Supporting Information

Dual Stimuli-Responsive Interconvertible Heteroleptic Platinum Coordination Modes

Sarah J. Pike and Paul J. Lusby.*

School of Chemistry, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK.

Email: Paul.Lusby@ed.ac.uk
Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010

Contents

General Experimental Section 3

Synthetic Details 6

Ligand Exchange Reactions 13

(a) PyNMe₂ + [LPt(PyR)] ⟷ [LPt(PyNMe₂)] + PyR

Scheme S1. PyNMe₂ + [LPt(PyR)] ⟷ [LPt(PyNMe₂)] + PyR 13

Experimental procedure for PyNMe₂ + [LPt(PyR)] ⟷ [LPt(PyNMe₂)] + PyR under irradiative and non-irradiative conditions. 13

Figure S1. Representative ¹H NMR spectra to show the equilibration of PyNMe₂ + [LPt(PyCF₃)] ⟷ [LPt(PyNMe₂)] + PyCF₃ under irradiative conditions. 14

Table S1. Equilibrium ratios and equilibration times for PyNMe₂ + [LPt(PyR)] ⟷ [LPt(PyNMe₂)] + PyR under irradiative and non-irradiative conditions. 14

(b) [cis-HLPlt(PyR)(PyNMe₂)]OTs ⟷ [trans-HLPlt(PyNMe₂)(PyR)]OTs 15

Scheme S2. [cis-HLPlt(PyR)(PyNMe₂)]OTs ⟷ [trans-

HLPlt(PyNMe₂)(PyR)]OTs 15

Experimental procedure for [cis-HLPlt(PyR)(PyNMe₂)]OTs ⟷ [trans-

HLPlt(PyNMe₂)(PyR)]OTs under irradiative and non-irradiative conditions. 15

Figure S2. Representative ¹H NMR spectra to show the equilibration of [cis-

HLPlt(PyH)(PyNMe₂)]OTs ⟷ [trans-HLPlt(PyNMe₂)(PyH)]OTs under

irradiative conditions. 16

Table S2. Equilibrium ratios and equilibration times for [cis-HLPlt(PyNMe₂)

(PyR)]OTs ⟷ [trans-HLPlt(PyNMe₂)(PyR)]OTs under irradiative and non-\n
irradiative conditions. 17
(c) $\text{PyNMe}_2\text{.TsOH} + [\text{cis-HL} \text{Pt(PyR)(S)}] \text{OTs}$ $\rightleftharpoons \text{PyR.TsOH} + [\text{cis-HL} \text{Pt(PyNMe}_2\text{(S)}] \text{OTs}$

Scheme S3. $\text{PyNMe}_2\text{.TsOH} + [\text{cis-HL} \text{Pt(PyR)(S)}] \text{OTs}$ $\rightleftharpoons \text{PyR.TsOH} + [\text{cis-HL} \text{Pt(PyNMe}_2\text{(S)}] \text{OTs}$

Experimental procedure for $\text{PyNMe}_2\text{.TsOH} + [\text{cis-HL} \text{Pt(PyR)(S)}] \text{OTs}$ $\rightleftharpoons \text{PyR.TsOH} + [\text{cis-HL} \text{Pt(PyNMe}_2\text{(S)}] \text{OTs}$ **under irradiative and non-irradiative conditions.**

Figure S3. Representative ^1H NMR spectra to show the equilibration of $\text{PyNMe}_2\text{.TsOH} + [\text{cis-HL} \text{Pt(PyH)(S)}] \text{OTs}$ $\rightleftharpoons \text{PyCF}_3\text{.TsOH} + [\text{cis-HL} \text{Pt(PyNMe}_2\text{(S)}] \text{OTs}$ under irradiative conditions.

Table S3. Equilibrium ratios and equilibration times for $\text{PyNMe}_2\text{.TsOH} + [\text{cis-HL} \text{Pt(PyR(S))OTs} \rightleftharpoons \text{PyR.TsOH} + [\text{cis-HL} \text{Pt(PyNMe}_2\text{(S))OTs}$ under irradiative and non-irradiative conditions.

Figure S4. Emission spectrum for the 275-375 nm broad band light employed in the irradiative studies.

