>29(1)</td>
<td>28(1)</td>
<td>1(1)</td>
<td>-4(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>24(1)</td>
<td>37(1)</td>
<td>30(1)</td>
<td>5(1)</td>
<td>-3(1)</td>
<td>-12(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>22(1)</td>
<td>32(1)</td>
<td>36(1)</td>
<td>-5(1)</td>
<td>2(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>23(1)</td>
<td>36(1)</td>
<td>43(2)</td>
<td>-5(1)</td>
<td>-1(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>26(1)</td>
<td>26(1)</td>
<td>32(1)</td>
<td>-2(1)</td>
<td>0(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>O(12)</td>
<td>26(1)</td>
<td>25(1)</td>
<td>33(1)</td>
<td>-5(1)</td>
<td>4(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(13)</td>
<td>82(2)</td>
<td>45(2)</td>
<td>39(2)</td>
<td>8(1)</td>
<td>2(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>25(2)</td>
<td>43(3)</td>
<td>32(2)</td>
<td>-2(2)</td>
<td>-3(2)</td>
<td>-9(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>17(2)</td>
<td>32(2)</td>
<td>31(2)</td>
<td>-6(2)</td>
<td>-6(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>23(2)</td>
<td>30(2)</td>
<td>28(2)</td>
<td>-3(2)</td>
<td>1(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>23(2)</td>
<td>34(2)</td>
<td>31(2)</td>
<td>-6(2)</td>
<td>-6(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>23(2)</td>
<td>34(2)</td>
<td>25(2)</td>
<td>-5(2)</td>
<td>0(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>22(2)</td>
<td>23(2)</td>
<td>27(2)</td>
<td>-4(1)</td>
<td>-1(2)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>29(2)</td>
<td>57(3)</td>
<td>28(2)</td>
<td>-2(2)</td>
<td>-1(2)</td>
<td>-10(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>22(2)</td>
<td>57(3)</td>
<td>32(2)</td>
<td>-7(2)</td>
<td>2(2)</td>
<td>-14(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>21(2)</td>
<td>33(2)</td>
<td>35(2)</td>
<td>-8(2)</td>
<td>1(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>25(2)</td>
<td>48(3)</td>
<td>33(2)</td>
<td>-8(2)</td>
<td>-3(2)</td>
<td>-13(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>24(2)</td>
<td>42(3)</td>
<td>28(2)</td>
<td>-1(2)</td>
<td>-2(2)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>21(2)</td>
<td>28(2)</td>
<td>30(2)</td>
<td>-5(2)</td>
<td>1(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>19(2)</td>
<td>32(2)</td>
<td>30(2)</td>
<td>-5(2)</td>
<td>3(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>24(2)</td>
<td>24(2)</td>
<td>27(2)</td>
<td>-6(2)</td>
<td>3(2)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>18(2)</td>
<td>26(2)</td>
<td>23(2)</td>
<td>-4(1)</td>
<td>1(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>22(2)</td>
<td>26(2)</td>
<td>28(2)</td>
<td>-4(2)</td>
<td>1(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>27(2)</td>
<td>37(2)</td>
<td>26(2)</td>
<td>-5(2)</td>
<td>-2(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C(18)</td>
<td>22(2)</td>
<td>53(2)</td>
<td>30(2)</td>
<td>2(2)</td>
<td>-5(2)</td>
<td>-13(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>25(2)</td>
<td>42(2)</td>
<td>33(2)</td>
<td>0(2)</td>
<td>-6(2)</td>
<td>-13(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>35(3)</td>
<td>72(4)</td>
<td>42(3)</td>
<td>12(3)</td>
<td>-5(2)</td>
<td>-27(3)</td>
</tr>
<tr>
<td>C(21)</td>
<td>33(2)</td>
<td>38(3)</td>
<td>53(3)</td>
<td>-12(2)</td>
<td>-7(2)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>32(2)</td>
<td>23(2)</td>
<td>25(2)</td>
<td>-1(1)</td>
<td>-3(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>27(2)</td>
<td>22(2)</td>
<td>33(2)</td>
<td>-8(2)</td>
<td>0(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(24)</td>
<td>28(2)</td>
<td>25(2)</td>
<td>21(2)</td>
<td>0(1)</td>
<td>0(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(25)</td>
<td>25(2)</td>
<td>25(2)</td>
<td>17(2)</td>
<td>1(1)</td>
<td>0(1)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(26)</td>
<td>25(2)</td>
<td>26(2)</td>
<td>21(2)</td>
<td>-2(1)</td>
<td>1(1)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(27)</td>
<td>26(2)</td>
<td>33(2)</td>
<td>21(2)</td>
<td>0(2)</td>
<td>-2(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(28)</td>
<td>33(2)</td>
<td>24(2)</td>
<td>30(2)</td>
<td>-5(2)</td>
<td>0(2)</td>
<td>-9(2)</td>
</tr>
<tr>
<td>C(29)</td>
<td>33(2)</td>
<td>26(2)</td>
<td>24(2)</td>
<td>-3(2)</td>
<td>4(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(30)</td>
<td>40(2)</td>
<td>28(2)</td>
<td>37(3)</td>
<td>-7(2)</td>
<td>6(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(31)</td>
<td>179(7)</td>
<td>72(4)</td>
<td>37(3)</td>
<td>-10(3)</td>
<td>-4(3)</td>
<td>-11(4)</td>
</tr>
<tr>
<td>Li(1')</td>
<td>31(3)</td>
<td>56(4)</td>
<td>30(3)</td>
<td>9(3)</td>
<td>-2(3)</td>
<td>-4(3)</td>
</tr>
<tr>
<td>Li(2')</td>
<td>27(3)</td>
<td>38(3)</td>
<td>31(3)</td>
<td>3(3)</td>
<td>-1(3)</td>
<td>0(3)</td>
</tr>
<tr>
<td>O(1')</td>
<td>27(1)</td>
<td>48(2)</td>
<td>23(1)</td>
<td>5(1)</td>
<td>-2(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>O(2')</td>
<td>30(1)</td>
<td>81(2)</td>
<td>28(2)</td>
<td>11(1)</td>
<td>2(1)</td>
<td>-12(1)</td>
</tr>
<tr>
<td>O(3')</td>
<td>21(1)</td>
<td>31(1)</td>
<td>22(1)</td>
<td>-2(1)</td>
<td>-1(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(4')</td>
<td>22(1)</td>
<td>30(1)</td>
<td>25(1)</td>
<td>-1(1)</td>
<td>-1(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(5')</td>
<td>30(1)</td>
<td>42(2)</td>
<td>24(1)</td>
<td>2(1)</td>
<td>1(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>O(6')</td>
<td>26(1)</td>
<td>64(2)</td>
<td>26(1)</td>
<td>6(1)</td>
<td>-2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(7')</td>
<td>22(1)</td>
<td>27(1)</td>
<td>26(1)</td>
<td>4(1)</td>
<td>-3(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(8')</td>
<td>24(1)</td>
<td>42(2)</td>
<td>30(1)</td>
<td>5(1)</td>
<td>-1(1)</td>
<td>-12(1)</td>
</tr>
<tr>
<td>O(9')</td>
<td>26(1)</td>
<td>35(1)</td>
<td>44(2)</td>
<td>-7(1)</td>
<td>-1(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>O(10')</td>
<td>23(1)</td>
<td>32(1)</td>
<td>37(1)</td>
<td>-6(1)</td>
<td>1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(11')</td>
<td>28(1)</td>
<td>26(1)</td>
<td>41(2)</td>
<td>-9(1)</td>
<td>6(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>O(12')</td>
<td>26(1)</td>
<td>28(1)</td>
<td>38(1)</td>
<td>-6(1)</td>
<td>0(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(13')</td>
<td>80(2)</td>
<td>66(2)</td>
<td>36(2)</td>
<td>-11(2)</td>
<td>5(2)</td>
<td>-11(2)</td>
</tr>
<tr>
<td>C(1')</td>
<td>28(2)</td>
<td>39(2)</td>
<td>30(2)</td>
<td>1(2)</td>
<td>3(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>C(2')</td>
<td>26(2)</td>
<td>25(2)</td>
<td>31(2)</td>
<td>-6(2)</td>
<td>-2(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(3')</td>
<td>24(2)</td>
<td>33(2)</td>
<td>31(2)</td>
<td>-3(2)</td>
<td>-2(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(4')</td>
<td>29(2)</td>
<td>29(2)</td>
<td>24(2)</td>
<td>-3(2)</td>
<td>1(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(5')</td>
<td>24(2)</td>
<td>29(2)</td>
<td>25(2)</td>
<td>0(2)</td>
<td>0(1)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(6')</td>
<td>22(2)</td>
<td>24(2)</td>
<td>26(2)</td>
<td>-5(2)</td>
<td>0(2)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(7')</td>
<td>26(2)</td>
<td>40(2)</td>
<td>26(2)</td>
<td>0(2)</td>
<td>1(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(8')</td>
<td>23(2)</td>
<td>41(2)</td>
<td>33(2)</td>
<td>-2(2)</td>
<td>4(2)</td>
<td>-9(2)</td>
</tr>
<tr>
<td>C(9')</td>
<td>26(2)</td>
<td>25(2)</td>
<td>31(2)</td>
<td>-5(2)</td>
<td>1(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(10')</td>
<td>26(2)</td>
<td>42(3)</td>
<td>30(2)</td>
<td>1(2)</td>
<td>-4(2)</td>
<td>-14(2)</td>
</tr>
<tr>
<td>C(11')</td>
<td>26(2)</td>
<td>51(3)</td>
<td>35(2)</td>
<td>-2(2)</td>
<td>-3(2)</td>
<td>-12(2)</td>
</tr>
<tr>
<td>C(12')</td>
<td>18(2)</td>
<td>28(2)</td>
<td>32(2)</td>
<td>-6(2)</td>
<td>2(2)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>C(13')</td>
<td>18(2)</td>
<td>31(2)</td>
<td>30(2)</td>
<td>-6(2)</td>
<td>1(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(14')</td>
<td>27(2)</td>
<td>26(2)</td>
<td>24(2)</td>
<td>-5(2)</td>
<td>5(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(15')</td>
<td>20(2)</td>
<td>28(2)</td>
<td>24(2)</td>
<td>-3(2)</td>
<td>2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(16')</td>
<td>18(2)</td>
<td>28(2)</td>
<td>26(2)</td>
<td>-3(2)</td>
<td>-3(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(17')</td>
<td>24(2)</td>
<td>38(2)</td>
<td>30(2)</td>
<td>-4(2)</td>
<td>-2(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(18')</td>
<td>20(2)</td>
<td>57(3)</td>
<td>28(2)</td>
<td>0(2)</td>
<td>-3(2)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(19')</td>
<td>24(2)</td>
<td>50(2)</td>
<td>32(2)</td>
<td>-3(2)</td>
<td>0(2)</td>
<td>-11(2)</td>
</tr>
<tr>
<td>C(20')</td>
<td>29(2)</td>
<td>78(4)</td>
<td>34(3)</td>
<td>8(3)</td>
<td>-4(2)</td>
<td>-23(2)</td>
</tr>
<tr>
<td>C(21')</td>
<td>36(2)</td>
<td>29(2)</td>
<td>49(3)</td>
<td>-7(2)</td>
<td>9(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(22')</td>
<td>35(2)</td>
<td>29(2)</td>
<td>29(2)</td>
<td>-6(2)</td>
<td>5(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>C(23')</td>
<td>38(2)</td>
<td>26(2)</td>
<td>28(2)</td>
<td>-5(2)</td>
<td>-1(2)</td>
<td>-9(2)</td>
</tr>
<tr>
<td>C(24')</td>
<td>33(2)</td>
<td>29(2)</td>
<td>22(2)</td>
<td>1(2)</td>
<td>-5(2)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(25')</td>
<td>29(2)</td>
<td>23(2)</td>
<td>20(2)</td>
<td>-1(1)</td>
<td>-1(1)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(26')</td>
<td>31(2)</td>
<td>27(2)</td>
<td>24(2)</td>
<td>-2(2)</td>
<td>0(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(27')</td>
<td>31(2)</td>
<td>30(2)</td>
<td>19(2)</td>
<td>-2(1)</td>
<td>0(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(28')</td>
<td>35(2)</td>
<td>23(2)</td>
<td>30(2)</td>
<td>-6(2)</td>
<td>1(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(29')</td>
<td>32(2)</td>
<td>26(2)</td>
<td>24(2)</td>
<td>-2(2)</td>
<td>-4(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>C(30')</td>
<td>38(2)</td>
<td>42(3)</td>
<td>52(3)</td>
<td>-14(2)</td>
<td>-3(2)</td>
<td>-16(2)</td>
</tr>
<tr>
<td>C(31')</td>
<td>158(6)</td>
<td>108(5)</td>
<td>63(4)</td>
<td>-37(4)</td>
<td>15(4)</td>
<td>-29(4)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>27(1)</td>
<td>35(1)</td>
<td>29(1)</td>
<td>-4(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>25(1)</td>
<td>37(1)</td>
<td>40(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>Cl(3)</td>
<td>26(1)</td>
<td>33(1)</td>
<td>27(1)</td>
<td>-4(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>Cl(4)</td>
<td>26(1)</td>
<td>35(1)</td>
<td>29(1)</td>
<td>-4(1)</td>
<td>0(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>O(14)</td>
<td>43(2)</td>
<td>59(2)</td>
<td>29(1)</td>
<td>4(1)</td>
<td>-1(1)</td>
<td>-14(1)</td>
</tr>
<tr>
<td>O(15)</td>
<td>107(3)</td>
<td>36(2)</td>
<td>37(2)</td>
<td>-3(1)</td>
<td>5(2)</td>
<td>11(2)</td>
</tr>
<tr>
<td>O(16)</td>
<td>27(1)</td>
<td>73(2)</td>
<td>53(2)</td>
<td>-24(2)</td>
<td>5(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>O(17)</td>
<td>41(2)</td>
<td>75(2)</td>
<td>71(2)</td>
<td>-26(2)</td>
<td>-8(2)</td>
<td>-19(2)</td>
</tr>
<tr>
<td>O(18)</td>
<td>52(2)</td>
<td>205(5)</td>
<td>76(3)</td>
<td>84(3)</td>
<td>-13(2)</td>
<td>-21(3)</td>
</tr>
<tr>
<td>O(19)</td>
<td>56(2)</td>
<td>71(2)</td>
<td>121(3)</td>
<td>-53(2)</td>
<td>0(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>O(20)</td>
<td>32(2)</td>
<td>47(2)</td>
<td>151(3)</td>
<td>-35(2)</td>
<td>-16(2)</td>
<td>-12(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 8.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(13A)</td>
<td>2155</td>
<td>5004</td>
<td>1551</td>
<td>72</td>
</tr>
<tr>
<td>H(31A)</td>
<td>2085</td>
<td>5747</td>
<td>2402</td>
<td>148</td>
</tr>
<tr>
<td>H(31B)</td>
<td>2864</td>
<td>4938</td>
<td>2861</td>
<td>148</td>
</tr>
<tr>
<td>H(31C)</td>
<td>1677</td>
<td>5002</td>
<td>2948</td>
<td>148</td>
</tr>
<tr>
<td>H(13B)</td>
<td>2060</td>
<td>9013</td>
<td>2665</td>
<td>74</td>
</tr>
<tr>
<td>H(31D)</td>
<td>1650</td>
<td>9527</td>
<td>3694</td>
<td>162</td>
</tr>
<tr>
<td>H(31E)</td>
<td>2402</td>
<td>8671</td>
<td>4117</td>
<td>162</td>
</tr>
<tr>
<td>H(31F)</td>
<td>1251</td>
<td>8662</td>
<td>3999</td>
<td>162</td>
</tr>
<tr>
<td>H(1A)</td>
<td>4790(30)</td>
<td>4910(30)</td>
<td>-1380(20)</td>
<td>55(13)</td>
</tr>
<tr>
<td>H(1B)</td>
<td>5690(20)</td>
<td>4349(19)</td>
<td>-884(17)</td>
<td>25(9)</td>
</tr>
<tr>
<td>H(1C)</td>
<td>5270(30)</td>
<td>4050(20)</td>
<td>-1540(20)</td>
<td>47(12)</td>
</tr>
<tr>
<td>H(1D)</td>
<td>-140(30)</td>
<td>5910(30)</td>
<td>6440(20)</td>
<td>61(14)</td>
</tr>
<tr>
<td>H(1E)</td>
<td>340(30)</td>
<td>4970(30)</td>
<td>6320(20)</td>
<td>53(12)</td>
</tr>
<tr>
<td>H(1F)</td>
<td>-570(30)</td>
<td>5680(20)</td>
<td>5760(20)</td>
<td>48(11)</td>
</tr>
<tr>
<td>H(3)</td>
<td>4980(20)</td>
<td>3750(20)</td>
<td>286(17)</td>
<td>23(9)</td>
</tr>
<tr>
<td>H(8)</td>
<td>340(30)</td>
<td>3600(20)</td>
<td>190(20)</td>
<td>45(12)</td>
</tr>
<tr>
<td>H(8')</td>
<td>4920(30)</td>
<td>6350(20)</td>
<td>4797(17)</td>
<td>29(9)</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>H(10A)</td>
<td>-310(30)</td>
<td>3890(30)</td>
<td>-1050(20)</td>
<td>54(13)</td>
</tr>
<tr>
<td>H(10B)</td>
<td>-70(20)</td>
<td>4770(20)</td>
<td>-1390(17)</td>
<td>25(9)</td>
</tr>
<tr>
<td>H(10C)</td>
<td>460(30)</td>
<td>3840(20)</td>
<td>-1690(20)</td>
<td>59(12)</td>
</tr>
<tr>
<td>H(10D)</td>
<td>4810(30)</td>
<td>5850(20)</td>
<td>6720(20)</td>
<td>42(11)</td>
</tr>
<tr>
<td>H(10E)</td>
<td>5570(30)</td>
<td>5800(20)</td>
<td>6082(17)</td>
<td>27(9)</td>
</tr>
<tr>
<td>H(10F)</td>
<td>5200(20)</td>
<td>4970(20)</td>
<td>6400(17)</td>
<td>29(9)</td>
</tr>
<tr>
<td>H(11A)</td>
<td>5630(20)</td>
<td>720(20)</td>
<td>5230(16)</td>
<td>20(8)</td>
</tr>
<tr>
<td>H(11B)</td>
<td>5270(20)</td>
<td>1580(20)</td>
<td>5530(20)</td>
<td>34(10)</td>
</tr>
<tr>
<td>H(11C)</td>
<td>6030(30)</td>
<td>1550(20)</td>
<td>4889(18)</td>
<td>37(10)</td>
</tr>
<tr>
<td>H(11D)</td>
<td>-920(30)</td>
<td>8560(30)</td>
<td>90(20)</td>
<td>53(13)</td>
</tr>
<tr>
<td>H(11E)</td>
<td>-530(30)</td>
<td>9330(30)</td>
<td>-270(20)</td>
<td>72(15)</td>
</tr>
<tr>
<td>H(11F)</td>
<td>-170(30)</td>
<td>8460(30)</td>
<td>-500(20)</td>
<td>59(13)</td>
</tr>
<tr>
<td>H(13)</td>
<td>5180(30)</td>
<td>2330(20)</td>
<td>3713(19)</td>
<td>41(10)</td>
</tr>
<tr>
<td>H(13')</td>
<td>-140(30)</td>
<td>7900(20)</td>
<td>1297(19)</td>
<td>39(10)</td>
</tr>
<tr>
<td>H(18)</td>
<td>450(30)</td>
<td>2090(20)</td>
<td>3680(20)</td>
<td>48(11)</td>
</tr>
<tr>
<td>H(18')</td>
<td>4700(30)</td>
<td>7970(20)</td>
<td>1254(19)</td>
<td>38(10)</td>
</tr>
<tr>
<td>H(20A)</td>
<td>510(30)</td>
<td>1200(30)</td>
<td>5400(20)</td>
<td>49(14)</td>
</tr>
<tr>
<td>H(20B)</td>
<td>940(40)</td>
<td>370(30)</td>
<td>5110(30)</td>
<td>87(18)</td>
</tr>
<tr>
<td>H(20C)</td>
<td>-30(30)</td>
<td>1070(20)</td>
<td>4780(20)</td>
<td>54(12)</td>
</tr>
<tr>
<td>H(20D)</td>
<td>4600(30)</td>
<td>8630(30)</td>
<td>-540(30)</td>
<td>68(16)</td>
</tr>
<tr>
<td>H(20E)</td>
<td>5230(30)</td>
<td>8830(20)</td>
<td>45(19)</td>
<td>45(11)</td>
</tr>
<tr>
<td>H(20F)</td>
<td>4340(30)</td>
<td>9520(30)</td>
<td>-280(30)</td>
<td>78(17)</td>
</tr>
<tr>
<td>H(21A)</td>
<td>9540(30)</td>
<td>3900(30)</td>
<td>1710(20)</td>
<td>54(15)</td>
</tr>
<tr>
<td>H(21B)</td>
<td>9710(30)</td>
<td>3510(20)</td>
<td>2448(19)</td>
<td>35(10)</td>
</tr>
<tr>
<td>H(21C)</td>
<td>8950(20)</td>
<td>4400(20)</td>
<td>2271(18)</td>
<td>33(10)</td>
</tr>
<tr>
<td>H(21D)</td>
<td>-4190(30)</td>
<td>10460(20)</td>
<td>3166(19)</td>
<td>30(11)</td>
</tr>
<tr>
<td>H(21E)</td>
<td>-3430(30)</td>
<td>10670(30)</td>
<td>3660(20)</td>
<td>54(12)</td>
</tr>
<tr>
<td>H(21F)</td>
<td>-4250(30)</td>
<td>10120(20)</td>
<td>3930(20)</td>
<td>37(10)</td>
</tr>
<tr>
<td>H(23)</td>
<td>7260(20)</td>
<td>4240(20)</td>
<td>2227(16)</td>
<td>16(8)</td>
</tr>
<tr>
<td>H(23')</td>
<td>-1680(30)</td>
<td>9710(20)</td>
<td>3436(19)</td>
<td>49(11)</td>
</tr>
<tr>
<td>H(28)</td>
<td>6770(20)</td>
<td>410(20)</td>
<td>1731(16)</td>
<td>24(9)</td>
</tr>
<tr>
<td>H(28')</td>
<td>-2020(20)</td>
<td>5910(20)</td>
<td>2773(18)</td>
<td>28(10)</td>
</tr>
<tr>
<td>H(30A)</td>
<td>9250(30)</td>
<td>-330(20)</td>
<td>1940(20)</td>
<td>54(13)</td>
</tr>
<tr>
<td>H(30B)</td>
<td>9080(30)</td>
<td>-40(30)</td>
<td>1090(30)</td>
<td>66(14)</td>
</tr>
<tr>
<td>H(30C)</td>
<td>8430(30)</td>
<td>-550(30)</td>
<td>1550(20)</td>
<td>49(12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>H(30D)</td>
<td>-4540(40)</td>
<td>6250(30)</td>
<td>3280(30)</td>
<td>86(16)</td>
</tr>
<tr>
<td>H(30E)</td>
<td>-4560(40)</td>
<td>6590(30)</td>
<td>2480(30)</td>
<td>110(20)</td>
</tr>
<tr>
<td>H(30F)</td>
<td>-3780(30)</td>
<td>5720(20)</td>
<td>2709(19)</td>
<td>39(11)</td>
</tr>
</tbody>
</table>

Table 6. Torsion angles [°] for 8.

\[
\begin{align*}
O(13)-\text{Li}(1)-\text{Li}(2)-O(9) & 11.5(5) \\
O(2)-\text{Li}(1)-\text{Li}(2)-O(9) & 121.6(5) \\
O(6)-\text{Li}(1)-\text{Li}(2)-O(9) & -113.6(5) \\
O(5)-\text{Li}(1)-\text{Li}(2)-O(9) & -91.5(5) \\
O(1)-\text{Li}(1)-\text{Li}(2)-O(9) & 98.5(5) \\
O(13)-\text{Li}(1)-\text{Li}(2)-O(10) & -172.0(3) \\
O(2)-\text{Li}(1)-\text{Li}(2)-O(10) & -61.9(5) \\
O(6)-\text{Li}(1)-\text{Li}(2)-O(10) & 62.9(5) \\
O(5)-\text{Li}(1)-\text{Li}(2)-O(10) & 85.0(4) \\
O(1)-\text{Li}(1)-\text{Li}(2)-O(10) & -84.9(4) \\
O(13)-\text{Li}(1)-\text{Li}(2)-O(1) & -87.1(3) \\
O(2)-\text{Li}(1)-\text{Li}(2)-O(1) & 23.0(3) \\
O(6)-\text{Li}(1)-\text{Li}(2)-O(1) & 147.9(4) \\
O(5)-\text{Li}(1)-\text{Li}(2)-O(1) & 169.9(4) \\
O(13)-\text{Li}(1)-\text{Li}(2)-O(5) & 103.0(3) \\
O(2)-\text{Li}(1)-\text{Li}(2)-O(5) & -146.9(4) \\
O(6)-\text{Li}(1)-\text{Li}(2)-O(5) & -22.1(3) \\
O(1)-\text{Li}(1)-\text{Li}(2)-O(5) & -169.9(4) \\
O(9)-\text{Li}(2)-O(1)-C(4) & 48.3(6) \\
O(10)-\text{Li}(2)-O(1)-C(4) & -66.2(5) \\
O(5)-\text{Li}(2)-O(1)-C(4) & -179.6(4) \\
\text{Li}(1)-\text{Li}(2)-O(1)-C(4) & 173.2(5) \\
O(9)-\text{Li}(2)-O(1)-\text{Li}(1) & -124.9(4) \\
O(10)-\text{Li}(2)-O(1)-\text{Li}(1) & 120.6(3) \\
O(5)-\text{Li}(2)-O(1)-\text{Li}(1) & 7.2(3) \\
O(13)-\text{Li}(1)-O(1)-C(4) & -77.0(4) \\
O(2)-\text{Li}(1)-O(1)-C(4) & 24.4(4) \\
O(6)-\text{Li}(1)-O(1)-C(4) & 114.6(7) \\
O(5)-\text{Li}(1)-O(1)-C(4) & 178.8(3)
\end{align*}
\]
Li(2)-Li(1)-O(1)-C(4) -174.5(4)
O(13)-Li(1)-O(1)-Li(2) 97.5(3)
O(2)-Li(1)-O(1)-Li(2) -161.1(3)
O(6)-Li(1)-O(1)-Li(2) -70.9(7)
O(5)-Li(1)-O(1)-Li(2) -6.7(3)
O(13)-Li(1)-O(2)-C(7) 70.9(5)
O(6)-Li(1)-O(2)-C(7) -175.2(4)
O(5)-Li(1)-O(2)-C(7) -86.5(8)
O(1)-Li(1)-O(2)-C(7) -37.5(6)
O(9)-Li(2)-O(5)-C(14) -69.6(5)
O(10)-Li(2)-O(5)-C(14) 42.6(5)
O(1)-Li(2)-O(5)-C(14) 155.7(3)
Li(1)-Li(2)-O(5)-C(14) 162.9(4)
O(9)-Li(2)-O(5)-Li(1) 127.5(4)
O(10)-Li(2)-O(5)-Li(1) -120.4(3)
O(1)-Li(2)-O(5)-Li(1) -7.3(3)
O(13)-Li(1)-O(5)-C(14) 110.4(3)
O(2)-Li(1)-O(5)-C(14) -92.5(7)
O(6)-Li(1)-O(5)-C(14) -2.0(4)
O(1)-Li(1)-O(5)-C(14) -157.4(3)
Li(2)-Li(1)-O(5)-C(14) -164.1(4)
O(13)-Li(1)-O(5)-Li(2) -85.6(3)
O(2)-Li(1)-O(5)-Li(2) 71.5(7)
O(6)-Li(1)-O(5)-Li(2) 162.1(3)
O(1)-Li(1)-O(5)-Li(2) 6.6(3)
O(13)-Li(1)-O(6)-C(17) -109.4(4)
O(2)-Li(1)-O(6)-C(17) 146.4(3)
O(5)-Li(1)-O(6)-C(17) -5.1(5)
O(1)-Li(1)-O(6)-C(17) 58.1(9)
Li(2)-Li(1)-O(6)-C(17) 9.3(6)
O(10)-Li(2)-O(9)-C(24) 5.1(4)
O(1)-Li(2)-O(9)-C(24) -116.1(4)
O(5)-Li(2)-O(9)-C(24) 124.9(4)
Li(1)-Li(2)-O(9)-C(24) -177.7(3)
O(9)-Li(2)-O(10)-C(27) -5.9(4)
O(1)-Li(2)-O(10)-C(27) 126.2(3)
O(5)-Li(2)-O(10)-C(27) -133.8(3)
Li(1)-Li(2)-O(10)-C(27) 176.4(3)
O(2)-Li(1)-O(13)-C(31) 146.1(5)
O(6)-Li(1)-O(13)-C(31) 47.2(6)
O(5)-Li(1)-O(13)-C(31) -44.8(6)
O(1)-Li(1)-O(13)-C(31) -127.1(5)
Li(2)-Li(1)-O(13)-C(31) -86.3(5)
C(6)-O(3)-C(2)-C(3) 1.0(4)
C(6)-O(3)-C(2)-C(1) -178.0(3)
O(3)-C(2)-C(3)-C(4) -3.2(5)
C(1)-C(2)-C(3)-C(4) 175.7(4)
Li(2)-O(1)-C(4)-C(3) -10.1(6)
Li(1)-O(1)-C(4)-C(3) 161.4(3)
C(2)-C(3)-C(4)-C(5) -176.3(3)
O(1)-C(4)-C(5)-C(6) 178.4(3)
C(3)-C(4)-C(5)-C(6) -1.0(5)
O(1)-C(4)-C(5)-C(7) -0.2(6)
C(3)-C(4)-C(5)-C(7) 179.7(3)
C(9)-O(4)-C(6)-O(3) 179.1(2)
C(9)-O(4)-C(6)-C(5) -1.1(5)
C(4)-C(5)-C(6)-O(4) 179.1(3)
C(4)-C(5)-C(6)-C(7) -1.1(5)
C(7)-C(5)-C(6)-O(4) 177.7(3)
Li(1)-O(2)-C(7)-C(8) -165.2(4)
Li(1)-O(2)-C(7)-C(5) 14.3(7)
C(6)-C(5)-C(7)-O(2) -175.3(4)
C(4)-C(5)-C(7)-O(2) 3.3(6)
C(6)-C(5)-C(7)-C(8) 4.3(5)
C(4)-C(5)-C(7)-C(8) -177.1(3)
O(2)-C(7)-C(8)-C(9) \quad 175.9(4)
C(5)-C(7)-C(8)-C(9) \quad -3.6(6)
C(7)-C(8)-C(9)-O(4) \quad 0.6(6)
C(7)-C(8)-C(9)-C(10) \quad -177.8(4)
C(6)-O(4)-C(9)-C(8) \quad 1.9(5)
C(6)-O(4)-C(9)-C(10) \quad -179.5(3)
C(16)-O(7)-C(12)-C(13) \quad -8.3(4)
C(16)-O(7)-C(12)-C(11) \quad 170.9(3)
O(7)-C(12)-C(13)-C(14) \quad 3.6(5)
C(11)-C(12)-C(13)-C(14) \quad -175.4(3)
Li(2)-O(5)-C(14)-C(15) \quad -149.8(3)
Li(1)-O(5)-C(14)-C(15) \quad 7.7(5)
Li(2)-O(5)-C(14)-C(13) \quad 29.8(5)
Li(1)-O(5)-C(14)-C(13) \quad -172.7(3)
C(12)-C(13)-C(14)-O(5) \quad -177.1(3)
C(12)-C(13)-C(14)-C(15) \quad 2.6(5)
O(5)-C(14)-C(15)-O(7) \quad -177.1(3)
C(14)-C(15)-C(16)-O(8) \quad -179.4(3)
C(17)-C(15)-C(16)-O(8) \quad 3.8(5)
C(17)-C(15)-C(16)-O(7) \quad -177.4(3)
O(6)-C(17)-C(18)-C(19) \quad -174.8(4)
C(16)-C(15)-C(17)-C(18) \quad 5.9(6)
C(16)-C(15)-C(17)-O(6) \quad 177.6(3)
C(14)-C(15)-C(17)-O(6) \quad 1.1(5)
C(16)-C(15)-C(17)-C(18) \quad -1.7(5)
C(14)-C(15)-C(17)-C(18) \quad -178.3(3)
O(6)-C(17)-C(18)-C(19) \quad -179.5(4)
C(15)-C(17)-C(18)-C(19) \quad -0.2(5)
C(17)-C(18)-C(19)-O(8) 0.4(6)
C(17)-C(18)-C(19)-C(20) -179.9(5)
C(16)-O(8)-C(19)-C(18) 1.4(5)
C(16)-O(8)-C(19)-C(20) -178.4(4)
C(26)-O(11)-C(22)-C(23) -1.4(4)
C(26)-O(11)-C(22)-C(21) 178.6(3)
O(11)-C(22)-C(23)-C(24) 0.0(5)
C(21)-C(22)-C(23)-C(24) -180.0(4)
Li(2)-O(9)-C(24)-C(23) 178.5(3)
Li(2)-O(9)-C(24)-C(25) -1.2(5)
C(22)-C(23)-C(24)-O(9) -178.5(3)
C(22)-C(23)-C(24)-O(9) 1.2(5)
O(9)-C(24)-C(25)-C(26) 178.6(3)
C(23)-C(24)-C(25)-C(26) -1.1(4)
O(9)-C(24)-C(25)-C(27) -4.2(5)
C(23)-C(24)-C(25)-C(27) 176.1(3)
C(22)-O(11)-C(26)-O(12) -178.3(2)
C(22)-O(11)-C(26)-C(25) 1.5(4)
C(29)-O(12)-C(26)-O(11) 175.7(2)
C(29)-O(12)-C(26)-C(25) -4.1(5)
C(24)-C(25)-C(26)-O(11) -0.2(5)
C(27)-C(25)-C(26)-O(11) -177.6(3)
C(24)-C(25)-C(26)-O(12) 179.6(3)
C(27)-C(25)-C(26)-O(12) 2.2(5)
Li(2)-O(10)-C(27)-C(28) -177.7(3)
Li(2)-O(10)-C(27)-C(25) 2.8(5)
C(26)-C(25)-C(27)-O(10) -179.5(3)
C(24)-C(25)-C(27)-O(10) 3.3(5)
C(26)-C(25)-C(27)-C(28) 0.9(4)
C(24)-C(25)-C(27)-C(28) -176.3(3)
O(10)-C(27)-C(28)-C(29) 178.4(3)
C(25)-C(27)-C(28)-C(29) -2.0(5)
C(27)-C(28)-C(29)-O(12) 0.2(5)
C(27)-C(28)-C(29)-C(30) 179.7(4)
C(26)-O(12)-C(29)-C(28) 2.8(4)
C(26)-O(12)-C(29)-C(30) -176.8(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(13')-Li(1')-Li(2')-O(9')</td>
<td>-7.2(3)</td>
</tr>
<tr>
<td>O(2')-Li(1')-Li(2')-O(9')</td>
<td>103.6(4)</td>
</tr>
<tr>
<td>O(6')-Li(1')-Li(2')-O(9')</td>
<td>-111.1(4)</td>
</tr>
<tr>
<td>O(1')-Li(1')-Li(2')-O(9')</td>
<td>100.9(3)</td>
</tr>
<tr>
<td>O(5')-Li(1')-Li(2')-O(9')</td>
<td>-101.7(3)</td>
</tr>
<tr>
<td>O(13')-Li(1')-Li(2')-O(10')</td>
<td>170.9(6)</td>
</tr>
<tr>
<td>O(2')-Li(1')-Li(2')-O(10')</td>
<td>-78.2(8)</td>
</tr>
<tr>
<td>O(6')-Li(1')-Li(2')-O(10')</td>
<td>67.0(8)</td>
</tr>
<tr>
<td>O(1')-Li(1')-Li(2')-O(10')</td>
<td>-81.0(6)</td>
</tr>
<tr>
<td>O(5')-Li(1')-Li(2')-O(10')</td>
<td>76.5(6)</td>
</tr>
<tr>
<td>O(13')-Li(1')-Li(2')-O(5')</td>
<td>94.4(3)</td>
</tr>
<tr>
<td>O(2')-Li(1')-Li(2')-O(5')</td>
<td>-154.7(5)</td>
</tr>
<tr>
<td>O(6')-Li(1')-Li(2')-O(5')</td>
<td>-9.5(3)</td>
</tr>
<tr>
<td>O(1')-Li(1')-Li(2')-O(5')</td>
<td>-157.4(4)</td>
</tr>
<tr>
<td>O(13')-Li(1')-Li(2')-O(1')</td>
<td>-108.1(3)</td>
</tr>
<tr>
<td>O(2')-Li(1')-Li(2')-O(1')</td>
<td>2.7(4)</td>
</tr>
<tr>
<td>O(6')-Li(1')-Li(2')-O(1')</td>
<td>148.0(5)</td>
</tr>
<tr>
<td>O(5')-Li(1')-Li(2')-O(1')</td>
<td>157.4(4)</td>
</tr>
<tr>
<td>O(9')-Li(2')-O(1')-C(4')</td>
<td>68.7(5)</td>
</tr>
<tr>
<td>O(10')-Li(2')-O(1')-C(4')</td>
<td>-46.6(6)</td>
</tr>
<tr>
<td>O(5')-Li(2')-O(1')-C(4')</td>
<td>-175.4(3)</td>
</tr>
<tr>
<td>Li(1')-Li(2')-O(1')-C(4')</td>
<td>168.3(5)</td>
</tr>
<tr>
<td>O(9')-Li(2')-O(1')-Li(1')</td>
<td>-99.6(3)</td>
</tr>
<tr>
<td>O(10')-Li(2')-O(1')-Li(1')</td>
<td>145.1(4)</td>
</tr>
<tr>
<td>O(5')-Li(2')-O(1')-Li(1')</td>
<td>16.3(3)</td>
</tr>
<tr>
<td>O(13')-Li(1')-O(1')-C(4')</td>
<td>-93.5(4)</td>
</tr>
<tr>
<td>O(2')-Li(1')-O(1')-C(4')</td>
<td>12.5(5)</td>
</tr>
<tr>
<td>O(6')-Li(1')-O(1')-C(4')</td>
<td>114.9(7)</td>
</tr>
<tr>
<td>O(5')-Li(1')-O(1')-C(4')</td>
<td>175.5(3)</td>
</tr>
<tr>
<td>Li(2')-Li(1')-O(1')-C(4')</td>
<td>-169.6(4)</td>
</tr>
<tr>
<td>O(13')-Li(1')-O(1')-Li(2')</td>
<td>76.1(3)</td>
</tr>
<tr>
<td>O(2')-Li(1')-O(1')-Li(2')</td>
<td>-177.9(3)</td>
</tr>
<tr>
<td>O(6')-Li(1')-O(1')-Li(2')</td>
<td>-75.4(8)</td>
</tr>
<tr>
<td>O(5')-Li(1')-O(1')-Li(2')</td>
<td>-14.9(3)</td>
</tr>
<tr>
<td>O(13')-Li(1')-O(2')-C(7')</td>
<td>87.1(5)</td>
</tr>
<tr>
<td>O(6')-Li(1')-O(2')-C(7')</td>
<td>-168.8(4)</td>
</tr>
</tbody>
</table>
O(1')-Li(1')-O(2')-C(7') -14.4(5)
O(5')-Li(1')-O(2')-C(7') -69.4(11)
Li(2')-Li(1')-O(2')-C(7') -16.2(7)
O(9')-Li(2')-O(5')-C(14') -52.6(6)
O(10')-Li(2')-O(5')-C(14') 60.5(6)
O(1')-Li(2')-O(5')-C(14') -168.3(3)
Li(1')-Li(2')-O(5')-C(14') -152.4(5)
O(9')-Li(2')-O(5')-Li(1') 99.8(3)
O(10')-Li(2')-O(5')-Li(1') -147.1(4)
O(1')-Li(2')-O(5')-Li(1') -15.9(3)
O(13')-Li(1')-O(5')-C(14') 71.0(4)
O(2')-Li(1')-O(5')-C(14') -131.5(9)
O(6')-Li(1')-O(5')-C(14') -30.0(4)
O(1')-Li(1')-O(5')-C(14') 172.4(3)
Li(2')-Li(1')-O(6')-C(17') 41.5(6)
O(10')-Li(2')-O(9')-C(24') 0.2(4)
O(5')-Li(2')-O(9')-C(24') -122.6(4)
O(1')-Li(2')-O(9')-C(24') 122.9(4)
Li(1')-Li(2')-O(9')-C(24') -178.8(5)
O(2')-Li(1')-O(13')-C(31') -47.6(5)
O(6')-Li(1')-O(13')-C(31') -149.2(4)
O(1')-Li(1')-O(13')-C(31') 43.1(5)
O(5')-Li(1')-O(13')-C(31') 124.3(4)
\begin{align*}
L(2')-L(1')-O(13')-C(31') & \quad 83.0(4) \\
C(6')-O(3')-C(2')-C(3') & \quad -2.2(4) \\
C(6')-O(3')-C(2')-C(1') & \quad 178.6(3) \\
O(3')-C(2')-C(3')-C(4') & \quad 2.6(5) \\
C(1')-C(2')-C(3')-C(4') & \quad -178.4(3) \\
L(2')-O(1')-C(4')-C(3') & \quad 6.8(6) \\
L(1')-O(1')-C(4')-C(3') & \quad 171.6(3) \\
L(2')-O(1')-C(4')-C(5') & \quad -172.5(4) \\
L(1')-O(1')-C(4')-C(5') & \quad -7.7(5) \\
C(2')-C(3')-C(4')-O(1') & \quad 178.8(3) \\
C(2')-C(3')-C(4')-C(5') & \quad -1.8(5) \\
O(1')-C(4')-C(5')-C(6') & \quad -180.0(3) \\
C(3')-C(4')-C(5')-C(6') & \quad 0.7(5) \\
O(1')-C(4')-C(5')-C(7') & \quad -1.3(5) \\
C(3')-C(4')-C(5')-C(7') & \quad 179.3(3) \\
C(2')-O(3')-C(6')-O(4') & \quad -179.1(2) \\
C(2')-O(3')-C(6')-C(5') & \quad 1.1(5) \\
C(9')-O(4')-C(6')-O(3') & \quad 178.5(2) \\
C(9')-O(4')-C(6')-C(5') & \quad -1.7(5) \\
C(4')-C(5')-C(6')-O(3') & \quad -0.4(5) \\
C(7')-C(5')-C(6')-O(3') & \quad -179.2(3) \\
C(4')-C(5')-C(6')-O(4') & \quad 179.8(3) \\
C(7')-C(5')-C(6')-O(4') & \quad 1.1(5) \\
L(1')-O(2')-C(7')-C(8') & \quad -170.3(4) \\
L(1')-O(2')-C(7')-C(5') & \quad 11.2(6) \\
C(6')-C(5')-C(7')-O(2') & \quad 178.6(3) \\
C(4')-C(5')-C(7')-O(2') & \quad 0.0(6) \\
C(6')-C(5')-C(7')-C(8') & \quad 0.0(5) \\
C(4')-C(5')-C(7')-C(8') & \quad -178.6(3) \\
O(2')-C(7')-C(8')-C(9') & \quad -179.1(4) \\
C(5')-C(7')-C(8')-C(9') & \quad -0.5(5) \\
C(7')-C(8')-C(9')-O(4') & \quad -0.1(5) \\
C(7')-C(8')-C(9')-C(10') & \quad 178.9(4) \\
C(6')-O(4')-C(9')-C(8') & \quad 1.1(5) \\
C(6')-O(4')-C(9')-C(10') & \quad -178.0(3) \\
C(16')-O(7')-C(12')-C(13') & \quad 6.6(4)
\end{align*}
C(16')-O(7')-C(12')-C(11') -172.6(3)
O(7')-C(12')-C(13')-C(14') -1.6(5)
C(11')-C(12')-C(13')-C(14') 177.3(4)
Li(2')-O(5')-C(14')-C(13') -19.5(6)
Li(1')-O(5')-C(14')-C(13') -165.0(3)
Li(2')-O(5')-C(14')-C(15') 161.3(4)
Li(1')-O(5')-C(14')-C(15') 15.9(5)
C(12')-C(13')-C(14')-O(5') 176.9(3)
C(12')-C(13')-C(14')-C(15') -3.9(5)
O(5')-C(14')-C(15')-C(16') -176.3(3)
C(13')-C(14')-C(15')-C(16') 4.4(4)
O(5')-C(14')-C(15')-C(17') 7.1(5)
C(13')-C(14')-C(15')-C(17') -172.2(3)
C(19')-O(8')-C(16')-O(7') -177.4(3)
C(19')-O(8')-C(16')-C(15') 2.9(5)
C(12')-O(7')-C(16')-O(8') 174.3(2)
C(12')-O(7')-C(16')-C(15') -6.0(5)
C(14')-C(15')-C(16')-O(8') -180.0(3)
C(14')-C(15')-C(16')-O(7') -3.1(5)
C(14')-C(15')-C(16')-O(7') 0.4(5)
C(17')-C(15')-C(16')-O(7') 177.3(3)
Li(1')-O(6')-C(17')-C(18') 153.3(4)
Li(1')-O(6')-C(17')-C(15') -26.2(6)
C(16')-C(15')-C(17')-O(6') -179.6(3)
C(14')-C(15')-C(17')-O(6') -3.0(6)
C(16')-C(15')-C(17')-C(18') 0.8(5)
C(14')-C(15')-C(17')-C(18') 177.4(3)
O(6')-C(17')-C(18')-C(19') -178.1(4)
C(15')-C(17')-C(18')-C(19') 1.5(5)
C(17')-C(18')-C(19')-O(8') -1.8(6)
C(17')-C(18')-C(19')-C(20') 178.7(5)
C(16')-O(8')-C(19')-C(18') -0.3(5)
C(16')-O(8')-C(19')-C(20') 179.2(4)
C(26')-O(11')-C(22')-C(23') -1.2(5)
C(26')-O(11')-C(22')-C(21') 178.8(3)
O(11')-C(22')-C(23')-C(24') -1.0(5)
C(21')-C(22')-C(23')-C(24') 179.0(4)
Li(2')-O(9')-C(24')-C(23') -178.5(3)
Li(2')-O(9')-C(24')-C(25') 0.3(5)
C(22')-C(23')-C(24')-O(9') -178.7(3)
C(22')-C(23')-C(24')-C(25') 2.5(5)
O(9')-C(24')-C(25')-C(26') 179.3(3)
C(23')-C(24')-C(25')-C(26') -1.8(4)
O(9')-C(24')-C(25')-C(27') -0.7(5)
C(23')-C(24')-C(25')-C(27') 178.1(3)
C(29')-O(12')-C(26')-C(25') 0.8(5)
C(22')-O(11')-C(26')-C(25') -177.4(3)
C(22')-O(11')-C(26')-C(25') 1.9(5)
C(24')-C(25')-C(26')-O(12') 178.8(3)
C(27')-C(25')-C(26')-O(12') -1.1(5)
C(24')-C(25')-C(26')-O(11') -0.3(5)
C(27')-C(25')-C(26')-O(11') 179.8(3)
Li(2')-O(10')-C(27')-C(28') 179.1(3)
Li(2')-O(10')-C(27')-C(25') 0.2(5)
C(26')-C(25')-C(27')-O(10') -179.6(3)
C(24')-C(25')-C(27')-O(10') 0.4(5)
C(26')-C(25')-C(27')-C(28') 1.4(4)
C(24')-C(25')-C(27')-C(28') -178.5(3)
O(10')-C(27')-C(28')-C(29') 179.3(3)
C(25')-C(27')-C(28')-C(29') -1.7(5)
C(27')-C(28')-C(29')-O(12') 1.5(5)
C(27')-C(28')-C(29')-C(30') -179.1(4)
C(26')-O(12')-C(29')-C(28') -1.0(4)
C(26')-O(12')-C(29')-C(28') 179.6(3)