References

Appendix A: ^1H and ^{13}C NMR spectra of new compounds
General Experimental Section

Unless otherwise stated, all reagents and solvents were purchased from Aldrich Chemicals and used without further purification. Dichloromethane and acetone were dried using an Innovative Technologies SPS-400-7 Solvent Purification System. Unless stated otherwise, all reactions were carried out under an atmosphere of nitrogen. Column chromatography on silica was carried out using Kiesegel C69 (Merck, Germany) as the stationary phase and TLC was performed on precoated silica 60 gel plates (0.20 mm thick, 60F254, Merck Germany) and observed under UV light. Column chromatography on alumina was carried out using Brockmann activity II, basic; pH 10 ± 0.5 (Fluka) as the stationary phase and TLC was performed on precoated aluminium oxide 60 gel plates (0.25 mm thick, 60F254, Merck Germany) and observed under UV light. All 1H NMR and 13C NMR spectra were recorded on a Bruker AV 400 MHz instrument at a constant temperature of 300 K. Chemical shifts are reported in parts per million from low to high field. Coupling constants (J) are reported in hertz (Hz) and refer to coupling through three bonds i.e. ^{3}J, unless otherwise stated. Standard abbreviations indicating multiplicity were used as follows: m = multiplet, br = broad, d = doublet, t = triplet, s = singlet. Other abbreviations used in the Supporting Information, include; DCM = dichloromethane; PyNMe$_2$ = N,N-dimethyl-4-aminopyridine; DMSO = dimethylsulfoxide; Et$_2$O = diethyl ether; EtOAc = ethyl acetate; MeOH = methanol; NEt$_3$ = triethylamine; P$_t$-Bu = tert-butylamino-tris(dimethylamino)phosphazene; PyH = pyridine, PyCF$_3$ = 4-trifluoromethylpyridine, RT = room temperature; TLC = thin layer chromatography; TsOH = p-toluenesulfonic acid. [LPt(DMSO)] was prepared according to literature procedures.1 All melting points (m.p.) were determined using Sanyo Gallenkamp apparatus. MS FAB and EI
mass spectrometry was carried out by the services at the University of Edinburgh. The absorption spectra were recorded using a PerkinElmer Lambda 9 spectrometer controlled using UV/Winlab software. Photochemical reactions were carried out in quartz NMR tubes using a multilamp photoreactor (model MLU18, manufactured by Photochemical Reactors Ltd, Reading, UK) and monitored using 1H NMR spectroscopy.
Synthetic Details

To a yellow solution of \([\text{LPt(DMSO)}]\) (0.094 g, 0.187 mmol) in CH\(_2\)Cl\(_2\) (4 mL) was added PyNMe\(_2\) (0.028 g, 0.187 mmol), which resulted in a darkening of the solution colour to orange within 5 mins. The reaction was monitored by TLC (alumina, 90.5:9:0.5 EtOAc:CH\(_2\)Cl\(_2\):NEt\(_3\)) until complete (1.5 h), after which time the excess solvent was removed under reduced pressure. Purification of the crude product using column chromatography on alumina (90.5:9:0.5 EtOAc:CH\(_2\)Cl\(_2\):NEt\(_3\)) and subsequent recrystallisation (CH\(_2\)Cl\(_2\)/hexane) gave an orange solid (0.102 g, 98%). m.p. 292 ºC (dec.); \(^1\)H NMR (400 MHz, [D\(_7\)]DMF:CD\(_2\)Cl\(_2\); 1:1): 8.58 (2H, d, \(J = 7.2\) Hz, \(\text{H}_g\)), 7.69 – 7.65 (1H, m, \(\text{H}_f\)), 7.55 (2H, d, \(J = 7.2\) Hz, \(\text{H}_d\)), 7.43 – 7.40 (2H, m, \(\text{H}_e\)), 7.20 – 7.17 (2H, m, \(\text{H}_h\)), 7.10 – 7.02 (4H, m, \(\text{H}_{b+c}\)), 6.81 – 6.79 (2H, m, \(\text{H}_a\)), 3.26 (6H, s, \(\text{H}_{i}\)); \(^{13}\)C NMR (100 MHz, [D\(_7\)]DMF:CD\(_2\)Cl\(_2\); 1:1): 172.8, 167.6, 151.7, 148.9, 138.8, 133.1, 129.5, 123.1, 122.4, 121.9, 113.7, 107.9, 38.4; UV/Vis ([D\(_7\)]DMF:CD\(_2\)Cl\(_2\); 1:1): \(\lambda_{\text{max}} / \text{nm} (\varepsilon / \text{M}^{-1} \text{cm}^{-1})\): 386 (2944), 285 (33618), 336 (8939); LR-FABMS (3-NOBA matrix): \(m/\zeta = 547\) [MH]\(^+\); HR-FABMS (3-NOBA matrix): \(m/\zeta = 547.1457\) (calc. for C\(_{24}\)H\(_{22}\)N\(_3\)Pt, 547.1461).
[cis-HLPt(PyNMe₂)OTs]