Symmetry transformations used to generate equivalent atoms:
Table 7. Hydrogen bonds for 8 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(13)-H(13A)...O(14)#1</td>
<td>0.95</td>
<td>2.01</td>
<td>2.891(4)</td>
<td>153.1</td>
</tr>
<tr>
<td>O(13')-H(13B)...O(1S)</td>
<td>0.95</td>
<td>1.92</td>
<td>2.780(4)</td>
<td>150.2</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 x,y,z-1

Metal Bispyrone Complex 9 (M=Cu): IR (KBr) cm⁻¹ 1668.8, 1605.3, 1558.4, 1491.0, 1260.8, 1183.2, 1106.6, 1071.5, 1028.9, 864.6, 623.5. HRMS – calcd 545.9626 found 545.9595. mp > 250 °C.

Crystal Structure:
Table 1. Crystal data and structure refinement for 9 (M= Cu).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>9 (M= Cu)</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C20 H20 Cl2 Cu O18</td>
</tr>
<tr>
<td>Formula weight</td>
<td>682.80</td>
</tr>
</tbody>
</table>
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/n
Unit cell dimensions a = 9.9449(10) Å a= 90°.
b = 12.6414(13) Å b= 95.359(2)°.
c = 10.4593(11) Å g = 90°.
Volume 1309.2(2) Å³
Z 2
Density (calculated) 1.732 Mg/m³
Absorption coefficient 1.125 mm⁻¹
F(000) 694
Crystal size 0.32 x 0.27 x 0.16 mm³
Theta range for data collection 2.53 to 27.00°.
Index ranges -12<=h<=12, -16<=k<=16, -13<=l<=13
Reflections collected 14330
Independent reflections 2858 [R(int) = 0.0158]
Completeness to theta = 27.00° 100.0 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.8405 and 0.7148
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 2858 / 0 / 227
Goodness-of-fit on F² 1.048
Final R indices [I>2sigma(I)] R1 = 0.0238, wR2 = 0.0690
R indices (all data) R1 = 0.0251, wR2 = 0.0702
Largest diff. peak and hole 0.312 and -0.229 e.Å⁻³
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for 9 (M=Cu). U(eq) is defined as one third of the trace of the orthogonalized U^ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)</td>
<td>0</td>
<td>5000</td>
<td>5000</td>
<td>25(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>9259(1)</td>
<td>1858(1)</td>
<td>2307(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1645(1)</td>
<td>5827(1)</td>
<td>5043(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>363(1)</td>
<td>4731(1)</td>
<td>6982(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>1387(1)</td>
<td>4754(1)</td>
<td>8923(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>4500(1)</td>
<td>6568(1)</td>
<td>7947(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>1168(2)</td>
<td>3623(1)</td>
<td>4582(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>9963(1)</td>
<td>910(1)</td>
<td>2039(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>9845(1)</td>
<td>2759(1)</td>
<td>1736(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>9310(1)</td>
<td>2016(1)</td>
<td>3683(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>7848(1)</td>
<td>1775(1)</td>
<td>1837(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>5863(2)</td>
<td>7527(1)</td>
<td>6622(2)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>4607(2)</td>
<td>6902(1)</td>
<td>6717(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>3665(2)</td>
<td>6660(1)</td>
<td>5755(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2500(1)</td>
<td>6035(1)</td>
<td>5966(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2430(1)</td>
<td>5694(1)</td>
<td>7276(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>1344(2)</td>
<td>5049(1)</td>
<td>7664(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>3437(1)</td>
<td>5979(1)</td>
<td>8209(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>3424(2)</td>
<td>5662(1)</td>
<td>9503(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2408(2)</td>
<td>5047(1)</td>
<td>9824(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2241(2)</td>
<td>4596(2)</td>
<td>11102(2)</td>
<td>40(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 9 (M=Cu).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)-O(1)#1</td>
<td>1.9377(10)</td>
</tr>
<tr>
<td>Cu(1)-O(1)</td>
<td>1.9377(10)</td>
</tr>
<tr>
<td>Cu(1)-O(2)#1</td>
<td>2.0983(11)</td>
</tr>
<tr>
<td>Cu(1)-O(2)</td>
<td>2.0983(11)</td>
</tr>
<tr>
<td>Cu(1)-O(5)#1</td>
<td>2.1596(14)</td>
</tr>
<tr>
<td>Cu(1)-O(5)</td>
<td>2.1596(14)</td>
</tr>
<tr>
<td>Cl(1)-O(6)</td>
<td>1.4296(12)</td>
</tr>
<tr>
<td>Cl(1)-O(7)</td>
<td>1.4345(12)</td>
</tr>
<tr>
<td>Cl(1)-O(8)</td>
<td>1.4458(12)</td>
</tr>
<tr>
<td>Cl(1)-O(9)</td>
<td>1.4491(13)</td>
</tr>
<tr>
<td>O(1)-C(4)</td>
<td>1.2541(18)</td>
</tr>
<tr>
<td>O(2)-C(6)</td>
<td>1.2218(19)</td>
</tr>
<tr>
<td>O(3)-C(6)</td>
<td>1.2218(19)</td>
</tr>
<tr>
<td>O(3)-C(9)</td>
<td>1.365(2)</td>
</tr>
<tr>
<td>O(4)-C(7)</td>
<td>1.3424(17)</td>
</tr>
<tr>
<td>O(4)-C(2)</td>
<td>1.3674(19)</td>
</tr>
<tr>
<td>O(5)-H(5A)</td>
<td>0.78(3)</td>
</tr>
<tr>
<td>O(5)-H(5B)</td>
<td>0.76(3)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.489(2)</td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>0.98(2)</td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.95(2)</td>
</tr>
<tr>
<td>C(1)-H(1C)</td>
<td>0.93(2)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.344(2)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.436(2)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.89(2)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.445(2)</td>
</tr>
<tr>
<td>C(5)-C(7)</td>
<td>1.3793(19)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.441(2)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.413(2)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.342(2)</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.89(2)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.478(2)</td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>0.95(3)</td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>0.96(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>C(10)-H(10C)</td>
<td>1.048 (2)</td>
</tr>
<tr>
<td>O(1)#1-Cu(1)-O(1)</td>
<td>180.00 (6)</td>
</tr>
<tr>
<td>O(1)#1-Cu(1)-O(2)#1</td>
<td>89.85 (4)</td>
</tr>
<tr>
<td>O(1)-Cu(1)-O(2)#1</td>
<td>90.15 (4)</td>
</tr>
<tr>
<td>O(1)#1-Cu(1)-O(2)</td>
<td>90.15 (4)</td>
</tr>
<tr>
<td>O(1)-Cu(1)-O(2)</td>
<td>89.85 (4)</td>
</tr>
<tr>
<td>O(2)#1-Cu(1)-O(2)</td>
<td>180.00</td>
</tr>
<tr>
<td>O(1)#1-Cu(1)-O(5)#1</td>
<td>88.30 (5)</td>
</tr>
<tr>
<td>O(1)-Cu(1)-O(5)#1</td>
<td>91.70 (5)</td>
</tr>
<tr>
<td>O(2)#1-Cu(1)-O(5)#1</td>
<td>91.33 (5)</td>
</tr>
<tr>
<td>O(2)-Cu(1)-O(5)#1</td>
<td>88.67 (5)</td>
</tr>
<tr>
<td>O(1)#1-Cu(1)-O(5)</td>
<td>91.70 (5)</td>
</tr>
<tr>
<td>O(1)-Cu(1)-O(5)</td>
<td>88.30 (5)</td>
</tr>
<tr>
<td>O(2)#1-Cu(1)-O(5)</td>
<td>88.67 (5)</td>
</tr>
<tr>
<td>O(2)-Cu(1)-O(5)</td>
<td>91.33 (5)</td>
</tr>
<tr>
<td>O(5)#1-Cu(1)-O(5)</td>
<td>180.00</td>
</tr>
<tr>
<td>O(6)-Cl(1)-O(7)</td>
<td>110.99 (8)</td>
</tr>
<tr>
<td>O(6)-Cl(1)-O(9)</td>
<td>110.49 (8)</td>
</tr>
<tr>
<td>O(7)-Cl(1)-O(9)</td>
<td>109.60 (8)</td>
</tr>
<tr>
<td>O(6)-Cl(1)-O(8)</td>
<td>109.73 (8)</td>
</tr>
<tr>
<td>O(7)-Cl(1)-O(8)</td>
<td>109.06 (8)</td>
</tr>
<tr>
<td>O(9)-Cl(1)-O(8)</td>
<td>106.88 (8)</td>
</tr>
<tr>
<td>C(4)-O(1)-Cu(1)</td>
<td>129.95 (10)</td>
</tr>
<tr>
<td>C(6)-O(2)-Cu(1)</td>
<td>125.31 (10)</td>
</tr>
<tr>
<td>C(6)-O(3)-C(9)</td>
<td>122.93 (12)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)</td>
<td>119.70 (12)</td>
</tr>
<tr>
<td>Cu(1)-O(5)-H(5A)</td>
<td>109.90 (18)</td>
</tr>
<tr>
<td>Cu(1)-O(5)-H(5B)</td>
<td>112.18 (18)</td>
</tr>
<tr>
<td>H(5A)-O(5)-H(5B)</td>
<td>112 (3)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1A)</td>
<td>110.0 (12)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1B)</td>
<td>108.3 (13)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1B)</td>
<td>107.4 (18)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1C)</td>
<td>110.4 (13)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1C)</td>
<td>108.8 (17)</td>
</tr>
<tr>
<td>H(1B)-C(1)-H(1C)</td>
<td>111.9 (18)</td>
</tr>
</tbody>
</table>
C(3)-C(2)-O(4) 121.60(13)
C(3)-C(2)-C(1) 126.92(15)
O(4)-C(2)-C(1) 111.48(13)
C(2)-C(3)-C(4) 121.71(15)
C(2)-C(3)-H(3) 121.2(13)
C(4)-C(3)-H(3) 117.1(13)
O(1)-C(4)-C(3) 119.77(14)
O(1)-C(4)-C(5) 125.29(13)
C(3)-C(4)-C(5) 114.94(13)
C(7)-C(5)-C(6) 117.54(14)
C(7)-C(5)-C(4) 119.77(13)
C(6)-C(5)-C(4) 122.69(13)
O(2)-C(6)-O(3) 115.12(13)
O(2)-C(6)-C(5) 126.89(15)
O(3)-C(6)-C(5) 117.99(13)
O(4)-C(7)-C(5) 122.28(13)
O(4)-C(7)-C(8) 115.50(12)
C(5)-C(7)-C(8) 122.21(13)
C(9)-C(8)-C(7) 118.51(14)
C(9)-C(8)-H(8) 122.7(12)
C(7)-C(8)-H(8) 118.7(12)
C(8)-C(9)-O(3) 120.80(14)
C(8)-C(9)-C(10) 126.89(15)
O(3)-C(9)-C(10) 112.30(14)
C(9)-C(10)-H(10A) 107.6(14)
C(9)-C(10)-H(10B) 107.5(17)
H(10A)-C(10)-H(10B) 113(2)
C(9)-C(10)-H(10C) 110.3(13)
H(10A)-C(10)-H(10C) 107.3(19)
H(10B)-C(10)-H(10C) 111(2)

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z+1
Table 4. Anisotropic displacement parameters (Å² x 10³) for 9 (M= Cu). The anisotropic displacement factor exponent takes the form: -2\(p^2\)\[h^2a^*2U^{11} + ... + 2hk a^* b^* U^{12} \]

<table>
<thead>
<tr>
<th></th>
<th>(U^{11})</th>
<th>(U^{22})</th>
<th>(U^{33})</th>
<th>(U^{23})</th>
<th>(U^{13})</th>
<th>(U^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)</td>
<td>20(1)</td>
<td>31(1)</td>
<td>22(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>26(1)</td>
<td>26(1)</td>
<td>33(1)</td>
<td>0(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>25(1)</td>
<td>40(1)</td>
<td>29(1)</td>
<td>-2(1)</td>
<td>1(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>22(1)</td>
<td>37(1)</td>
<td>35(1)</td>
<td>-1(1)</td>
<td>-1(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>22(1)</td>
<td>33(1)</td>
<td>34(1)</td>
<td>1(1)</td>
<td>1(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>21(1)</td>
<td>29(1)</td>
<td>35(1)</td>
<td>-2(1)</td>
<td>1(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>41(1)</td>
<td>44(1)</td>
<td>39(1)</td>
<td>-3(1)</td>
<td>-12(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>44(1)</td>
<td>32(1)</td>
<td>74(1)</td>
<td>-4(1)</td>
<td>18(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>48(1)</td>
<td>33(1)</td>
<td>49(1)</td>
<td>1(1)</td>
<td>17(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>44(1)</td>
<td>53(1)</td>
<td>31(1)</td>
<td>4(1)</td>
<td>-2(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>33(1)</td>
<td>42(1)</td>
<td>52(1)</td>
<td>-3(1)</td>
<td>-11(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>26(1)</td>
<td>38(1)</td>
<td>42(1)</td>
<td>0(1)</td>
<td>4(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>23(1)</td>
<td>26(1)</td>
<td>37(1)</td>
<td>-1(1)</td>
<td>5(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>25(1)</td>
<td>33(1)</td>
<td>34(1)</td>
<td>-1(1)</td>
<td>5(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>22(1)</td>
<td>27(1)</td>
<td>33(1)</td>
<td>-3(1)</td>
<td>3(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>20(1)</td>
<td>24(1)</td>
<td>31(1)</td>
<td>-2(1)</td>
<td>2(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>22(1)</td>
<td>26(1)</td>
<td>32(1)</td>
<td>-2(1)</td>
<td>2(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>19(1)</td>
<td>23(1)</td>
<td>34(1)</td>
<td>-3(1)</td>
<td>2(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>22(1)</td>
<td>29(1)</td>
<td>33(1)</td>
<td>-2(1)</td>
<td>-2(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>24(1)</td>
<td>29(1)</td>
<td>34(1)</td>
<td>-1(1)</td>
<td>0(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>34(1)</td>
<td>47(1)</td>
<td>37(1)</td>
<td>7(1)</td>
<td>1(1)</td>
<td>-5(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 9 (M=Cu).

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>5950(20)</td>
<td>8064(16)</td>
<td>7300(20)</td>
<td>45(6)</td>
</tr>
<tr>
<td>H(1B)</td>
<td>6620(20)</td>
<td>7061(17)</td>
<td>6760(20)</td>
<td>50(6)</td>
</tr>
<tr>
<td>H(1C)</td>
<td>5840(20)</td>
<td>7860(17)</td>
<td>5830(20)</td>
<td>46(6)</td>
</tr>
<tr>
<td>H(3)</td>
<td>3744(19)</td>
<td>6873(15)</td>
<td>4958(19)</td>
<td>36(5)</td>
</tr>
<tr>
<td>H(5A)</td>
<td>690(30)</td>
<td>3160(20)</td>
<td>4370(20)</td>
<td>56(7)</td>
</tr>
<tr>
<td>H(5B)</td>
<td>1670(30)</td>
<td>3473(19)</td>
<td>5140(20)</td>
<td>54(7)</td>
</tr>
<tr>
<td>H(8)</td>
<td>4100(20)</td>
<td>5862(15)</td>
<td>10066(19)</td>
<td>39(5)</td>
</tr>
<tr>
<td>H(10A)</td>
<td>2320(20)</td>
<td>3850(20)</td>
<td>11040(20)</td>
<td>58(6)</td>
</tr>
<tr>
<td>H(10B)</td>
<td>1370(30)</td>
<td>4810(20)</td>
<td>11340(30)</td>
<td>73(8)</td>
</tr>
<tr>
<td>H(10C)</td>
<td>2940(20)</td>
<td>4829(16)</td>
<td>11710(20)</td>
<td>43(6)</td>
</tr>
</tbody>
</table>

Table 6. Torsion angles [°] for 9 (M=Cu).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)#1-Cu(1)-O(1)-C(4)</td>
<td>17(47)</td>
</tr>
<tr>
<td>O(2)#1-Cu(1)-O(1)-C(4)</td>
<td>-179.07(13)</td>
</tr>
<tr>
<td>O(2)-Cu(1)-O(1)-C(4)</td>
<td>0.93(13)</td>
</tr>
<tr>
<td>O(5)#1-Cu(1)-O(1)-C(4)</td>
<td>89.60(13)</td>
</tr>
<tr>
<td>O(5)-Cu(1)-O(1)-C(4)</td>
<td>-90.40(13)</td>
</tr>
<tr>
<td>O(1)#1-Cu(1)-O(2)-C(6)</td>
<td>178.50(12)</td>
</tr>
<tr>
<td>O(1)-Cu(1)-O(2)-C(6)</td>
<td>-1.50(12)</td>
</tr>
<tr>
<td>O(2)#1-Cu(1)-O(2)-C(6)</td>
<td>-99(100)</td>
</tr>
<tr>
<td>O(5)#1-Cu(1)-O(2)-C(6)</td>
<td>-93.21(13)</td>
</tr>
<tr>
<td>O(5)-Cu(1)-O(2)-C(6)</td>
<td>86.79(13)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)-C(3)</td>
<td>0.4(2)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)-C(1)</td>
<td>-179.10(13)</td>
</tr>
<tr>
<td>O(4)-C(2)-C(3)-C(4)</td>
<td>-0.3(2)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>179.14(15)</td>
</tr>
<tr>
<td>Cu(1)-O(1)-C(4)-C(3)</td>
<td>179.05(10)</td>
</tr>
<tr>
<td>Cu(1)-O(1)-C(4)-C(5)</td>
<td>-0.8(2)</td>
</tr>
</tbody>
</table>
C(2)-C(3)-C(4)-O(1) -179.93(14)
C(2)-C(3)-C(4)-C(5) 0.0(2)
O(1)-C(4)-C(5)-C(7) -179.83(13)
C(3)-C(4)-C(5)-C(7) 0.28(19)
O(1)-C(4)-C(5)-C(6) 0.8(2)
C(3)-C(4)-C(5)-C(6) -179.07(13)
Cu(1)-O(2)-C(6)-O(3) -178.34(9)
Cu(1)-O(2)-C(6)-C(5) 2.0(2)
C(9)-O(3)-C(6)-O(2) -179.44(13)
C(9)-O(3)-C(6)-C(5) 0.2(2)
C(7)-C(5)-C(6)-O(2) 179.08(14)
C(4)-C(5)-C(6)-O(2) -1.6(2)
C(7)-C(5)-C(6)-O(3) -0.53(19)
C(4)-C(5)-C(6)-O(3) 178.84(12)
C(2)-O(4)-C(7)-C(5) -0.2(2)
C(2)-O(4)-C(7)-C(8) 179.22(12)
C(6)-C(5)-C(7)-O(4) 179.20(12)
C(4)-C(5)-C(7)-O(4) -0.2(2)
C(6)-C(5)-C(7)-C(8) -0.2(2)
C(4)-C(5)-C(7)-C(8) -179.55(13)
O(4)-C(7)-C(8)-C(9) -178.21(13)
O(4)-C(7)-C(8)-C(9) -178.21(13)
C(5)-C(7)-C(8)-C(9) 1.2(2)
C(7)-C(8)-C(9)-O(3) -1.5(2)
C(7)-C(8)-C(9)-C(10) 177.18(15)
C(6)-O(3)-C(9)-C(8) 0.9(2)
C(6)-O(3)-C(9)-C(10) -178.02(14)

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z+1
Table 7. Hydrogen bonds for 9 (M = Cu) [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(5)-H(5A)...O(8)#2</td>
<td>0.78(3)</td>
<td>2.07(3)</td>
<td>2.847(2)</td>
<td>175(3)</td>
</tr>
<tr>
<td>O(5)-H(5B)...O(9)#3</td>
<td>0.76(3)</td>
<td>2.06(3)</td>
<td>2.8061(19)</td>
<td>170(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z+1 #2 x-1,y,z #3 x-1/2,-y+1/2,z+1/2

Metal Bispyrone Complex 9 (M=Co): IR (KBr) cm⁻¹ 1674.4, 1634.9, 1477.7, 1255.7, 1182.3, 1120.3, 1087.6, 623.3. HRMS – calcd 541.9662 found 541.9648. mp > 250 °C.

Crystal Structure:
Empirical formula C20 H20 Cl2 Co O18
Formula weight 678.19
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/n
Unit cell dimensions
\[\begin{align*}
\text{a} &= 10.033(6) \text{ Å} & a &= 90^\circ, \\
\text{b} &= 12.586(8) \text{ Å} & b &= 95.922(9)^\circ, \\
\text{c} &= 10.332(6) \text{ Å} & g &= 90^\circ.
\end{align*} \]
Volume 1297.7(14) Å³
Z 2
Density (calculated) 1.736 Mg/m³
Absorption coefficient 0.955 mm⁻¹
F(000) 690
Crystal size 0.19 x 0.16 x 0.12 mm³
Theta range for data collection 2.56 to 24.99°.
Index ranges -11<=h<=11, -14<=k<=14, -12<=l<=12
Reflections collected 11277
Independent reflections 2279 [R(int) = 0.0425]
Completeness to theta = 24.99° 100.0 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.8941 and 0.8394
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 2279 / 0 / 227
Goodness-of-fit on F² 1.055
Final R indices [I>2sigma(I)] R1 = 0.0509, wR2 = 0.1218
R indices (all data) R1 = 0.0666, wR2 = 0.1320
Largest diff. peak and hole 0.924 and -0.438 e.Å⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 9 (M= Co). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(1)</td>
<td>0</td>
<td>5000</td>
<td>0</td>
<td>32(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>5748(1)</td>
<td>6853(1)</td>
<td>7757(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>Atoms</td>
<td>Bond Lengths [Å]</td>
<td>Angles [°]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>1746(3)</td>
<td>5847(2)</td>
<td>72(3)</td>
<td>38(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>431(3)</td>
<td>4759(2)</td>
<td>1980(3)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>1419(3)</td>
<td>4779(2)</td>
<td>3950(3)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>4537(3)</td>
<td>6578(2)</td>
<td>3047(3)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>1056(4)</td>
<td>3652(3)</td>
<td>-392(4)</td>
<td>46(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>5772(4)</td>
<td>7005(3)</td>
<td>6378(3)</td>
<td>67(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>7127(4)</td>
<td>6788(3)</td>
<td>8259(4)</td>
<td>73(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>5159(4)</td>
<td>7766(3)</td>
<td>8259(4)</td>
<td>70(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>5042(4)</td>
<td>5910(3)</td>
<td>7999(4)</td>
<td>60(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>5871(5)</td>
<td>7550(4)</td>
<td>1724(6)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>4655(4)</td>
<td>6919(3)</td>
<td>1808(4)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>3723(4)</td>
<td>6684(4)</td>
<td>848(5)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2580(4)</td>
<td>6060(3)</td>
<td>1014(4)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2486(4)</td>
<td>5710(3)</td>
<td>2326(4)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>1401(4)</td>
<td>5078(3)</td>
<td>2683(4)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>3462(4)</td>
<td>5986(3)</td>
<td>3292(4)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>3419(4)</td>
<td>5672(3)</td>
<td>4595(4)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2414(4)</td>
<td>5075(3)</td>
<td>4892(4)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2228(6)</td>
<td>4630(5)</td>
<td>6164(5)</td>
<td>46(1)</td>
</tr>
</tbody>
</table>

Table 3. Bond lengths [Å] and angles [°] for 9 (M= Co).
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(3)-C(9)</td>
<td>1.372(5)</td>
</tr>
<tr>
<td>O(4)-C(7)</td>
<td>1.356(5)</td>
</tr>
<tr>
<td>O(4)-C(2)</td>
<td>1.366(5)</td>
</tr>
<tr>
<td>O(5)-H(5OA)</td>
<td>0.66(5)</td>
</tr>
<tr>
<td>O(5)-H(5OB)</td>
<td>0.73(7)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.465(6)</td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>0.90(5)</td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.96(6)</td>
</tr>
<tr>
<td>C(1)-H(1C)</td>
<td>0.91(6)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.324(6)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.415(6)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.82(5)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.438(6)</td>
</tr>
<tr>
<td>C(5)-C(7)</td>
<td>1.369(6)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.427(6)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.408(6)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.319(6)</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.77(5)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.458(7)</td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>0.85(6)</td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>0.91(5)</td>
</tr>
<tr>
<td>C(10)-H(10C)</td>
<td>1.04(7)</td>
</tr>
<tr>
<td>O(1)#1-Co(1)-O(1)</td>
<td>180.0</td>
</tr>
<tr>
<td>O(1)#1-Co(1)-O(5)</td>
<td>91.10(16)</td>
</tr>
<tr>
<td>O(1)-Co(1)-O(5)</td>
<td>88.90(16)</td>
</tr>
<tr>
<td>O(1)#1-Co(1)-O(5)#1</td>
<td>88.90(16)</td>
</tr>
<tr>
<td>O(1)-Co(1)-O(5)#1</td>
<td>91.10(16)</td>
</tr>
<tr>
<td>O(5)-Co(1)-O(5)#1</td>
<td>180.0</td>
</tr>
<tr>
<td>O(1)#1-Co(1)-O(2)#1</td>
<td>87.12(11)</td>
</tr>
<tr>
<td>O(1)-Co(1)-O(2)#1</td>
<td>92.88(11)</td>
</tr>
<tr>
<td>O(5)-Co(1)-O(2)#1</td>
<td>89.18(14)</td>
</tr>
<tr>
<td>O(5)#1-Co(1)-O(2)#1</td>
<td>90.82(14)</td>
</tr>
<tr>
<td>O(1)#1-Co(1)-O(2)</td>
<td>92.88(11)</td>
</tr>
<tr>
<td>O(1)-Co(1)-O(2)</td>
<td>87.12(11)</td>
</tr>
<tr>
<td>O(5)-Co(1)-O(2)</td>
<td>90.82(14)</td>
</tr>
</tbody>
</table>
O(5)#1-Co(1)-O(2) 89.18(14)
O(2)#1-Co(1)-O(2) 180.00(16)
O(8)-Cl(1)-O(9) 112.3(2)
O(8)-Cl(1)-O(7) 109.8(3)
O(9)-Cl(1)-O(7) 111.7(2)
O(8)-Cl(1)-O(6) 107.8(2)
O(9)-Cl(1)-O(6) 110.2(2)
O(7)-Cl(1)-O(6) 104.6(3)
C(4)-O(1)-Co(1) 130.1(3)
C(6)-O(2)-Co(1) 127.7(3)
C(6)-O(3)-C(9) 123.0(3)
C(7)-O(4)-C(2) 119.7(3)
Co(1)-O(5)-H(5OA) 121(5)
Co(1)-O(5)-H(5OB) 123(6)
H(5OA)-O(5)-H(5OB) 108(7)
C(2)-C(1)-H(1A) 112(3)
C(2)-C(1)-H(1B) 108(3)
H(1A)-C(1)-H(1B) 115(5)
C(2)-C(1)-H(1C) 112(4)
H(1A)-C(1)-H(1C) 97(5)
H(1B)-C(1)-H(1C) 111(5)
C(3)-C(2)-O(4) 120.6(4)
C(3)-C(2)-C(1) 127.1(5)
O(4)-C(2)-C(1) 112.3(4)
C(2)-C(3)-C(4) 123.5(4)
C(2)-C(3)-H(3) 116(4)
C(4)-C(3)-H(3) 120(4)
O(1)-C(4)-C(3) 120.9(4)
O(1)-C(4)-C(5) 124.5(4)
C(3)-C(4)-C(5) 114.6(4)
C(7)-C(5)-C(6) 117.4(4)
C(7)-C(5)-C(4) 119.9(4)
C(6)-C(5)-C(4) 122.7(4)
O(2)-C(6)-O(3) 114.3(4)
O(2)-C(6)-C(5) 127.8(4)
O(3)-C(6)-C(5) 117.9(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(4)-C(7)-C(5)</td>
<td>121.7(4)</td>
</tr>
<tr>
<td>O(4)-C(7)-C(8)</td>
<td>115.9(4)</td>
</tr>
<tr>
<td>C(5)-C(7)-C(8)</td>
<td>122.4(4)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(7)</td>
<td>118.9(4)</td>
</tr>
<tr>
<td>C(9)-C(8)-H(8)</td>
<td>123(4)</td>
</tr>
<tr>
<td>C(7)-C(8)-H(8)</td>
<td>118(4)</td>
</tr>
<tr>
<td>C(8)-C(9)-O(3)</td>
<td>120.4(4)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>126.9(4)</td>
</tr>
<tr>
<td>O(3)-C(9)-C(10)</td>
<td>112.6(4)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10A)</td>
<td>108(4)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10B)</td>
<td>109(3)</td>
</tr>
<tr>
<td>H(10A)-C(10)-H(10B)</td>
<td>109(5)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10C)</td>
<td>109(3)</td>
</tr>
<tr>
<td>H(10A)-C(10)-H(10C)</td>
<td>110(5)</td>
</tr>
<tr>
<td>H(10B)-C(10)-H(10C)</td>
<td>112(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z

Table 4. Anisotropic displacement parameters (Å² x 10⁶) for 9 (M= Co). The anisotropic displacement factor exponent takes the form: -2π² [h²a²*U¹¹ + ... + 2 h k a* b* U²³]

<table>
<thead>
<tr>
<th>Atom</th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U²³</th>
<th>U¹³</th>
<th>U¹²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(1)</td>
<td>26(1)</td>
<td>38(1)</td>
<td>31(1)</td>
<td>-2(1)</td>
<td>-3(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>35(1)</td>
<td>31(1)</td>
<td>38(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>32(2)</td>
<td>47(2)</td>
<td>33(2)</td>
<td>2(1)</td>
<td>-1(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>26(2)</td>
<td>44(2)</td>
<td>32(2)</td>
<td>0(1)</td>
<td>-4(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>31(2)</td>
<td>38(2)</td>
<td>35(2)</td>
<td>3(1)</td>
<td>-4(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>30(2)</td>
<td>34(2)</td>
<td>41(2)</td>
<td>1(1)</td>
<td>-2(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>43(2)</td>
<td>43(2)</td>
<td>47(2)</td>
<td>-13(2)</td>
<td>-11(2)</td>
<td>5(2)</td>
</tr>
<tr>
<td>O(6)</td>
<td>80(3)</td>
<td>81(3)</td>
<td>40(2)</td>
<td>-14(2)</td>
<td>9(2)</td>
<td>-24(2)</td>
</tr>
<tr>
<td>O(7)</td>
<td>60(2)</td>
<td>56(2)</td>
<td>94(3)</td>
<td>10(2)</td>
<td>-39(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>O(8)</td>
<td>87(3)</td>
<td>39(2)</td>
<td>92(3)</td>
<td>12(2)</td>
<td>51(2)</td>
<td>20(2)</td>
</tr>
<tr>
<td>O(9)</td>
<td>60(2)</td>
<td>38(2)</td>
<td>86(3)</td>
<td>-1(2)</td>
<td>22(2)</td>
<td>-9(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>38(3)</td>
<td>42(3)</td>
<td>50(3)</td>
<td>4(3)</td>
<td>4(2)</td>
<td>-7(2)</td>
</tr>
</tbody>
</table>

This journal is (c) The Royal Society of Chemistry 2010
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 9 (M=Co).

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>6620(50)</td>
<td>7170(40)</td>
<td>1930(50)</td>
<td>46(14)</td>
</tr>
<tr>
<td>H(1B)</td>
<td>5810(60)</td>
<td>7890(40)</td>
<td>880(60)</td>
<td>67(17)</td>
</tr>
<tr>
<td>H(1C)</td>
<td>6000(60)</td>
<td>8040(50)</td>
<td>2380(60)</td>
<td>65(18)</td>
</tr>
<tr>
<td>H(3)</td>
<td>3840(50)</td>
<td>6920(40)</td>
<td>130(50)</td>
<td>57(17)</td>
</tr>
<tr>
<td>H(5OA)</td>
<td>740(50)</td>
<td>3230(40)</td>
<td>-630(50)</td>
<td>31(17)</td>
</tr>
<tr>
<td>H(5OB)</td>
<td>1660(70)</td>
<td>3480(60)</td>
<td>10(70)</td>
<td>90(30)</td>
</tr>
<tr>
<td>H(8)</td>
<td>4020(50)</td>
<td>5810(40)</td>
<td>5080(50)</td>
<td>48(15)</td>
</tr>
<tr>
<td>H(10A)</td>
<td>2280(60)</td>
<td>3960(50)</td>
<td>6120(60)</td>
<td>70(20)</td>
</tr>
<tr>
<td>H(10B)</td>
<td>2900(50)</td>
<td>4850(30)</td>
<td>6760(50)</td>
<td>37(12)</td>
</tr>
<tr>
<td>H(10C)</td>
<td>1290(70)</td>
<td>4850(50)</td>
<td>6400(60)</td>
<td>81(19)</td>
</tr>
</tbody>
</table>

Table 6. Torsion angles [°] for 9 (M=Co).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)#1-Co(1)-O(1)-C(4)</td>
<td>-6(100)</td>
</tr>
<tr>
<td>O(5)-Co(1)-O(1)-C(4)</td>
<td>-91.9(4)</td>
</tr>
<tr>
<td>O(5)#1-Co(1)-O(1)-C(4)</td>
<td>88.1(4)</td>
</tr>
<tr>
<td>O(2)#1-Co(1)-O(1)-C(4)</td>
<td>178.9(4)</td>
</tr>
<tr>
<td>O(2)-Co(1)-O(1)-C(4)</td>
<td>-1.1(4)</td>
</tr>
<tr>
<td>O(1)#1-Co(1)-O(2)-C(6)</td>
<td>-179.9(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>O(1)-Co(1)-O(2)-C(6)</td>
<td>0.1(3)</td>
</tr>
<tr>
<td>O(5)-Co(1)-O(2)-C(6)</td>
<td>88.9(4)</td>
</tr>
<tr>
<td>O(5)#1-Co(1)-O(2)-C(6)</td>
<td>-91.1(4)</td>
</tr>
<tr>
<td>O(2)#1-Co(1)-O(2)-C(6)</td>
<td>-142(3)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)-C(3)</td>
<td>0.6(6)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)-C(1)</td>
<td>179.8(4)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>-1.4(7)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>179.5(5)</td>
</tr>
<tr>
<td>Co(1)-O(1)-C(4)-C(3)</td>
<td>-178.8(3)</td>
</tr>
<tr>
<td>Co(1)-O(1)-C(4)-C(5)</td>
<td>1.4(6)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-O(1)</td>
<td>-178.7(4)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>1.1(6)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)-C(7)</td>
<td>179.8(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(7)</td>
<td>-0.1(6)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)-C(6)</td>
<td>-0.5(6)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(6)</td>
<td>179.7(4)</td>
</tr>
<tr>
<td>Co(1)-O(2)-C(6)-O(3)</td>
<td>-179.2(2)</td>
</tr>
<tr>
<td>Co(1)-O(2)-C(6)-C(5)</td>
<td>0.6(6)</td>
</tr>
<tr>
<td>C(9)-O(3)-C(6)-O(2)</td>
<td>-178.9(3)</td>
</tr>
<tr>
<td>C(9)-O(3)-C(6)-C(5)</td>
<td>1.3(5)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(6)-O(2)</td>
<td>179.2(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-O(2)</td>
<td>-0.6(7)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(6)-O(3)</td>
<td>-1.0(5)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-O(3)</td>
<td>179.2(3)</td>
</tr>
<tr>
<td>C(2)-O(4)-C(7)-C(5)</td>
<td>0.5(6)</td>
</tr>
<tr>
<td>C(2)-O(4)-C(7)-C(8)</td>
<td>-179.8(4)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(7)-O(4)</td>
<td>179.5(3)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(7)-O(4)</td>
<td>-0.7(6)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(7)-C(8)</td>
<td>-0.1(6)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(7)-C(8)</td>
<td>179.6(4)</td>
</tr>
<tr>
<td>O(4)-C(7)-C(8)-C(9)</td>
<td>-178.5(4)</td>
</tr>
<tr>
<td>C(5)-C(7)-C(8)-C(9)</td>
<td>1.1(6)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)-O(3)</td>
<td>-0.9(6)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)-C(10)</td>
<td>176.9(4)</td>
</tr>
<tr>
<td>C(6)-O(3)-C(9)-C(8)</td>
<td>-0.3(6)</td>
</tr>
<tr>
<td>C(6)-O(3)-C(9)-C(10)</td>
<td>-178.4(4)</td>
</tr>
</tbody>
</table>
Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z

Table 7. Hydrogen bonds for 9 (M= Co) [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(5)-H(5OA)...O(6)#2</td>
<td>0.66(5)</td>
<td>2.24(5)</td>
<td>2.883(7)</td>
<td>166(6)</td>
</tr>
<tr>
<td>O(5)-H(5OB)...O(7)#3</td>
<td>0.73(7)</td>
<td>2.08(7)</td>
<td>2.768(6)</td>
<td>156(7)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z #2 -x+1/2,y-1/2,-z+1/2 #3 -x+1,-y+1,-z+1

Metal Bispyrone Complex 9 (M=Ni): IR (KBr) cm⁻¹ 1670.7, 1624.5, 1487.2, 1257.5, 1183.3, 1108.0, 625.6. HRMS – calcld 540.9684 found 540.9677. mp > 250 °C.

Crystal Structure:
Table 1. Crystal data and structure refinement for 9 (M= Ni).

<table>
<thead>
<tr>
<th>Identification code</th>
<th>9 (M= Ni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C20 H20 Cl2 Ni O18</td>
</tr>
<tr>
<td>Formula weight</td>
<td>677.97</td>
</tr>
</tbody>
</table>
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/n
Unit cell dimensions
\[\begin{align*}
a &= 9.952(3) \text{ Å} & a &= 90^\circ. \\
b &= 12.636(3) \text{ Å} & b &= 95.348(4)^\circ. \\
c &= 10.439(3) \text{ Å} & g &= 90^\circ. \\
\end{align*} \]
Volume 1307.0(6) Å³
Z 2
Density (calculated) 1.723 Mg/m³
Absorption coefficient 1.033 mm⁻¹
F(000) 692
Crystal size 0.19 x 0.12 x 0.09 mm³
Theta range for data collection 2.54 to 26.99°.
Index ranges -12<=h<=12, -15<=k<=16, -13<=l<=13
Reflections collected 12556
Independent reflections 2852 [R(int) = 0.0295]
Completeness to theta = 26.99° 99.9 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9127 and 0.8278
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 2852 / 0 / 227
Goodness-of-fit on F² 1.066
Final R indices [I>2sigma(I)] R1 = 0.0295, wR2 = 0.0723
R indices (all data) R1 = 0.0368, wR2 = 0.0775
Largest diff. peak and hole 0.327 and -0.412 e.Å⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 9 (M= Ni). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(1)</td>
<td>0</td>
<td>5000</td>
<td>5000</td>
<td>23(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>4258(1)</td>
<td>6857(1)</td>
<td>7305(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1643(1)</td>
<td>4174(1)</td>
<td>5043(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>362(1)</td>
<td>5270(1)</td>
<td>6983(1)</td>
<td>33(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 9 (M= Ni).

<table>
<thead>
<tr>
<th></th>
<th>Bond Lengths [Å]</th>
<th>Bond Angles [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(1)-O(1)</td>
<td>1.9366(14)</td>
<td></td>
</tr>
<tr>
<td>Ni(1)-O(1)#1</td>
<td>1.9366(14)</td>
<td></td>
</tr>
<tr>
<td>Ni(1)-O(2)#1</td>
<td>2.0955(15)</td>
<td></td>
</tr>
<tr>
<td>Ni(1)-O(2)</td>
<td>2.0955(15)</td>
<td></td>
</tr>
<tr>
<td>Ni(1)-O(5)#1</td>
<td>2.1621(18)</td>
<td></td>
</tr>
<tr>
<td>Ni(1)-O(5)</td>
<td>2.1621(18)</td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(8)</td>
<td>1.4247(16)</td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(9)</td>
<td>1.4298(16)</td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(7)</td>
<td>1.4432(16)</td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(6)</td>
<td>1.4446(16)</td>
<td></td>
</tr>
<tr>
<td>O(1)-C(4)</td>
<td>1.259(2)</td>
<td></td>
</tr>
<tr>
<td>O(2)-C(6)</td>
<td>1.224(2)</td>
<td></td>
</tr>
<tr>
<td>O(3)-C(6)</td>
<td>1.365(3)</td>
<td></td>
</tr>
<tr>
<td>O(3)-C(9)</td>
<td>1.374(2)</td>
<td></td>
</tr>
<tr>
<td>O(4)-C(7)</td>
<td>1.343(2)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>O(4)-C(2)</td>
<td>1.371(2)</td>
<td></td>
</tr>
<tr>
<td>O(5)-H(5A)</td>
<td>0.95(4)</td>
<td></td>
</tr>
<tr>
<td>O(5)-H(5B)</td>
<td>0.82(3)</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.489(3)</td>
<td></td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>1.01(3)</td>
<td></td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.98(3)</td>
<td></td>
</tr>
<tr>
<td>C(1)-H(1C)</td>
<td>1.00(3)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.339(3)</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.425(3)</td>
<td></td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.88(2)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.441(3)</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(7)</td>
<td>1.377(3)</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.439(3)</td>
<td></td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.409(3)</td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.335(3)</td>
<td></td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.89(2)</td>
<td></td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.474(3)</td>
<td></td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>0.96(4)</td>
<td></td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>0.98(4)</td>
<td></td>
</tr>
<tr>
<td>C(10)-H(10C)</td>
<td>0.97(3)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-Ni(1)-O(1)#1</td>
<td>180.00(8)</td>
</tr>
<tr>
<td>O(1)-Ni(1)-O(2)#1</td>
<td>90.15(5)</td>
</tr>
<tr>
<td>O(1)#1-Ni(1)-O(2)#1</td>
<td>89.85(6)</td>
</tr>
<tr>
<td>O(1)-Ni(1)-O(2)</td>
<td>89.85(6)</td>
</tr>
<tr>
<td>O(1)#1-Ni(1)-O(2)</td>
<td>90.15(5)</td>
</tr>
<tr>
<td>O(2)#1-Ni(1)-O(2)</td>
<td>180.0</td>
</tr>
<tr>
<td>O(1)-Ni(1)-O(5)#1</td>
<td>91.82(7)</td>
</tr>
<tr>
<td>O(1)#1-Ni(1)-O(5)#1</td>
<td>88.18(7)</td>
</tr>
<tr>
<td>O(2)#1-Ni(1)-O(5)#1</td>
<td>91.28(6)</td>
</tr>
<tr>
<td>O(2)-Ni(1)-O(5)#1</td>
<td>88.72(6)</td>
</tr>
<tr>
<td>O(1)-Ni(1)-O(5)</td>
<td>88.18(7)</td>
</tr>
<tr>
<td>O(1)#1-Ni(1)-O(5)</td>
<td>91.82(7)</td>
</tr>
<tr>
<td>O(2)#1-Ni(1)-O(5)</td>
<td>88.72(6)</td>
</tr>
<tr>
<td>O(2)-Ni(1)-O(5)</td>
<td>91.28(6)</td>
</tr>
<tr>
<td>O(5)#1-Ni(1)-O(5)</td>
<td>180.0</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>O(8)-Cl(1)-O(9)</td>
<td>111.08(10)</td>
</tr>
<tr>
<td>O(8)-Cl(1)-O(7)</td>
<td>110.51(10)</td>
</tr>
<tr>
<td>O(9)-Cl(1)-O(7)</td>
<td>109.51(10)</td>
</tr>
<tr>
<td>O(8)-Cl(1)-O(6)</td>
<td>109.60(10)</td>
</tr>
<tr>
<td>O(9)-Cl(1)-O(6)</td>
<td>109.05(10)</td>
</tr>
<tr>
<td>O(7)-Cl(1)-O(6)</td>
<td>106.99(10)</td>
</tr>
<tr>
<td>C(4)-O(1)-Ni(1)</td>
<td>130.17(13)</td>
</tr>
<tr>
<td>C(6)-O(2)-Ni(1)</td>
<td>125.15(14)</td>
</tr>
<tr>
<td>C(6)-O(3)-C(9)</td>
<td>122.67(16)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)</td>
<td>119.51(15)</td>
</tr>
<tr>
<td>Ni(1)-O(5)-H(5A)</td>
<td>116(2)</td>
</tr>
<tr>
<td>Ni(1)-O(5)-H(5B)</td>
<td>110(2)</td>
</tr>
<tr>
<td>H(5A)-O(5)-H(5B)</td>
<td>109(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1A)</td>
<td>109.8(15)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1B)</td>
<td>108.6(16)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1B)</td>
<td>106(2)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1C)</td>
<td>108.5(15)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1C)</td>
<td>110(2)</td>
</tr>
<tr>
<td>H(1B)-C(1)-H(1C)</td>
<td>113(2)</td>
</tr>
<tr>
<td>C(3)-C(2)-O(4)</td>
<td>121.36(18)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>127.6(2)</td>
</tr>
<tr>
<td>O(4)-C(2)-C(1)</td>
<td>111.06(17)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>122.1(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3)</td>
<td>119.9(15)</td>
</tr>
<tr>
<td>C(4)-C(3)-H(3)</td>
<td>118.1(15)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(3)</td>
<td>119.95(19)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)</td>
<td>124.86(18)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>115.19(17)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(6)</td>
<td>117.49(18)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(4)</td>
<td>119.61(17)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>122.90(17)</td>
</tr>
<tr>
<td>O(2)-C(6)-O(3)</td>
<td>114.85(17)</td>
</tr>
<tr>
<td>O(2)-C(6)-C(5)</td>
<td>127.04(19)</td>
</tr>
<tr>
<td>O(3)-C(6)-C(5)</td>
<td>118.11(17)</td>
</tr>
<tr>
<td>O(4)-C(7)-C(5)</td>
<td>122.26(18)</td>
</tr>
<tr>
<td>O(4)-C(7)-C(8)</td>
<td>115.63(17)</td>
</tr>
</tbody>
</table>
C(5)-C(7)-C(8) 122.10(18)
C(9)-C(8)-C(7) 118.93(18)
C(9)-C(8)-H(8) 122.3(14)
C(7)-C(8)-H(8) 118.8(14)
C(8)-C(9)-O(3) 120.67(19)
C(8)-C(9)-C(10) 127.2(2)
O(3)-C(9)-C(10) 112.11(18)
C(9)-C(10)-H(10A) 111.2(19)
C(9)-C(10)-H(10B) 109(2)
H(10A)-C(10)-H(10B) 112(3)
C(9)-C(10)-H(10C) 106.8(16)
H(10A)-C(10)-H(10C) 107(2)
H(10B)-C(10)-H(10C) 110(3)

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z+1

Table 4. Anisotropic displacement parameters (Å² x 10³) for 9 (M= Ni). The anisotropic displacement factor exponent takes the form: -2π²[h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

<table>
<thead>
<tr>
<th></th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U²³</th>
<th>U¹³</th>
<th>U¹²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(1)</td>
<td>18(1)</td>
<td>29(1)</td>
<td>21(1)</td>
<td>1(1)</td>
<td>-2(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>28(1)</td>
<td>27(1)</td>
<td>34(1)</td>
<td>0(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>26(1)</td>
<td>41(1)</td>
<td>31(1)</td>
<td>3(1)</td>
<td>1(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>24(1)</td>
<td>37(1)</td>
<td>37(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>24(1)</td>
<td>36(1)</td>
<td>35(1)</td>
<td>-1(1)</td>
<td>0(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>22(1)</td>
<td>31(1)</td>
<td>36(1)</td>
<td>3(1)</td>
<td>2(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>43(1)</td>
<td>46(1)</td>
<td>43(1)</td>
<td>3(1)</td>
<td>-11(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>46(1)</td>
<td>55(1)</td>
<td>34(1)</td>
<td>5(1)</td>
<td>-2(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>34(1)</td>
<td>44(1)</td>
<td>55(1)</td>
<td>-3(1)</td>
<td>-11(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>46(1)</td>
<td>33(1)</td>
<td>76(1)</td>
<td>-4(1)</td>
<td>18(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>50(1)</td>
<td>33(1)</td>
<td>52(1)</td>
<td>0(1)</td>
<td>18(1)</td>
<td>-10(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>28(1)</td>
<td>39(1)</td>
<td>44(1)</td>
<td>0(1)</td>
<td>4(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>24(1)</td>
<td>26(1)</td>
<td>39(1)</td>
<td>1(1)</td>
<td>6(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>26(1)</td>
<td>33(1)</td>
<td>34(1)</td>
<td>-1(1)</td>
<td>5(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>22(1)</td>
<td>28(1)</td>
<td>35(1)</td>
<td>5(1)</td>
<td>3(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>20(1)</td>
<td>26(1)</td>
<td>32(1)</td>
<td>2(1)</td>
<td>2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>23(1)</td>
<td>26(1)</td>
<td>35(1)</td>
<td>2(1)</td>
<td>2(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>20(1)</td>
<td>23(1)</td>
<td>37(1)</td>
<td>3(1)</td>
<td>4(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>23(1)</td>
<td>30(1)</td>
<td>35(1)</td>
<td>4(1)</td>
<td>-2(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>25(1)</td>
<td>30(1)</td>
<td>37(1)</td>
<td>2(1)</td>
<td>-1(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>37(1)</td>
<td>48(2)</td>
<td>40(1)</td>
<td>-6(1)</td>
<td>2(1)</td>
<td>4(1)</td>
</tr>
</tbody>
</table>

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 9 (M= Ni).

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>5930(30)</td>
<td>1910(20)</td>
<td>7310(30)</td>
<td>54(8)</td>
</tr>
<tr>
<td>H(1B)</td>
<td>6640(30)</td>
<td>2940(20)</td>
<td>6810(30)</td>
<td>59(8)</td>
</tr>
<tr>
<td>H(1C)</td>
<td>5820(30)</td>
<td>2140(20)</td>
<td>5750(30)</td>
<td>51(7)</td>
</tr>
<tr>
<td>H(3)</td>
<td>3740(20)</td>
<td>3113(17)</td>
<td>4980(20)</td>
<td>35(6)</td>
</tr>
<tr>
<td>H(5A)</td>
<td>1810(40)</td>
<td>6610(30)</td>
<td>5250(40)</td>
<td>102(12)</td>
</tr>
<tr>
<td>H(5B)</td>
<td>670(30)</td>
<td>6870(30)</td>
<td>4370(30)</td>
<td>74(11)</td>
</tr>
<tr>
<td>H(8)</td>
<td>4080(20)</td>
<td>4123(18)</td>
<td>10080(20)</td>
<td>37(6)</td>
</tr>
<tr>
<td>H(10A)</td>
<td>2950(40)</td>
<td>5180(20)</td>
<td>11730(30)</td>
<td>73(10)</td>
</tr>
<tr>
<td>H(10B)</td>
<td>1350(40)</td>
<td>5210(30)</td>
<td>11360(30)</td>
<td>94(12)</td>
</tr>
<tr>
<td>H(10C)</td>
<td>2310(30)</td>
<td>6170(20)</td>
<td>11020(20)</td>
<td>61(8)</td>
</tr>
</tbody>
</table>

Table 6. Torsion angles [°] for 9 (M= Ni).

<table>
<thead>
<tr>
<th></th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)#1-Ni(1)-O(1)-C(4)</td>
<td>28(100)</td>
</tr>
<tr>
<td>O(2)#1-Ni(1)-O(1)-C(4)</td>
<td>178.96(17)</td>
</tr>
<tr>
<td>O(2)-Ni(1)-O(1)-C(4)</td>
<td>-1.04(17)</td>
</tr>
<tr>
<td>O(5)#1-Ni(1)-O(1)-C(4)</td>
<td>-89.75(17)</td>
</tr>
<tr>
<td>O(5)-Ni(1)-O(1)-C(4)</td>
<td>90.25(17)</td>
</tr>
<tr>
<td>O(1)-Ni(1)-O(2)-C(6)</td>
<td>1.35(16)</td>
</tr>
<tr>
<td>O(1)#1-Ni(1)-O(2)-C(6)</td>
<td>-178.65(16)</td>
</tr>
<tr>
<td>O(2)#1-Ni(1)-O(2)-C(6)</td>
<td>-74(89)</td>
</tr>
<tr>
<td>Bond/Angle</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>O(5)-Ni(1)-C(6)</td>
<td>93.18(17)</td>
</tr>
<tr>
<td>O(5)-Ni(1)-O(2)</td>
<td>-86.82(17)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)</td>
<td>-0.4(3)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(1)</td>
<td>179.24(17)</td>
</tr>
<tr>
<td>O(4)-C(2)-C(3)</td>
<td>0.5(3)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>-179.1(2)</td>
</tr>
<tr>
<td>Ni(1)-O(1)-C(4)</td>
<td>-179.13(14)</td>
</tr>
<tr>
<td>Ni(1)-O(1)-C(5)</td>
<td>1.1(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>-179.97(19)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)</td>
<td>-0.1(3)</td>
</tr>
<tr>
<td>O(1)-C(5)-C(7)</td>
<td>-179.61(18)</td>
</tr>
<tr>
<td>C(1)-C(5)-C(7)</td>
<td>179.28(18)</td>
</tr>
<tr>
<td>Ni(1)-O(2)-C(6)</td>
<td>178.32(11)</td>
</tr>
<tr>
<td>Ni(1)-O(2)-O(3)</td>
<td>-1.7(3)</td>
</tr>
<tr>
<td>C(9)-O(3)-C(6)</td>
<td>179.68(17)</td>
</tr>
<tr>
<td>C(9)-O(3)-O(2)</td>
<td>0.3(3)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(6)</td>
<td>-179.14(19)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)</td>
<td>1.4(3)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(7)</td>
<td>0.8(3)</td>
</tr>
<tr>
<td>C(2)-O(4)-C(7)</td>
<td>-178.70(17)</td>
</tr>
<tr>
<td>C(2)-O(4)-C(8)</td>
<td>0.1(3)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(7)</td>
<td>-179.18(16)</td>
</tr>
<tr>
<td>C(4)-C(5)-O(4)</td>
<td>-179.26(17)</td>
</tr>
<tr>
<td>C(4)-C(5)-O(4)</td>
<td>0.3(3)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(8)</td>
<td>-0.1(3)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(8)</td>
<td>179.44(17)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z+1

Table 7. Hydrogen bonds for 9 (M= Ni) [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(5)-H(5B)...O(6)#2</td>
<td>0.82(3)</td>
<td>2.04(3)</td>
<td>2.854(3)</td>
<td>173(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z+1 #2 x-1/2,-y+3/2,z-1/2

Metal-Bispyrone Complex 9 (M=Zn): IR (KBr) cm⁻¹ 1700.3, 1653.1, 1646.5, 1635.0, 1558.2, 1472.9, 1102.9, 623.7. HRMS – calcd 546.9622 found 546.9634. mp > 250 °C.

Crystal Structure:
Table 1. Crystal data and structure refinement for 9 (M= Zn).

<table>
<thead>
<tr>
<th>Identification code</th>
<th>(9) (M= Zn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>(\text{C}20\ \text{H}20\ \text{Cl}2\ \text{O}18\ \text{Zn})</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for 9 (M= Zn). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)</td>
<td>5000</td>
<td>0</td>
<td>0</td>
<td>30(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>9255(1)</td>
<td>-1861(1)</td>
<td>2272(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>6744(2)</td>
<td>851(2)</td>
<td>54(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td></td>
<td>O(2)</td>
<td>O(3)</td>
<td>O(4)</td>
<td>O(5)</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>5412(2)</td>
<td>6410(2)</td>
<td>9546(2)</td>
<td>6090(3)</td>
</tr>
<tr>
<td></td>
<td>-238(2)</td>
<td>-222(2)</td>
<td>1582(2)</td>
<td>-1354(2)</td>
</tr>
<tr>
<td></td>
<td>1972(2)</td>
<td>3924(2)</td>
<td>3013(2)</td>
<td>-395(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 9 (M= Zn).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)-O(1)#1</td>
<td>2.0408(19)</td>
</tr>
<tr>
<td>Zn(1)-O(1)</td>
<td>2.0408(19)</td>
</tr>
<tr>
<td>Zn(1)-O(2)#1</td>
<td>2.0809(19)</td>
</tr>
<tr>
<td>Zn(1)-O(2)</td>
<td>2.0809(19)</td>
</tr>
<tr>
<td>Zn(1)-O(5)#1</td>
<td>2.089(3)</td>
</tr>
<tr>
<td>Zn(1)-O(5)</td>
<td>2.089(3)</td>
</tr>
<tr>
<td>Cl(1)-O(8)</td>
<td>1.424(2)</td>
</tr>
<tr>
<td>Cl(1)-O(9)</td>
<td>1.429(2)</td>
</tr>
<tr>
<td>Cl(1)-O(7)</td>
<td>1.442(2)</td>
</tr>
<tr>
<td>Cl(1)-O(6)</td>
<td>1.446(2)</td>
</tr>
<tr>
<td>O(1)-C(4)</td>
<td>1.250(3)</td>
</tr>
<tr>
<td>O(2)-C(6)</td>
<td>1.230(3)</td>
</tr>
<tr>
<td>O(3)-C(6)</td>
<td>1.366(3)</td>
</tr>
<tr>
<td>O(3)-C(9)</td>
<td>1.374(3)</td>
</tr>
<tr>
<td>O(4)-C(7)</td>
<td>1.351(3)</td>
</tr>
<tr>
<td>O(4)-C(2)</td>
<td>1.375(3)</td>
</tr>
<tr>
<td>O(5)-H(5A)</td>
<td>0.70(4)</td>
</tr>
<tr>
<td>O(5)-H(5B)</td>
<td>0.73(4)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.482(4)</td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>0.93(4)</td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.97(4)</td>
</tr>
<tr>
<td>C(1)-H(1C)</td>
<td>0.92(4)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.330(4)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.429(4)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.90(3)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.455(4)</td>
</tr>
<tr>
<td>C(5)-C(7)</td>
<td>1.372(4)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.426(4)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.414(4)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.330(4)</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.82(3)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.469(4)</td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>0.93(4)</td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>0.95(5)</td>
</tr>
</tbody>
</table>
C(10)-H(10C) 0.91(4)

O(1)#1-Zn(1)-O(1) 180.00(11)
O(1)#1-Zn(1)-O(2)#1 87.82(7)
O(1)-Zn(1)-O(2)#1 92.18(7)
O(1)-Zn(1)-O(2) 87.82(7)
O(2)#1-Zn(1)-O(2) 180.00(11)
O(1)#1-Zn(1)-O(5)#1 88.80(10)
O(1)-Zn(1)-O(5)#1 91.20(10)
O(2)#1-Zn(1)-O(5)#1 91.11(9)
O(2)-Zn(1)-O(5)#1 88.89(9)
O(1)#1-Zn(1)-O(5) 91.20(10)
O(1)-Zn(1)-O(5) 88.80(10)
O(2)#1-Zn(1)-O(5) 88.89(9)
O(2)-Zn(1)-O(5) 91.11(9)
O(5)#1-Zn(1)-O(5) 180.00(18)
O(8)-Cl(1)-O(9) 111.87(14)
O(8)-Cl(1)-O(7) 111.01(15)
O(9)-Cl(1)-O(7) 109.51(15)
O(8)-Cl(1)-O(6) 109.87(15)
O(9)-Cl(1)-O(6) 108.51(14)
O(7)-Cl(1)-O(6) 105.87(15)
C(4)-O(1)-Zn(1) 129.72(18)
C(6)-O(2)-Zn(1) 127.26(18)
C(6)-O(3)-C(9) 122.6(2)
Zn(1)-O(5)-H(5A) 118(3)
Zn(1)-O(5)-H(5B) 114(4)
H(5A)-O(5)-H(5B) 112(5)
C(2)-C(1)-H(1A) 109(2)
C(2)-C(1)-H(1B) 112(2)
H(1A)-C(1)-H(1B) 108(3)
C(2)-C(1)-H(1C) 111(2)
H(1A)-C(1)-H(1C) 107(3)
H(1B)-C(1)-H(1C) 110(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(3)-C(2)-O(4)</td>
<td>121.3(3)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>127.3(3)</td>
</tr>
<tr>
<td>O(4)-C(2)-C(1)</td>
<td>111.4(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>122.7(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3)</td>
<td>117.1(19)</td>
</tr>
<tr>
<td>C(4)-C(3)-H(3)</td>
<td>120.1(19)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(3)</td>
<td>120.8(3)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)</td>
<td>124.7(3)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>114.6(2)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(6)</td>
<td>117.5(2)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(4)</td>
<td>119.5(2)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>122.9(2)</td>
</tr>
<tr>
<td>O(2)-C(6)-O(3)</td>
<td>114.0(2)</td>
</tr>
<tr>
<td>O(2)-C(6)-C(5)</td>
<td>127.6(3)</td>
</tr>
<tr>
<td>O(3)-C(6)-C(5)</td>
<td>118.4(2)</td>
</tr>
<tr>
<td>O(4)-C(7)-C(5)</td>
<td>122.5(2)</td>
</tr>
<tr>
<td>O(4)-C(7)-C(8)</td>
<td>115.3(2)</td>
</tr>
<tr>
<td>C(5)-C(7)-C(8)</td>
<td>122.2(3)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(7)</td>
<td>118.7(3)</td>
</tr>
<tr>
<td>C(9)-C(8)-H(8)</td>
<td>123(2)</td>
</tr>
<tr>
<td>C(7)-C(8)-H(8)</td>
<td>118(2)</td>
</tr>
<tr>
<td>C(8)-C(9)-O(3)</td>
<td>120.6(3)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>127.2(3)</td>
</tr>
<tr>
<td>O(3)-C(9)-C(10)</td>
<td>112.2(3)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10A)</td>
<td>110(2)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10B)</td>
<td>108(2)</td>
</tr>
<tr>
<td>H(10A)-C(10)-H(10B)</td>
<td>107(3)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10C)</td>
<td>110(2)</td>
</tr>
<tr>
<td>H(10A)-C(10)-H(10C)</td>
<td>111(3)</td>
</tr>
<tr>
<td>H(10B)-C(10)-H(10C)</td>
<td>110(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x+1,-y,-z
Table 4. Anisotropic displacement parameters (Å\(^2\times 10^3\)) for 9 (M= Zn). The anisotropic displacement factor exponent takes the form:

\[-2\pi^2 \left[h^2a^{*2}U_{11} + \ldots + 2hk a^{*} b^{*} U_{12} \right] \]

<table>
<thead>
<tr>
<th></th>
<th>(U_{11})</th>
<th>(U_{22})</th>
<th>(U_{33})</th>
<th>(U_{23})</th>
<th>(U_{13})</th>
<th>(U_{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)</td>
<td>24(1)</td>
<td>38(1)</td>
<td>26(1)</td>
<td>-2(1)</td>
<td>-5(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>29(1)</td>
<td>30(1)</td>
<td>34(1)</td>
<td>-1(1)</td>
<td>-3(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>29(1)</td>
<td>47(1)</td>
<td>26(1)</td>
<td>2(1)</td>
<td>-3(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>24(1)</td>
<td>42(1)</td>
<td>26(1)</td>
<td>1(1)</td>
<td>-4(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>26(1)</td>
<td>38(1)</td>
<td>27(1)</td>
<td>1(1)</td>
<td>-4(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>25(1)</td>
<td>34(1)</td>
<td>33(1)</td>
<td>-1(1)</td>
<td>-3(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>37(1)</td>
<td>46(2)</td>
<td>39(1)</td>
<td>-8(1)</td>
<td>-13(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>52(1)</td>
<td>61(2)</td>
<td>35(1)</td>
<td>-6(1)</td>
<td>-2(1)</td>
<td>-9(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>41(1)</td>
<td>49(1)</td>
<td>63(2)</td>
<td>2(1)</td>
<td>-21(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>47(1)</td>
<td>40(1)</td>
<td>72(2)</td>
<td>2(1)</td>
<td>15(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>60(2)</td>
<td>37(1)</td>
<td>62(2)</td>
<td>4(1)</td>
<td>24(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>33(2)</td>
<td>43(2)</td>
<td>44(2)</td>
<td>3(2)</td>
<td>5(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>28(1)</td>
<td>33(2)</td>
<td>38(2)</td>
<td>3(1)</td>
<td>4(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>32(2)</td>
<td>34(2)</td>
<td>32(2)</td>
<td>1(1)</td>
<td>5(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>25(1)</td>
<td>32(2)</td>
<td>31(1)</td>
<td>-1(1)</td>
<td>2(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>22(1)</td>
<td>26(1)</td>
<td>29(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>27(1)</td>
<td>27(1)</td>
<td>27(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>23(1)</td>
<td>24(1)</td>
<td>34(2)</td>
<td>-2(1)</td>
<td>-1(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>26(1)</td>
<td>31(1)</td>
<td>29(1)</td>
<td>-2(1)</td>
<td>-8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>28(1)</td>
<td>32(2)</td>
<td>28(1)</td>
<td>-2(1)</td>
<td>-5(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>38(2)</td>
<td>50(2)</td>
<td>31(2)</td>
<td>5(2)</td>
<td>-4(1)</td>
<td>-4(2)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 9 (M=Zn).

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>10950(30)</td>
<td>3080(30)</td>
<td>2340(40)</td>
<td>50(10)</td>
</tr>
<tr>
<td>H(1B)</td>
<td>10930(30)</td>
<td>2900(30)</td>
<td>880(30)</td>
<td>44(9)</td>
</tr>
<tr>
<td>H(1C)</td>
<td>11660(40)</td>
<td>2140(30)</td>
<td>1880(30)</td>
<td>47(10)</td>
</tr>
<tr>
<td>H(3)</td>
<td>8880(30)</td>
<td>1940(20)</td>
<td>30(30)</td>
<td>31(8)</td>
</tr>
<tr>
<td>H(5A)</td>
<td>6610(40)</td>
<td>-1510(30)</td>
<td>60(40)</td>
<td>51(13)</td>
</tr>
<tr>
<td>H(5B)</td>
<td>5670(50)</td>
<td>-1800(30)</td>
<td>-630(40)</td>
<td>67(16)</td>
</tr>
<tr>
<td>H(8)</td>
<td>9060(40)</td>
<td>850(30)</td>
<td>5070(30)</td>
<td>41(9)</td>
</tr>
<tr>
<td>H(10A)</td>
<td>7230(40)</td>
<td>-1120(30)</td>
<td>6070(40)</td>
<td>63(12)</td>
</tr>
<tr>
<td>H(10B)</td>
<td>6360(50)</td>
<td>-190(30)</td>
<td>6340(40)</td>
<td>68(13)</td>
</tr>
<tr>
<td>H(10C)</td>
<td>7870(40)</td>
<td>-150(20)</td>
<td>6720(30)</td>
<td>39(9)</td>
</tr>
</tbody>
</table>

Table 6. Torsion angles [°] for 9 (M=Zn).

<table>
<thead>
<tr>
<th>Torsement</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)#1-Zn(1)-O(1)-C(4)</td>
<td>10(100)</td>
</tr>
<tr>
<td>O(2)#1-Zn(1)-O(1)-C(4)</td>
<td>179.7(2)</td>
</tr>
<tr>
<td>O(2)-Zn(1)-O(1)-C(4)</td>
<td>-0.3(2)</td>
</tr>
<tr>
<td>O(5)#1-Zn(1)-O(1)-C(4)</td>
<td>88.5(2)</td>
</tr>
<tr>
<td>O(5)-Zn(1)-O(1)-C(4)</td>
<td>-91.5(2)</td>
</tr>
<tr>
<td>O(1)#1-Zn(1)-O(2)-C(6)</td>
<td>179.1(2)</td>
</tr>
<tr>
<td>O(1)-Zn(1)-O(2)-C(6)</td>
<td>-0.9(2)</td>
</tr>
<tr>
<td>O(2)#1-Zn(1)-O(2)-C(6)</td>
<td>0(100)</td>
</tr>
<tr>
<td>O(5)#1-Zn(1)-O(2)-C(6)</td>
<td>-92.1(2)</td>
</tr>
<tr>
<td>O(5)-Zn(1)-O(2)-C(6)</td>
<td>87.9(2)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)-C(3)</td>
<td>0.8(4)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)-C(1)</td>
<td>-179.9(3)</td>
</tr>
<tr>
<td>O(4)-C(2)-C(3)-C(4)</td>
<td>-1.3(5)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>179.4(3)</td>
</tr>
<tr>
<td>Zn(1)-O(1)-C(4)-C(3)</td>
<td>-179.19(19)</td>
</tr>
<tr>
<td>Zn(1)-O(1)-C(4)-C(5)</td>
<td>0.4(4)</td>
</tr>
</tbody>
</table>
Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z
Table 7. Hydrogen bonds for 9 (M= Zn) [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(5)-H(5A)...O(7)</td>
<td>0.70(4)</td>
<td>2.12(4)</td>
<td>2.794(4)</td>
<td>164(4)</td>
</tr>
<tr>
<td>O(5)-H(5B)...O(6)#2</td>
<td>0.73(4)</td>
<td>2.12(5)</td>
<td>2.851(4)</td>
<td>174(5)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z #2 x-1/2,-y-1/2,z-1/2

Metal-Bispyrone Complex 9 (M=Fe): IR (KBr) cm⁻¹ 1699.1, 1676.0, 1632.5, 1558.1, 1541.5, 1473.3, 1102.6, 623.4. HRMS – calcd 637.9165 found 637.9177. mp > 250 °C.

Crystal Structure:
Table 1. Crystal data and structure refinement for 9 (M= Fe).

<table>
<thead>
<tr>
<th>Identification code</th>
<th>9 (M= Fe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C20 H20 Cl2 Fe O18</td>
</tr>
<tr>
<td>Formula weight</td>
<td>675.11</td>
</tr>
</tbody>
</table>
Temperature 173(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/n
Unit cell dimensions
\[a = 10.113(2) \text{ Å} \]
\[b = 12.627(3) \text{ Å} \]
\[c = 10.339(2) \text{ Å} \]
\[\alpha = 90^\circ \]
\[\beta = 95.402(4)^\circ \]
\[\gamma = 90^\circ \]
Volume 1314.5(5) Å\(^3\)
Z 2
Density (calculated) 1.706 Mg/m\(^3\)
Absorption coefficient 0.863 mm\(^{-1}\)
\(F(000)\) 688
Crystal size 0.39 x 0.22 x 0.10 mm\(^3\)
Theta range for data collection 2.55 to 27.00°.
Index ranges -12<=h<=10, -16<=k<=15, -13<=l<=13
Reflections collected 8603
Independent reflections 2848 [R(int) = 0.0191]
Completeness to theta = 27.00° 99.5 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9186 and 0.7295
Refinement method Full-matrix least-squares on \(F^2\)
Data / restraints / parameters 2848 / 0 / 237
Goodness-of-fit on \(F^2\) 1.039
Final R indices [I>2sigma(I)] R1 = 0.0348, wR2 = 0.0880
R indices (all data) R1 = 0.0411, wR2 = 0.0932
Largest diff. peak and hole 0.334 and -0.361 e.Å\(^{-3}\)

Table 2. Atomic coordinates (x 10\(^4\)) and equivalent isotropic displacement parameters (Å\(^2\)x 10\(^3\)) for \(9\) (M= Fe). \(U(eq)\) is defined as one third of the trace of the orthogonalized \(U^0\) tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(1)</td>
<td>0</td>
<td>5000</td>
<td>5000</td>
<td>33(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>5753(1)</td>
<td>6841(1)</td>
<td>2761(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1739(1)</td>
<td>5855(1)</td>
<td>5088(1)</td>
<td>38(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>452(1)</td>
<td>4761(1)</td>
<td>6996(1)</td>
<td>35(1)</td>
</tr>
</tbody>
</table>

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010
Table 3. Bond lengths [Å] and angles [°] for 9 (M= Fe).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(1)-O(1)</td>
<td>2.0581(15)</td>
</tr>
<tr>
<td>Fe(1)-O(1)#1</td>
<td>2.0581(15)</td>
</tr>
<tr>
<td>Fe(1)-O(2)#1</td>
<td>2.0932(15)</td>
</tr>
<tr>
<td>Fe(1)-O(2)</td>
<td>2.0932(15)</td>
</tr>
<tr>
<td>Fe(1)-O(5)#1</td>
<td>2.1506(18)</td>
</tr>
<tr>
<td>Fe(1)-O(5)</td>
<td>2.1506(18)</td>
</tr>
<tr>
<td>Cl(1)-O(8A)</td>
<td>1.308(12)</td>
</tr>
<tr>
<td>Cl(1)-O(6A)</td>
<td>1.385(11)</td>
</tr>
<tr>
<td>Cl(1)-O(9)</td>
<td>1.4241(18)</td>
</tr>
<tr>
<td>Cl(1)-O(8)</td>
<td>1.434(2)</td>
</tr>
<tr>
<td>Cl(1)-O(7A)</td>
<td>1.448(12)</td>
</tr>
<tr>
<td>Cl(1)-O(6)</td>
<td>1.452(2)</td>
</tr>
</tbody>
</table>
Cl(1)-O(7) 1.4547(19)
O(1)-C(4) 1.251(2)
O(2)-C(6) 1.229(2)
O(3)-C(6) 1.359(2)
O(3)-C(9) 1.375(2)
O(4)-C(7) 1.348(2)
O(4)-C(2) 1.370(3)
O(5)-H(5A) 0.69(3)
O(5)-H(5B) 0.79(4)
C(1)-C(2) 1.481(3)
C(1)-H(1A) 0.95(3)
C(1)-H(1B) 0.89(3)
C(1)-H(1C) 0.95(3)
C(2)-C(3) 1.335(3)
C(3)-C(4) 1.425(3)
C(3)-H(3) 0.84(3)
C(4)-C(5) 1.448(3)
C(5)-C(7) 1.378(3)
C(5)-C(6) 1.437(3)
C(7)-C(8) 1.413(3)
C(8)-C(9) 1.328(3)
C(8)-H(8) 0.74(3)
C(9)-C(10) 1.471(3)
C(10)-H(9C) 0.94(3)
C(10)-H(10A) 0.95(3)
C(10)-H(10B) 1.01(4)
O(1)-Fe(1)-O(1)#1 180.00(8)
O(1)-Fe(1)-O(2)#1 94.25(6)
O(1)#1-Fe(1)-O(2)#1 85.75(6)
O(1)-Fe(1)-O(2) 85.75(6)
O(1)#1-Fe(1)-O(2) 94.25(6)
O(2)#1-Fe(1)-O(2) 180.0
O(1)-Fe(1)-O(5)#1 91.92(7)
O(1)#1-Fe(1)-O(5)#1 88.08(7)
O(2)#1-Fe(1)-O(5)#1 91.59(7)
O(2)-Fe(1)-O(5)#1 88.41(7)
O(1)-Fe(1)-O(5) 88.08(7)
O(1)#1-Fe(1)-O(5) 91.92(7)
O(2)#1-Fe(1)-O(5) 88.41(7)
O(2)-Fe(1)-O(5) 91.59(7)
O(5)#1-Fe(1)-O(5) 180.0
O(8A)-Cl(1)-O(6A) 116.5(9)
O(8A)-Cl(1)-O(9) 107.2(6)
O(6A)-Cl(1)-O(9) 100.6(5)
O(8A)-Cl(1)-O(8) 131.9(5)
O(6A)-Cl(1)-O(8) 80.9(6)
O(9)-Cl(1)-O(8) 113.14(11)
O(8A)-Cl(1)-O(7A) 119.8(8)
O(6A)-Cl(1)-O(7A) 111.0(8)
O(9)-Cl(1)-O(7A) 97.9(6)
O(8)-Cl(1)-O(7A) 31.4(5)
O(8A)-Cl(1)-O(6) 31.1(6)
O(6A)-Cl(1)-O(6) 140.5(6)
O(9)-Cl(1)-O(6) 110.30(13)
O(8)-Cl(1)-O(6) 107.47(13)
O(7A)-Cl(1)-O(6) 88.9(5)
O(8A)-Cl(1)-O(7) 78.2(7)
O(6A)-Cl(1)-O(7) 38.4(6)
O(9)-Cl(1)-O(7) 111.72(12)
O(8)-Cl(1)-O(7) 108.62(14)
O(7A)-Cl(1)-O(7) 139.4(6)
O(6)-Cl(1)-O(7) 105.20(13)
C(4)-O(1)-Fe(1) 131.45(14)
C(6)-O(2)-Fe(1) 129.19(13)
C(6)-O(3)-C(9) 122.64(16)
C(7)-O(4)-Cl(2) 119.63(16)
Fe(1)-O(5)-H(5A) 115(3)
Fe(1)-O(5)-H(5B) 119(2)
H(5A)-O(5)-H(5B) 111(4)
C(2)-C(1)-H(1A) 108.9(17)
C(2)-C(1)-H(1B) 110.4(18)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)-C(1)-H(1B)</td>
<td>110(2)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1C)</td>
<td>110.9(17)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1C)</td>
<td>105(2)</td>
</tr>
<tr>
<td>H(1B)-C(1)-H(1C)</td>
<td>111(2)</td>
</tr>
<tr>
<td>C(3)-C(2)-O(4)</td>
<td>120.99(19)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>127.4(2)</td>
</tr>
<tr>
<td>O(4)-C(2)-C(1)</td>
<td>111.63(19)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>123.0(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3)</td>
<td>119.6(18)</td>
</tr>
<tr>
<td>C(4)-C(3)-H(3)</td>
<td>117.4(17)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(3)</td>
<td>121.31(19)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)</td>
<td>124.21(18)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>114.49(18)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(6)</td>
<td>117.73(18)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(4)</td>
<td>119.66(18)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>122.60(18)</td>
</tr>
<tr>
<td>O(2)-C(6)-O(3)</td>
<td>115.07(17)</td>
</tr>
<tr>
<td>O(2)-C(6)-C(5)</td>
<td>126.79(19)</td>
</tr>
<tr>
<td>O(3)-C(6)-C(5)</td>
<td>118.14(17)</td>
</tr>
<tr>
<td>O(4)-C(7)-C(5)</td>
<td>122.22(18)</td>
</tr>
<tr>
<td>O(4)-C(7)-C(8)</td>
<td>116.17(17)</td>
</tr>
<tr>
<td>C(5)-C(7)-C(8)</td>
<td>121.61(18)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(7)</td>
<td>119.1(2)</td>
</tr>
<tr>
<td>C(9)-C(8)-H(8)</td>
<td>121(2)</td>
</tr>
<tr>
<td>C(7)-C(8)-H(8)</td>
<td>120(2)</td>
</tr>
<tr>
<td>C(8)-C(9)-O(3)</td>
<td>120.81(19)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>126.9(2)</td>
</tr>
<tr>
<td>O(3)-C(9)-C(10)</td>
<td>112.29(19)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(9C)</td>
<td>112.1(15)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10A)</td>
<td>108.6(18)</td>
</tr>
<tr>
<td>H(9C)-C(10)-H(10A)</td>
<td>111(2)</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10B)</td>
<td>109.8(19)</td>
</tr>
<tr>
<td>H(9C)-C(10)-H(10B)</td>
<td>106(2)</td>
</tr>
<tr>
<td>H(10A)-C(10)-H(10B)</td>
<td>109(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z+1

Table 4. Anisotropic displacement parameters (Å² x 10³) for 9 (M= Fe). The anisotropic displacement factor exponent takes the form: $-2p²[h²a⁺²U¹¹ + ... + 2 h k a⁺ b⁺ U¹²]$

<table>
<thead>
<tr>
<th></th>
<th>$U¹¹$</th>
<th>$U²²$</th>
<th>$U³³$</th>
<th>$U²³$</th>
<th>$U¹³$</th>
<th>$U¹²$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(1)</td>
<td>25(1)</td>
<td>42(1)</td>
<td>31(1)</td>
<td>-4(1)</td>
<td>-3(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>33(1)</td>
<td>33(1)</td>
<td>38(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>30(1)</td>
<td>51(1)</td>
<td>34(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>26(1)</td>
<td>32(1)</td>
<td>21(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>28(1)</td>
<td>40(1)</td>
<td>34(1)</td>
<td>1(1)</td>
<td>-2(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>26(1)</td>
<td>41(1)</td>
<td>1(1)</td>
<td>1(1)</td>
<td>-5(1)</td>
<td></td>
</tr>
<tr>
<td>O(5)</td>
<td>39(1)</td>
<td>49(1)</td>
<td>36(1)</td>
<td>-5(1)</td>
<td>-3(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>49(1)</td>
<td>67(2)</td>
<td>36(1)</td>
<td>-5(1)</td>
<td>-3(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>38(1)</td>
<td>50(1)</td>
<td>37(1)</td>
<td>3(1)</td>
<td>-14(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>52(1)</td>
<td>35(1)</td>
<td>61(1)</td>
<td>2(1)</td>
<td>21(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>38(1)</td>
<td>50(1)</td>
<td>36(1)</td>
<td>3(1)</td>
<td>-14(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>34(1)</td>
<td>45(1)</td>
<td>51(1)</td>
<td>5(1)</td>
<td>7(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>29(1)</td>
<td>32(1)</td>
<td>41(1)</td>
<td>1(1)</td>
<td>4(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>30(1)</td>
<td>39(1)</td>
<td>37(1)</td>
<td>1(1)</td>
<td>5(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>27(1)</td>
<td>33(1)</td>
<td>37(1)</td>
<td>-1(1)</td>
<td>2(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>24(1)</td>
<td>29(1)</td>
<td>35(1)</td>
<td>-3(1)</td>
<td>1(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>26(1)</td>
<td>31(1)</td>
<td>33(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>24(1)</td>
<td>28(1)</td>
<td>38(1)</td>
<td>-2(1)</td>
<td>0(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>26(1)</td>
<td>34(1)</td>
<td>34(1)</td>
<td>-3(1)</td>
<td>-7(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>30(1)</td>
<td>33(1)</td>
<td>34(1)</td>
<td>-2(1)</td>
<td>-4(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>42(1)</td>
<td>52(2)</td>
<td>40(1)</td>
<td>9(1)</td>
<td>1(1)</td>
<td>-2(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($\AA^2 \times 10^3$) for 9 ($M = \text{Fe}$).

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>5960(30)</td>
<td>8050(20)</td>
<td>7430(30)</td>
<td>60(8)</td>
</tr>
<tr>
<td>H(1B)</td>
<td>5840(30)</td>
<td>7900(20)</td>
<td>5970(30)</td>
<td>57(8)</td>
</tr>
<tr>
<td>H(1C)</td>
<td>6630(30)</td>
<td>7120(20)</td>
<td>6850(30)</td>
<td>57(8)</td>
</tr>
<tr>
<td>H(3)</td>
<td>3810(20)</td>
<td>6916(19)</td>
<td>5090(30)</td>
<td>44(7)</td>
</tr>
<tr>
<td>H(5A)</td>
<td>750(30)</td>
<td>3200(30)</td>
<td>4310(30)</td>
<td>66(12)</td>
</tr>
<tr>
<td>H(5B)</td>
<td>1720(30)</td>
<td>3440(30)</td>
<td>5050(30)</td>
<td>69(10)</td>
</tr>
<tr>
<td>H(8)</td>
<td>3950(30)</td>
<td>5830(20)</td>
<td>10100(30)</td>
<td>51(8)</td>
</tr>
<tr>
<td>H(9C)</td>
<td>2850(30)</td>
<td>4884(19)</td>
<td>11840(30)</td>
<td>41(7)</td>
</tr>
<tr>
<td>H(10A)</td>
<td>2290(30)</td>
<td>3860(30)</td>
<td>11130(30)</td>
<td>66(9)</td>
</tr>
<tr>
<td>H(10B)</td>
<td>1330(40)</td>
<td>4820(20)</td>
<td>11440(30)</td>
<td>82(10)</td>
</tr>
</tbody>
</table>

Table 6. Torsion angles [$^\circ$] for 9 ($M = \text{Fe}$).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)#1-Fe(1)-O(1)-C(4)</td>
<td>57(100)</td>
</tr>
<tr>
<td>O(2)#1-Fe(1)-O(1)-C(4)</td>
<td>179.34(18)</td>
</tr>
<tr>
<td>O(2)-Fe(1)-O(1)-C(4)</td>
<td>-0.66(18)</td>
</tr>
<tr>
<td>O(5)#1-Fe(1)-O(1)-C(4)</td>
<td>87.59(19)</td>
</tr>
<tr>
<td>O(5)-Fe(1)-O(1)-C(4)</td>
<td>-92.41(19)</td>
</tr>
<tr>
<td>O(1)-Fe(1)-O(2)-C(6)</td>
<td>-0.09(18)</td>
</tr>
<tr>
<td>O(1)#1-Fe(1)-O(2)-C(6)</td>
<td>179.91(18)</td>
</tr>
<tr>
<td>O(2)-Fe(1)-O(2)-C(6)</td>
<td>18(99)</td>
</tr>
<tr>
<td>O(5)#1-Fe(1)-O(2)-C(6)</td>
<td>-92.13(18)</td>
</tr>
<tr>
<td>O(5)-Fe(1)-O(2)-C(6)</td>
<td>87.87(18)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)-C(3)</td>
<td>-0.1(3)</td>
</tr>
<tr>
<td>C(7)-O(4)-C(2)-C(1)</td>
<td>-179.57(18)</td>
</tr>
<tr>
<td>O(4)-C(2)-C(3)-C(4)</td>
<td>-0.4(3)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>179.1(2)</td>
</tr>
<tr>
<td>Fe(1)-O(1)-C(4)-C(3)</td>
<td>-179.51(14)</td>
</tr>
<tr>
<td>Fe(1)-O(1)-C(4)-C(5)</td>
<td>0.8(3)</td>
</tr>
</tbody>
</table>
C(2)-C(3)-C(4)-O(1) -179.4(2)
C(2)-C(3)-C(4)-C(5) 0.3(3)
O(1)-C(4)-C(5)-C(7) 179.82(19)
C(3)-C(4)-C(5)-C(7) 0.1(3)
O(1)-C(4)-C(5)-C(6) -0.1(3)
C(3)-C(4)-C(5)-C(6) -179.81(18)
Fe(1)-O(2)-C(6)-O(3) -179.44(11)
Fe(1)-O(2)-C(6)-C(5) 0.7(3)
C(9)-O(3)-C(6)-O(2) -179.68(17)
C(9)-O(3)-C(6)-C(5) 0.2(3)
C(7)-C(5)-C(6)-O(2) 179.39(17)
C(4)-C(5)-C(6)-O(2) -0.7(3)
C(7)-C(5)-C(6)-O(3) -0.5(3)
C(4)-C(5)-C(6)-O(3) 179.45(17)
C(2)-O(4)-C(7)-C(5) 0.5(3)
C(2)-O(4)-C(7)-C(8) -179.89(17)
C(6)-C(5)-C(7)-O(4) 179.38(17)
C(4)-C(5)-C(7)-O(4) -0.6(3)
C(6)-C(5)-C(7)-C(8) -0.2(3)
C(4)-C(5)-C(7)-C(8) 179.88(18)
O(4)-C(7)-C(8)-C(9) -178.43(18)
C(5)-C(7)-C(8)-C(9) 1.2(3)
C(7)-C(8)-C(9)-O(3) -1.4(3)
C(7)-C(8)-C(9)-C(10) 177.4(2)
C(6)-O(3)-C(9)-C(8) 0.8(3)
C(6)-O(3)-C(9)-C(10) -178.24(18)

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z+1

Table 7. Hydrogen bonds for 9 (M= Fe) [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(5)-H(5A)...O(6)#2</td>
<td>0.69(3)</td>
<td>2.19(4)</td>
<td>2.871(4)</td>
<td>170(4)</td>
</tr>
<tr>
<td>O(5)-H(5A)...O(7A)#2</td>
<td>0.69(3)</td>
<td>2.30(4)</td>
<td>2.796(13)</td>
<td>130(4)</td>
</tr>
<tr>
<td>Bond</td>
<td>d (Å)</td>
<td>r (Å)</td>
<td>D (Å)</td>
<td>ϕ (°)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>O(5)-H(5B)...O(6A)#3</td>
<td>0.79(4)</td>
<td>1.99(4)</td>
<td>2.771(12)</td>
<td>171(3)</td>
</tr>
<tr>
<td>O(5)-H(5B)...O(7)#3</td>
<td>0.79(4)</td>
<td>2.04(4)</td>
<td>2.796(3)</td>
<td>160(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1
#2 -x+1/2,y-1/2,-z+1/2
#3 -x+1,-y+1,-z+1

Ba$_2$-(tetrakis)bispyrone Complex 10

NMR- $\delta ^1$H (DMSO) 2.42 s (3H), 6.32 s (1H), δ 13C 18.88, 106.33, 114.82, 161.86, 167.88, 175.87; IR (KBr) cm$^{-1}$ 1671.7, 1647.7, 1462.5, 1254.7, 1181.1, 1118.9, 627.9. HRMS – calcd 620.9383 found 620.9388.
Table 1. Crystal data and structure refinement for 10.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C20 H20 Ba Cl2 O18</td>
</tr>
<tr>
<td>Formula weight</td>
<td>756.60</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Temperature</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>10.1152(15) Å</td>
</tr>
<tr>
<td>b</td>
<td>10.2248(15) Å</td>
</tr>
<tr>
<td>c</td>
<td>12.9429(19) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>1303.9(3) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.927 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.815 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>748</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.39 x 0.24 x 0.08 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.60 to 27.00°</td>
</tr>
<tr>
<td>Index ranges</td>
<td></td>
</tr>
<tr>
<td>-12<=h<=12, -13<=k<=13, -16<=l<=16</td>
<td></td>
</tr>
<tr>
<td>Reflections collected</td>
<td>14739</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5654 [R(int) = 0.0153]</td>
</tr>
<tr>
<td>Completeness to theta = 27.00°</td>
<td>99.1 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.8684 and 0.5379</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5654 / 8 / 479</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.186</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0205, wR2 = 0.0635</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0209, wR2 = 0.0639</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.543 and -0.453 e.Å⁻³</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for 10. U(eq) is defined as one third of the trace of the orthogonalized U^ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba(1)</td>
<td>2395(1)</td>
<td>7731(1)</td>
<td>5250(1)</td>
<td>23(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>669(1)</td>
<td>10748(1)</td>
<td>6452(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>3611(1)</td>
<td>7685(1)</td>
<td>8257(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1167(2)</td>
<td>6090(2)</td>
<td>3477(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>3257(2)</td>
<td>8259(2)</td>
<td>3387(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>-419(2)</td>
<td>7004(2)</td>
<td>556(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>1083(2)</td>
<td>8702(2)</td>
<td>522(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>5095(2)</td>
<td>7470(2)</td>
<td>5372(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>3131(2)</td>
<td>5235(2)</td>
<td>5515(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>7445(2)</td>
<td>5977(2)</td>
<td>7756(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>5929(2)</td>
<td>4337(2)</td>
<td>7920(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>978(2)</td>
<td>9438(2)</td>
<td>6278(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>1125(2)</td>
<td>11195(2)</td>
<td>7536(1)</td>
<td>47(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>1335(2)</td>
<td>11624(2)</td>
<td>5794(2)</td>
<td>47(1)</td>
</tr>
<tr>
<td>O(12)</td>
<td>2687(13)</td>
<td>6904(13)</td>
<td>7428(9)</td>
<td>69(3)</td>
</tr>
<tr>
<td>O(13)</td>
<td>4060(5)</td>
<td>9049(5)</td>
<td>8151(10)</td>
<td>76(3)</td>
</tr>
<tr>
<td>O(14)</td>
<td>2715(6)</td>
<td>7681(6)</td>
<td>9032(6)</td>
<td>49(1)</td>
</tr>
<tr>
<td>O(15)</td>
<td>4760(14)</td>
<td>7070(16)</td>
<td>8681(15)</td>
<td>47(3)</td>
</tr>
<tr>
<td>O(16)</td>
<td>2854(16)</td>
<td>6990(17)</td>
<td>7326(9)</td>
<td>52(4)</td>
</tr>
<tr>
<td>O(13A)</td>
<td>4209(10)</td>
<td>8528(15)</td>
<td>7501(10)</td>
<td>81(5)</td>
</tr>
<tr>
<td>O(14A)</td>
<td>3000(20)</td>
<td>8210(20)</td>
<td>8970(11)</td>
<td>136(8)</td>
</tr>
<tr>
<td>O(15A)</td>
<td>4550(20)</td>
<td>6810(20)</td>
<td>8653(19)</td>
<td>37(4)</td>
</tr>
<tr>
<td>O(16A)</td>
<td>3883(2)</td>
<td>10210(2)</td>
<td>5660(2)</td>
<td>48(1)</td>
</tr>
<tr>
<td>O(17)</td>
<td>-64(2)</td>
<td>6344(2)</td>
<td>5562(2)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>-2293(4)</td>
<td>5319(3)</td>
<td>307(3)</td>
<td>53(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>-1039(3)</td>
<td>5950(2)</td>
<td>1016(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>-504(3)</td>
<td>5630(2)</td>
<td>1968(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>724(2)</td>
<td>6363(2)</td>
<td>2579(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>1357(2)</td>
<td>7459(2)</td>
<td>2053(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>712(2)</td>
<td>7705(2)</td>
<td>1091(2)</td>
<td>24(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 10.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(7)</td>
<td>2581(2)</td>
<td>8371(2)</td>
<td>2520(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2951(2)</td>
<td>9431(2)</td>
<td>1870(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2240(2)</td>
<td>9574(2)</td>
<td>931(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2510(3)</td>
<td>10606(3)</td>
<td>192(2)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>9316(3)</td>
<td>7662(3)</td>
<td>7864(2)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>7940(2)</td>
<td>7103(2)</td>
<td>7313(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>7192(2)</td>
<td>7575(2)</td>
<td>6497(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>5820(2)</td>
<td>6967(2)</td>
<td>6066(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>5352(2)</td>
<td>5755(2)</td>
<td>6535(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>6202(2)</td>
<td>5366(2)</td>
<td>7356(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>4001(2)</td>
<td>4977(2)</td>
<td>6237(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>3743(2)</td>
<td>3875(2)</td>
<td>6875(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>4653(2)</td>
<td>3596(2)</td>
<td>7671(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>4481(3)</td>
<td>2539(3)</td>
<td>8413(2)</td>
<td>39(1)</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba(1)-O(17)</td>
<td>2.7472(18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(2)</td>
<td>2.7507(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(5)</td>
<td>2.7586(17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(6)</td>
<td>2.7731(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(1)</td>
<td>2.7842(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(18)</td>
<td>2.7917(18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(13A)</td>
<td>2.804(15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(9)</td>
<td>2.8269(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(10)#1</td>
<td>2.9247(17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(13)</td>
<td>2.958(13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba(1)-O(14A)</td>
<td>3.177(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(9)</td>
<td>1.4335(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(11)</td>
<td>1.4341(18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(12)</td>
<td>1.442(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)-O(10)</td>
<td>1.4423(16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(2)-O(15A)</td>
<td>1.322(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(2)-O(16)</td>
<td>1.435(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(2)-O(13A)</td>
<td>1.417(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cl(2)-O(14) 1.427(4)
Cl(2)-O(13) 1.430(10)
Cl(2)-O(15) 1.461(5)
Cl(2)-O(14A) 1.483(7)
Cl(2)-O(16A) 1.438(16)
O(1)-C(4) 1.232(3)
O(2)-C(7) 1.230(3)
O(3)-C(6) 1.329(3)
O(3)-C(2) 1.382(3)
O(4)-C(6) 1.332(3)
O(4)-C(9) 1.382(3)
O(5)-C(14) 1.237(3)
O(6)-C(17) 1.235(3)
O(7)-C(16) 1.332(3)
O(7)-C(12) 1.381(3)
O(8)-C(16) 1.332(2)
O(8)-C(19) 1.384(3)
O(10)-Ba(1)#1 2.9247(17)
O(18)-H(1O) 0.80(5)
O(18)-H(2O) 0.74(4)
C(1)-C(2) 1.483(4)
C(1)-H(1A) 0.87(4)
C(1)-H(1B) 0.95(4)
C(1)-H(1C) 1.04(4)
C(2)-C(3) 1.333(3)
C(3)-C(4) 1.446(3)
C(3)-H(3) 0.96(3)
C(4)-C(5) 1.465(3)
C(5)-C(6) 1.356(3)
C(5)-C(7) 1.466(3)
C(7)-C(8) 1.448(3)
C(8)-C(9) 1.329(3)
C(8)-H(8) 0.86(3)
C(9)-C(10) 1.484(3)
C(10)-H(10A) 0.82(4)
C(10)-H(10B) 0.93(4)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(10)-H(10C)</td>
<td>0.94(3)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.478(3)</td>
</tr>
<tr>
<td>C(11)-H(11A)</td>
<td>0.81(5)</td>
</tr>
<tr>
<td>C(11)-H(11B)</td>
<td>0.87(4)</td>
</tr>
<tr>
<td>C(11)-H(11C)</td>
<td>0.99(5)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.339(3)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.447(3)</td>
</tr>
<tr>
<td>C(13)-H(13)</td>
<td>1.02(3)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.461(3)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.359(3)</td>
</tr>
<tr>
<td>C(15)-C(17)</td>
<td>1.466(3)</td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.447(3)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.328(3)</td>
</tr>
<tr>
<td>C(18)-H(18)</td>
<td>0.92(3)</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.489(3)</td>
</tr>
<tr>
<td>C(20)-H(20A)</td>
<td>0.80(4)</td>
</tr>
<tr>
<td>C(20)-H(20B)</td>
<td>0.96(4)</td>
</tr>
<tr>
<td>C(20)-H(20C)</td>
<td>1.08(4)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(2)</td>
<td>76.35(6)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(5)</td>
<td>72.07(6)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(5)</td>
<td>68.78(5)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(6)</td>
<td>131.36(6)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(6)</td>
<td>100.06(5)</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(6)</td>
<td>62.04(5)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(1)</td>
<td>136.81(5)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(1)</td>
<td>62.45(5)</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(1)</td>
<td>102.41(6)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(1)</td>
<td>71.59(5)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(18)</td>
<td>139.93(6)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(18)</td>
<td>128.62(5)</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(18)</td>
<td>141.41(6)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(18)</td>
<td>79.99(6)</td>
</tr>
<tr>
<td>O(1)-Ba(1)-O(18)</td>
<td>69.34(5)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(13A)</td>
<td>96.1(4)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(13A)</td>
<td>151.5(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(13A)</td>
<td>82.8(3)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(13A)</td>
<td>64.2(3)</td>
</tr>
<tr>
<td>O(1)-Ba(1)-O(13A)</td>
<td>126.3(3)</td>
</tr>
<tr>
<td>O(18)-Ba(1)-O(13A)</td>
<td>74.3(4)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(9)</td>
<td>69.58(6)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(9)</td>
<td>123.10(5)</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(9)</td>
<td>134.27(5)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(9)</td>
<td>136.64(5)</td>
</tr>
<tr>
<td>O(1)-Ba(1)-O(9)</td>
<td>122.54(5)</td>
</tr>
<tr>
<td>O(18)-Ba(1)-O(9)</td>
<td>70.36(5)</td>
</tr>
<tr>
<td>O(13A)-Ba(1)-O(9)</td>
<td>77.5(3)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(10)#1</td>
<td>78.66(6)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(10)#1</td>
<td>62.91(5)</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(10)#1</td>
<td>127.92(5)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(10)#1</td>
<td>143.36(5)</td>
</tr>
<tr>
<td>O(1)-Ba(1)-O(10)#1</td>
<td>71.78(5)</td>
</tr>
<tr>
<td>O(18)-Ba(1)-O(10)#1</td>
<td>86.59(6)</td>
</tr>
<tr>
<td>O(13A)-Ba(1)-O(10)#1</td>
<td>143.4(3)</td>
</tr>
<tr>
<td>O(9)-Ba(1)-O(10)#1</td>
<td>66.60(5)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(13)</td>
<td>98.3(2)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(13)</td>
<td>155.0(3)</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(13)</td>
<td>86.3(3)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(13)</td>
<td>64.8(2)</td>
</tr>
<tr>
<td>O(1)-Ba(1)-O(13)</td>
<td>124.5(2)</td>
</tr>
<tr>
<td>O(18)-Ba(1)-O(13)</td>
<td>70.7(2)</td>
</tr>
<tr>
<td>O(13A)-Ba(1)-O(13)</td>
<td>3.7(6)</td>
</tr>
<tr>
<td>O(9)-Ba(1)-O(13)</td>
<td>75.7(2)</td>
</tr>
<tr>
<td>O(10)#1-Ba(1)-O(13)</td>
<td>140.8(3)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(14A)</td>
<td>60.33(17)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(14A)</td>
<td>123.98(18)</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(14A)</td>
<td>65.4(3)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(14A)</td>
<td>85.6(3)</td>
</tr>
<tr>
<td>O(1)-Ba(1)-O(14A)</td>
<td>157.2(3)</td>
</tr>
<tr>
<td>O(18)-Ba(1)-O(14A)</td>
<td>107.34(17)</td>
</tr>
<tr>
<td>O(13A)-Ba(1)-O(14A)</td>
<td>36.8(4)</td>
</tr>
<tr>
<td>O(9)-Ba(1)-O(14A)</td>
<td>74.4(4)</td>
</tr>
</tbody>
</table>
O(10)-Ba(1)-O(14A) 131.1(3)
O(13)-Ba(1)-O(14A) 39.7(3)
O(9)-Cl(1)-O(11) 109.61(11)
O(9)-Cl(1)-O(12) 109.29(11)
O(11)-Cl(1)-O(12) 109.91(13)
O(9)-Cl(1)-O(10) 109.11(10)
O(11)-Cl(1)-O(10) 109.45(11)
O(12)-Cl(1)-O(10) 109.45(12)
O(15A)-Cl(2)-O(16) 114.6(10)
O(15A)-Cl(2)-O(13A) 121.3(12)
O(16)-Cl(2)-O(13A) 112.1(9)
O(15A)-Cl(2)-O(14) 81.4(10)
O(16)-Cl(2)-O(14) 108.8(8)
O(13A)-Cl(2)-O(14) 114.5(10)
O(15A)-Cl(2)-O(13) 113.3(13)
O(16)-Cl(2)-O(13) 114.2(9)
O(13A)-Cl(2)-O(13) 9.7(13)
O(14)-Cl(2)-O(13) 120.7(8)
O(15A)-Cl(2)-O(15) 23.8(12)
O(16)-Cl(2)-O(15) 108.4(8)
O(13A)-Cl(2)-O(15) 107.5(8)
O(14)-Cl(2)-O(15) 105.1(4)
O(13)-Cl(2)-O(15) 98.1(6)
O(15A)-Cl(2)-O(14A) 120.5(9)
O(16)-Cl(2)-O(14A) 100.1(8)
O(13A)-Cl(2)-O(14A) 82.8(10)
O(14)-Cl(2)-O(14A) 40.9(5)
O(13)-Cl(2)-O(14A) 91.8(8)
O(15)-Cl(2)-O(14A) 142.4(8)
O(15A)-Cl(2)-O(16A) 114.9(13)
O(16)-Cl(2)-O(16A) 12.5(16)
O(13A)-Cl(2)-O(16A) 103.7(12)
O(14)-Cl(2)-O(16A) 121.2(11)
O(13)-Cl(2)-O(16A) 104.2(12)
O(15)-Cl(2)-O(16A) 103.7(10)
O(14A)-Cl(2)-O(16A) 108.8(11)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(4)-O(1)-Ba(1)</td>
<td>130.44(14)</td>
</tr>
<tr>
<td>C(7)-O(2)-Ba(1)</td>
<td>129.07(14)</td>
</tr>
<tr>
<td>C(6)-O(3)-C(2)</td>
<td>118.51(17)</td>
</tr>
<tr>
<td>C(6)-O(4)-C(9)</td>
<td>118.13(17)</td>
</tr>
<tr>
<td>C(14)-O(5)-Ba(1)</td>
<td>127.55(14)</td>
</tr>
<tr>
<td>C(17)-O(6)-Ba(1)</td>
<td>124.16(13)</td>
</tr>
<tr>
<td>C(16)-O(7)-C(12)</td>
<td>118.56(17)</td>
</tr>
<tr>
<td>C(17)-O(8)-C(19)</td>
<td>117.78(17)</td>
</tr>
<tr>
<td>Cl(1)-O(9)-Ba(1)</td>
<td>148.38(10)</td>
</tr>
<tr>
<td>Cl(1)-O(10)-Ba(1)#1</td>
<td>131.12(11)</td>
</tr>
<tr>
<td>Cl(2)-O(13)-Ba(1)</td>
<td>120.4(8)</td>
</tr>
<tr>
<td>Cl(2)-O(13A)-Ba(1)</td>
<td>130.9(11)</td>
</tr>
<tr>
<td>Cl(2)-O(14A)-Ba(1)</td>
<td>107.2(4)</td>
</tr>
<tr>
<td>Ba(1)-O(18)-H(1O)</td>
<td>135(3)</td>
</tr>
<tr>
<td>Ba(1)-O(18)-H(2O)</td>
<td>109(3)</td>
</tr>
<tr>
<td>H(1O)-O(18)-H(2O)</td>
<td>110(4)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1A)</td>
<td>120(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1B)</td>
<td>108(2)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1B)</td>
<td>103(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1C)</td>
<td>110(2)</td>
</tr>
<tr>
<td>H(1A)-C(1)-H(1C)</td>
<td>113(3)</td>
</tr>
<tr>
<td>H(1B)-C(1)-H(1C)</td>
<td>101(3)</td>
</tr>
<tr>
<td>C(3)-C(2)-O(3)</td>
<td>120.8(2)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>129.0(2)</td>
</tr>
<tr>
<td>O(3)-C(2)-C(1)</td>
<td>110.2(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>122.7(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3)</td>
<td>117.2(19)</td>
</tr>
<tr>
<td>C(4)-C(3)-H(3)</td>
<td>120.1(19)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(3)</td>
<td>121.7(2)</td>
</tr>
<tr>
<td>O(1)-C(4)-C(5)</td>
<td>123.7(2)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>114.65(19)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>117.5(2)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(7)</td>
<td>117.31(19)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(7)</td>
<td>125.00(19)</td>
</tr>
<tr>
<td>O(3)-C(6)-O(4)</td>
<td>107.93(18)</td>
</tr>
<tr>
<td>O(3)-C(6)-C(5)</td>
<td>125.80(19)</td>
</tr>
</tbody>
</table>
O(4)-C(6)-C(5) 126.3(2)
O(2)-C(7)-C(8) 121.7(2)
O(2)-C(7)-C(5) 123.8(2)
C(8)-C(7)-C(5) 114.48(19)
C(9)-C(8)-C(7) 123.0(2)
C(9)-C(8)-H(8) 117.6(18)
C(7)-C(8)-H(8) 119.3(18)
C(8)-C(9)-O(4) 120.8(2)
C(8)-C(9)-C(10) 128.2(2)
O(4)-C(9)-C(10) 111.0(2)
C(9)-C(10)-H(10A) 110(3)
C(9)-C(10)-H(10B) 112(2)
H(10A)-C(10)-H(10B) 106(4)
C(9)-C(10)-H(10C) 110(2)
H(10A)-C(10)-H(10C) 109(4)
H(10B)-C(10)-H(10C) 109(3)
C(12)-C(11)-H(11A) 115(3)
C(12)-C(11)-H(11B) 116(3)
H(11A)-C(11)-H(11B) 116(4)
C(12)-C(11)-H(11C) 110(3)
H(11A)-C(11)-H(11C) 100(4)
H(11B)-C(11)-H(11C) 97(4)
C(13)-C(12)-O(7) 120.9(2)
C(13)-C(12)-C(11) 127.8(2)
O(7)-C(12)-C(11) 111.32(19)
C(12)-C(13)-C(14) 122.1(2)
C(12)-C(13)-H(13) 117.4(16)
C(14)-C(13)-H(13) 120.5(16)
O(5)-C(14)-C(13) 121.7(2)
O(5)-C(14)-C(15) 123.1(2)
C(13)-C(14)-C(15) 115.19(19)
C(16)-C(15)-C(14) 117.44(19)
C(16)-C(15)-C(17) 117.44(19)
C(14)-C(15)-C(17) 124.98(19)
O(7)-C(16)-O(8) 108.05(17)
O(7)-C(16)-C(15) 125.71(19)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(8)-C(16)-C(15)</td>
<td>126.22(19)</td>
</tr>
<tr>
<td>O(6)-C(17)-C(18)</td>
<td>121.8(2)</td>
</tr>
<tr>
<td>O(6)-C(17)-C(15)</td>
<td>123.7(2)</td>
</tr>
<tr>
<td>C(18)-C(17)-C(15)</td>
<td>114.52(18)</td>
</tr>
<tr>
<td>C(19)-C(18)-C(17)</td>
<td>122.8(2)</td>
</tr>
<tr>
<td>C(19)-C(18)-H(18)</td>
<td>117.9(17)</td>
</tr>
<tr>
<td>C(17)-C(18)-H(18)</td>
<td>119.3(17)</td>
</tr>
<tr>
<td>C(18)-C(19)-O(8)</td>
<td>121.22(19)</td>
</tr>
<tr>
<td>C(18)-C(19)-C(20)</td>
<td>127.7(2)</td>
</tr>
<tr>
<td>O(8)-C(19)-C(20)</td>
<td>111.10(19)</td>
</tr>
<tr>
<td>C(19)-C(20)-H(20A)</td>
<td>114(3)</td>
</tr>
<tr>
<td>C(19)-C(20)-H(20B)</td>
<td>110(2)</td>
</tr>
<tr>
<td>H(20A)-C(20)-H(20B)</td>
<td>119(4)</td>
</tr>
<tr>
<td>C(19)-C(20)-H(20C)</td>
<td>109(2)</td>
</tr>
<tr>
<td>H(20A)-C(20)-H(20C)</td>
<td>95(3)</td>
</tr>
<tr>
<td>H(20B)-C(20)-H(20C)</td>
<td>108(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z+1
Table 4. Anisotropic displacement parameters (Å²x 10³) for 10. The anisotropic displacement factor exponent takes the form: -2p² [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

<table>
<thead>
<tr>
<th></th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U²³</th>
<th>U¹³</th>
<th>U¹²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba(1)</td>
<td>24(1)</td>
<td>21(1)</td>
<td>24(1)</td>
<td>4(1)</td>
<td>6(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>27(1)</td>
<td>25(1)</td>
<td>28(1)</td>
<td>-2(1)</td>
<td>0(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>33(1)</td>
<td>35(1)</td>
<td>41(1)</td>
<td>6(1)</td>
<td>4(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>50(1)</td>
<td>28(1)</td>
<td>23(1)</td>
<td>6(1)</td>
<td>4(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>24(1)</td>
<td>54(1)</td>
<td>27(1)</td>
<td>9(1)</td>
<td>4(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>36(1)</td>
<td>28(1)</td>
<td>25(1)</td>
<td>6(1)</td>
<td>0(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>31(1)</td>
<td>27(1)</td>
<td>25(1)</td>
<td>7(1)</td>
<td>6(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>32(1)</td>
<td>43(1)</td>
<td>40(1)</td>
<td>23(1)</td>
<td>6(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>35(1)</td>
<td>28(1)</td>
<td>33(1)</td>
<td>2(1)</td>
<td>-6(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>24(1)</td>
<td>30(1)</td>
<td>26(1)</td>
<td>7(1)</td>
<td>4(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>25(1)</td>
<td>27(1)</td>
<td>30(1)</td>
<td>10(1)</td>
<td>3(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>38(1)</td>
<td>26(1)</td>
<td>39(1)</td>
<td>3(1)</td>
<td>14(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>27(1)</td>
<td>45(1)</td>
<td>36(1)</td>
<td>-5(1)</td>
<td>-2(1)</td>
<td>14(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>40(1)</td>
<td>63(1)</td>
<td>33(1)</td>
<td>-16(1)</td>
<td>-8(1)</td>
<td>20(1)</td>
</tr>
<tr>
<td>O(12)</td>
<td>52(1)</td>
<td>30(1)</td>
<td>55(1)</td>
<td>10(1)</td>
<td>7(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>O(13)</td>
<td>59(4)</td>
<td>76(5)</td>
<td>62(6)</td>
<td>-3(4)</td>
<td>-10(4)</td>
<td>0(4)</td>
</tr>
<tr>
<td>O(14)</td>
<td>55(2)</td>
<td>36(2)</td>
<td>142(8)</td>
<td>17(3)</td>
<td>38(3)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>O(15)</td>
<td>51(3)</td>
<td>54(3)</td>
<td>47(2)</td>
<td>-4(2)</td>
<td>19(2)</td>
<td>19(2)</td>
</tr>
<tr>
<td>O(16)</td>
<td>32(4)</td>
<td>59(6)</td>
<td>45(4)</td>
<td>-11(4)</td>
<td>-9(3)</td>
<td>11(5)</td>
</tr>
<tr>
<td>O(13A)</td>
<td>60(6)</td>
<td>90(9)</td>
<td>11(3)</td>
<td>-12(4)</td>
<td>-5(3)</td>
<td>51(7)</td>
</tr>
<tr>
<td>O(14A)</td>
<td>62(5)</td>
<td>87(8)</td>
<td>77(7)</td>
<td>47(6)</td>
<td>-10(4)</td>
<td>-35(5)</td>
</tr>
<tr>
<td>O(15A)</td>
<td>232(17)</td>
<td>146(16)</td>
<td>50(6)</td>
<td>-39(8)</td>
<td>4(8)</td>
<td>139(13)</td>
</tr>
<tr>
<td>O(16A)</td>
<td>31(6)</td>
<td>50(7)</td>
<td>30(6)</td>
<td>11(6)</td>
<td>4(4)</td>
<td>6(5)</td>
</tr>
<tr>
<td>O(17)</td>
<td>54(1)</td>
<td>30(1)</td>
<td>55(1)</td>
<td>6(1)</td>
<td>12(1)</td>
<td>-9(1)</td>
</tr>
<tr>
<td>O(18)</td>
<td>28(1)</td>
<td>37(1)</td>
<td>40(1)</td>
<td>8(1)</td>
<td>6(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>62(2)</td>
<td>44(2)</td>
<td>39(2)</td>
<td>9(1)</td>
<td>-9(1)</td>
<td>-22(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>43(1)</td>
<td>25(1)</td>
<td>30(1)</td>
<td>3(1)</td>
<td>5(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>45(1)</td>
<td>23(1)</td>
<td>30(1)</td>
<td>4(1)</td>
<td>6(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>37(1)</td>
<td>22(1)</td>
<td>25(1)</td>
<td>4(1)</td>
<td>9(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>26(1)</td>
<td>25(1)</td>
<td>22(1)</td>
<td>4(1)</td>
<td>7(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>28(1)</td>
<td>21(1)</td>
<td>24(1)</td>
<td>2(1)</td>
<td>8(1)</td>
<td>4(1)</td>
</tr>
</tbody>
</table>
C(7) 23(1) 34(1) 26(1) 3(1) 8(1) 8(1)
C(8) 24(1) 31(1) 33(1) 1(1) 8(1) 1(1)
C(9) 27(1) 25(1) 31(1) 3(1) 11(1) 3(1)
C(10) 43(1) 29(1) 41(1) 11(1) 13(1) 4(1)
C(11) 30(1) 40(1) 33(1) 5(1) 6(1) -4(1)
C(12) 28(1) 27(1) 27(1) 3(1) 11(1) 2(1)
C(13) 30(1) 30(1) 30(1) 8(1) 9(1) 4(1)
C(14) 30(1) 31(1) 26(1) 7(1) 9(1) 9(1)
C(15) 26(1) 24(1) 21(1) 3(1) 6(1) 7(1)
C(16) 25(1) 24(1) 24(1) 4(1) 7(1) 5(1)
C(17) 30(1) 22(1) 26(1) -2(1) 3(1) 6(1)
C(18) 27(1) 25(1) 35(1) 3(1) 2(1) 2(1)
C(19) 27(1) 24(1) 34(1) 5(1) 7(1) 4(1)
C(20) 33(1) 37(1) 49(2) 21(1) 9(1) 5(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for **10**.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>-2810(40)</td>
<td>4670(40)</td>
<td>520(30)</td>
<td>72(12)</td>
</tr>
<tr>
<td>H(1B)</td>
<td>-2040(40)</td>
<td>4920(40)</td>
<td>-300(30)</td>
<td>66(11)</td>
</tr>
<tr>
<td>H(1C)</td>
<td>-2830(40)</td>
<td>6040(40)</td>
<td>-30(30)</td>
<td>77(12)</td>
</tr>
<tr>
<td>H(3)</td>
<td>-990(30)</td>
<td>4900(30)</td>
<td>2250(30)</td>
<td>52(9)</td>
</tr>
<tr>
<td>H(8)</td>
<td>3680(30)</td>
<td>9980(30)</td>
<td>2090(20)</td>
<td>30(7)</td>
</tr>
<tr>
<td>H(10A)</td>
<td>2640(40)</td>
<td>10260(40)</td>
<td>-360(30)</td>
<td>74(13)</td>
</tr>
<tr>
<td>H(10B)</td>
<td>1780(40)</td>
<td>11060(40)</td>
<td>10(30)</td>
<td>70(11)</td>
</tr>
<tr>
<td>H(10C)</td>
<td>3280(30)</td>
<td>11220(30)</td>
<td>490(30)</td>
<td>50(9)</td>
</tr>
<tr>
<td>H(11A)</td>
<td>9900(50)</td>
<td>7200(50)</td>
<td>7800(40)</td>
<td>86(15)</td>
</tr>
<tr>
<td>H(11B)</td>
<td>9560(40)</td>
<td>8510(40)</td>
<td>7830(30)</td>
<td>78(13)</td>
</tr>
<tr>
<td>H(11C)</td>
<td>9350(50)</td>
<td>7670(50)</td>
<td>8630(40)</td>
<td>92(15)</td>
</tr>
<tr>
<td>H(13)</td>
<td>7620(30)</td>
<td>8400(30)</td>
<td>6190(20)</td>
<td>37(7)</td>
</tr>
<tr>
<td>H(18)</td>
<td>2900(30)</td>
<td>3360(30)</td>
<td>6750(20)</td>
<td>35(7)</td>
</tr>
<tr>
<td>H(20A)</td>
<td>5060(40)</td>
<td>2070(40)</td>
<td>8470(30)</td>
<td>72(12)</td>
</tr>
</tbody>
</table>
Table 6. Torsion angles [°] for 10.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Torsion Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(17)-Ba(1)-O(1)-C(4)</td>
<td>-26.7(2)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(1)-C(4)</td>
<td>-45.83(19)</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(1)-C(4)</td>
<td>-103.6(2)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(1)-C(4)</td>
<td>-158.2(2)</td>
</tr>
<tr>
<td>O(18)-Ba(1)-O(1)-C(4)</td>
<td>115.8(2)</td>
</tr>
<tr>
<td>O(13A)-Ba(1)-O(1)-C(4)</td>
<td>166.3(4)</td>
</tr>
<tr>
<td>O(9)-Ba(1)-O(1)-C(4)</td>
<td>67.6(2)</td>
</tr>
<tr>
<td>O(10)#1-Ba(1)-O(1)-C(4)</td>
<td>22.52(19)</td>
</tr>
<tr>
<td>O(13)-Ba(1)-O(1)-C(4)</td>
<td>162.3(4)</td>
</tr>
<tr>
<td>O(14A)-Ba(1)-O(1)-C(4)</td>
<td>-158.5(6)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(2)-C(7)</td>
<td>-116.9(2)</td>
</tr>
<tr>
<td>O(5)-Ba(1)-O(2)-C(7)</td>
<td>167.3(2)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(2)-C(7)</td>
<td>112.7(2)</td>
</tr>
<tr>
<td>O(1)-Ba(1)-O(2)-C(7)</td>
<td>49.7(2)</td>
</tr>
<tr>
<td>O(18)-Ba(1)-O(2)-C(7)</td>
<td>27.5(2)</td>
</tr>
<tr>
<td>O(13A)-Ba(1)-O(2)-C(7)</td>
<td>165.8(7)</td>
</tr>
<tr>
<td>O(9)-Ba(1)-O(2)-C(7)</td>
<td>-62.9(2)</td>
</tr>
<tr>
<td>O(10)#1-Ba(1)-O(2)-C(7)</td>
<td>-32.86(19)</td>
</tr>
<tr>
<td>O(13)-Ba(1)-O(2)-C(7)</td>
<td>162.8(6)</td>
</tr>
<tr>
<td>O(14A)-Ba(1)-O(2)-C(7)</td>
<td>-155.9(4)</td>
</tr>
<tr>
<td>O(17)-Ba(1)-O(5)-C(14)</td>
<td>110.4(2)</td>
</tr>
<tr>
<td>O(2)-Ba(1)-O(5)-C(14)</td>
<td>-167.7(2)</td>
</tr>
<tr>
<td>O(6)-Ba(1)-O(5)-C(14)</td>
<td>-53.00(19)</td>
</tr>
<tr>
<td>O(1)-Ba(1)-O(5)-C(14)</td>
<td>-114.1(2)</td>
</tr>
<tr>
<td>O(18)-Ba(1)-O(5)-C(14)</td>
<td>-41.8(2)</td>
</tr>
<tr>
<td>O(13A)-Ba(1)-O(5)-C(14)</td>
<td>11.6(4)</td>
</tr>
<tr>
<td>O(9)-Ba(1)-O(5)-C(14)</td>
<td>76.2(2)</td>
</tr>
<tr>
<td>O(10)#1-Ba(1)-O(5)-C(14)</td>
<td>169.43(18)</td>
</tr>
</tbody>
</table>
O(13)-Ba(1)-O(5)-C(14) 10.4(3)
O(14A)-Ba(1)-O(5)-C(14) 45.5(3)
O(17)-Ba(1)-O(6)-C(17) 34.2(2)
O(2)-Ba(1)-O(6)-C(17) 114.81(18)
O(5)-Ba(1)-O(6)-C(17) 55.49(17)
O(1)-Ba(1)-O(6)-C(17) 171.16(19)
O(18)-Ba(1)-O(6)-C(17) -117.43(18)
O(13A)-Ba(1)-O(6)-C(17) -40.2(4)
O(9)-Ba(1)-O(6)-C(17) -70.6(2)
O(10)#1-Ba(1)-O(6)-C(17) 172.37(16)
O(13)-Ba(1)-O(6)-C(17) -44.2(3)
O(14A)-Ba(1)-O(6)-C(17) -8.9(3)
O(11)-Cl(1)-O(9)-Ba(1) -117.6(2)
O(12)-Cl(1)-O(9)-Ba(1) 2.9(2)
O(17)-Ba(1)-O(9)-Cl(1) 32.94(19)
O(2)-Ba(1)-O(9)-Cl(1) -24.1(2)
O(5)-Ba(1)-O(9)-Cl(1) 67.7(2)
O(6)-Ba(1)-O(9)-Cl(1) 162.20(17)
O(1)-Ba(1)-O(9)-Cl(1) -100.3(2)
O(18)-Ba(1)-O(9)-Cl(1) -148.1(2)
O(13A)-Ba(1)-O(9)-Cl(1) 134.4(4)
O(10)#1-Ba(1)-O(9)-Cl(1) -53.19(19)
O(13)-Ba(1)-O(9)-Cl(1) 137.7(3)
O(14A)-Ba(1)-O(9)-Cl(1) 96.6(2)
O(9)-Cl(1)-O(10)-Ba(1)#1 -125.28(12)
O(11)-Cl(1)-O(10)-Ba(1)#1 114.78(14)
O(12)-Cl(1)-O(10)-Ba(1)#1 -5.73(16)
O(15A)-Cl(2)-O(13)-Ba(1) 115.0(13)
O(16)-Cl(2)-O(13)-Ba(1) -111.4(10)
O(13A)-Cl(2)-O(13)-Ba(1) -31(6)
O(14)-Cl(2)-O(13)-Ba(1) 21.2(10)
O(15)-Cl(2)-O(13)-Ba(1) 134.2(6)
O(14A)-Cl(2)-O(13)-Ba(1) -9.5(10)
O(16A)-Cl(2)-O(13)-Ba(1) -119.4(11)
O(17)-Ba(1)-O(13)-Cl(2) -9.5(8)
O(2)-Ba(1)-O(13)-Cl(2) 66.0(11)
O(5)-Ba(1)-O(13)-Cl(2) 61.8(7)
O(6)-Ba(1)-O(13)-Cl(2) 122.6(8)
O(1)-Ba(1)-O(13)-Cl(2) 164.3(6)
O(18)-Ba(1)-O(13)-Cl(2) -149.7(8)
O(13A)-Ba(1)-O(13)-Cl(2) 43(7)
O(9)-Ba(1)-O(13)-Cl(2) -75.8(7)
O(10)#1-Ba(1)-O(13)-Cl(2) -91.7(8)
O(14A)-Ba(1)-O(13)-Cl(2) 6.9(8)
O(15A)-Cl(2)-O(13A)-Ba(1) 104.7(17)
O(16)-Cl(2)-O(13A)-Ba(1) -114.7(11)
O(14)-Cl(2)-O(13A)-Ba(1) 9.8(12)
O(13)-Cl(2)-O(13A)-Ba(1) 141(7)
O(15)-Cl(2)-O(13A)-Ba(1) 126.2(9)
O(14A)-Cl(2)-O(13A)-Ba(1) -16.7(11)
O(16A)-Cl(2)-O(13A)-Ba(1) -124.4(13)
O(17)-Ba(1)-O(13A)-Cl(2) -0.2(10)
O(2)-Ba(1)-O(13A)-Cl(2) 72.2(12)
O(5)-Ba(1)-O(13A)-Cl(2) 70.8(10)
O(6)-Ba(1)-O(13A)-Cl(2) 133.1(11)
O(1)-Ba(1)-O(13A)-Cl(2) 170.9(8)
O(18)-Ba(1)-O(13A)-Cl(2) -140.6(10)
O(9)-Ba(1)-O(13A)-Cl(2) -67.7(9)
O(10)#1-Ba(1)-O(13A)-Cl(2) -79.4(12)
O(13)-Ba(1)-O(13A)-Cl(2) -128(8)
O(14A)-Ba(1)-O(13A)-Cl(2) 12.9(9)
O(15A)-Cl(2)-O(14A)-Ba(1) -110.6(9)
O(16)-Cl(2)-O(14A)-Ba(1) 122.9(9)
O(13A)-Cl(2)-O(14A)-Ba(1) 11.6(8)
O(14)-Cl(2)-O(14A)-Ba(1) -130.1(13)
O(13)-Cl(2)-O(14A)-Ba(1) 7.9(9)
O(15)-Cl(2)-O(14A)-Ba(1) -97.9(10)
O(16A)-Cl(2)-O(14A)-Ba(1) 113.6(12)
O(17)-Ba(1)-O(14A)-Cl(2) 155.3(11)
O(2)-Ba(1)-O(14A)-Cl(2) -160.1(7)
O(5)-Ba(1)-O(14A)-Cl(2) -122.1(10)
O(6)-Ba(1)-O(14A)-Cl(2) -60.9(9)
O(1)-Ba(1)-O(14A)-Cl(2) -60.7(14)
O(18)-Ba(1)-O(14A)-Cl(2) 17.2(10)
O(13A)-Ba(1)-O(14A)-Cl(2) -9.7(7)
O(9)-Ba(1)-O(14A)-Cl(2) 80.2(9)
O(10)#1-Ba(1)-O(14A)-Cl(2) 118.1(8)
O(13)-Ba(1)-O(14A)-Cl(2) -6.0(7)
C(6)-O(3)-C(2)-C(3) -1.0(3)
C(6)-O(3)-C(2)-C(1) 178.7(2)
O(3)-C(2)-C(3)-C(4) 1.0(4)
C(1)-C(2)-C(3)-C(4) -178.7(3)
Ba(1)-O(1)-C(4)-C(3) -141.82(18)
Ba(1)-O(1)-C(4)-C(5) 36.5(3)
C(2)-C(3)-C(4)-O(1) -176.5(2)
C(2)-C(3)-C(4)-C(5) -1.9(3)
O(1)-C(4)-C(5)-C(6) -175.6(2)
C(3)-C(4)-C(5)-C(6) -178.0(2)
O(1)-C(4)-C(5)-C(7) -0.4(3)
C(3)-C(4)-C(5)-C(7) 178.0(2)
C(2)-O(3)-C(6)-O(4) -176.71(19)
C(2)-O(3)-C(6)-C(5) 2.2(3)
C(9)-O(4)-C(6)-O(3) 179.63(17)
C(9)-O(4)-C(6)-C(5) 0.7(3)
C(4)-C(5)-C(6)-O(3) -3.2(3)
C(7)-C(5)-C(6)-O(3) -178.7(2)
C(4)-C(5)-C(6)-O(4) 175.57(19)
C(7)-C(5)-C(6)-O(4) 0.0(3)
Ba(1)-O(2)-C(7)-C(8) 135.42(18)
Ba(1)-O(2)-C(7)-C(5) -45.1(3)
C(6)-C(5)-C(7)-O(2) 179.9(2)
C(4)-C(5)-C(7)-O(2) 4.7(3)
C(6)-C(5)-C(7)-C(8) -0.5(3)
C(4)-C(5)-C(7)-C(8) -175.7(2)
O(2)-C(7)-C(8)-C(9) 179.9(2)
C(5)-C(7)-C(8)-C(9) 0.4(3)
C(7)-C(8)-C(9)-O(4) 0.3(3)
C(7)-C(8)-C(9)-C(10) -179.8(2)
C(6)-O(4)-C(9)-C(8) -0.9(3)
C(6)-O(4)-C(9)-C(10) 179.3(2)
C(16)-O(7)-C(12)-C(13) -0.1(3)
C(16)-O(7)-C(12)-C(11) 179.0(2)
O(7)-C(12)-C(13)-C(14) 2.4(3)
C(11)-C(12)-C(13)-C(14) -176.5(2)
Ba(1)-O(5)-C(14)-C(13) -136.66(18)
Ba(1)-O(5)-C(14)-C(15) 41.2(3)
C(12)-C(13)-C(14)-O(5) 173.8(2)
C(12)-C(13)-C(14)-C(15) -4.2(3)
O(5)-C(14)-C(15)-C(16) 179.3(2)
C(13)-C(14)-C(15)-C(16) 3.8(3)
O(5)-C(14)-C(15)-C(17) 1.3(3)
C(13)-C(14)-C(15)-C(17) 179.3(2)
C(12)-O(7)-C(16)-O(8) 178.35(17)
C(12)-O(7)-C(16)-C(15) -0.2(3)
C(19)-O(8)-C(16)-O(7) 176.82(17)
C(19)-O(8)-C(16)-C(15) -1.4(3)
C(14)-C(15)-C(16)-O(7) 178.5(2)
C(17)-C(15)-C(16)-O(7) -1.6(4)
C(17)-C(15)-C(16)-O(8) 0.2(3)
Ba(1)-O(6)-C(17)-C(18) 179.2(2)
C(16)-O(8)-C(17)-O(6) 179.2(2)
C(14)-C(15)-C(17)-O(6) 3.7(3)
C(16)-C(15)-C(17)-C(18) 0.3(3)
C(14)-C(15)-C(17)-C(18) -175.2(2)
O(6)-C(17)-C(18)-C(19) -178.5(2)
C(15)-C(17)-C(18)-C(19) 0.4(3)
C(17)-C(18)-C(19)-O(8) 2.1(3)
C(16)-O(8)-C(19)-C(20) -176.4(2)
Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z+1

Table 7. Hydrogen bonds for 10 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(18)-H(1O)...O(1)#2</td>
<td>0.80(5)</td>
<td>2.22(5)</td>
<td>2.996(3)</td>
<td>163(4)</td>
</tr>
<tr>
<td>O(18)-H(1O)...O(18)#2</td>
<td>0.80(5)</td>
<td>2.64(4)</td>
<td>3.080(4)</td>
<td>116(4)</td>
</tr>
<tr>
<td>O(18)-H(2O)...O(12)#1</td>
<td>0.74(4)</td>
<td>2.41(4)</td>
<td>3.056(3)</td>
<td>146(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z+1 #2 -x,-y+1,-z+1