To a solution of [L Pt(PyNMe₂)] (10.0 mg, 0.018 mmol) in 1:1 CH₂Cl₂/acetone (2 mL) was added TsOH-H₂O (3.5 mg, 0.018 mmol). After stirring for 5 min. the excess solvent was removed under reduced pressure to give the product as a pale yellow solid (9.7 mg, 72%). ¹H NMR (400 MHz, [D₇]DMF:CD₂Cl₂; 1:1): 8.32 – 8.17 (4H, m, Hₑ+f+n), 8.09 – 8.07 (1H, d, Hₐ), 7.76 – 7.71 (3H, m, Hᵈ+k), 7.60 – 7.59 (4H, m, Hₖ+i), 7.55 (1H, m, Hₗ), 7.21 – 7.18 (3H, m, Hₑ+i), 7.04 – 7.00 (1H, m, Hᵣ), 6.73 (2H, d, J = 7.2 Hz, Hₙ), 6.53 – 6.41 (1H, m, Hₐ), 3.17 (6H, s, Hₚ), 2.38 (3H, s, Hᵣ); ¹³C NMR (100 MHz, [D₇]DMF:CD₂Cl₂; 1:1): 166.0, 161.5, 161.4, 157.1, 157.0, 153.8, 150.4, 145.0, 143.3, 138.9, 138.4, 131.2, 128.4, 128.3, 128.2, 127.6, 127.4, 125.1, 123.5, 123.3, 116.7, 107.5, 38.2, 20.0; LR-FABMS (3-NOBA matrix): m/z = 547 [M-OTs⁺]; HR-FABMS (3-NOBA matrix); m/z = 547.1457 (calc. for C₂₄H₂₂N₃Pt, 547.1461).

[L Pt(PyH)]

To a yellow solution of [L Pt(DMSO)] (0.050 g, 0.10 mmol) in CH₂Cl₂ (20 mL) was added PyH (0.008 mL, 0.10 mmol). The reaction was monitored by TLC (alumina,
90.5:9:0.5 EtOAc:CH₂Cl₂:NEt₃) until complete (3 h), after which time the excess solvent was removed under reduced pressure. Purification of the crude product using column chromatography on alumina (90.5:9:0.5 EtOAc:CH₂Cl₂:NEt₃) and subsequent recrystallisation (CH₂Cl₂/hexane) gave an orange solid (0.042 g, 84%). m.p. 201-203 °C; ¹H NMR (400 MHz, [D₇]DMF:CD₂Cl₂; 1:1): 9.16 (2H, d, J = 6.8 Hz, J (¹⁹⁵Pt) = 43.6 Hz, H₉g), 8.12 – 8.08 (1H, m, H₅i), 7.72 – 7.65 (3H, m, H₆+a), 7.57 (2H, d, J = 6.8 Hz, H₆d), 7.45 – 7.43 (2H, m, H₆c), 7.19 – 7.16 (2H, m, H₆b), 7.08 – 7.03 (2H, m, H₆e), 6.94 – 6.89 (2H, m, H₆f); ¹³C NMR (100 MHz, [D₇]DMF:CD₂Cl₂; 1:1): 172.1, 167.5, 153.2, 148.8, 139.4, 136.3, 132.5, 129.7, 126.2, 123.3, 122.7, 113.9; UV/Vis ([D₇]DMF:CD₂Cl₂; 1:1); λₚ₅ / nm (ε / M⁻¹ cm⁻¹): 393 (999), 344 (3237), 280 (7266), 251 (8953); LR-FABMS (3-NOBA matrix); m/z = 504 [M⁺]; HR-FABMS (3-NOBA matrix); m/z = 504.10469 (calc. for C₂₂H₁₇N₂Pt, 504.10340).

[HLPt(PyH)OTs]

To a solution of [LPt(PyH)] (20 mg, 0.040 mmol) in 1:1 CH₂Cl₂/acetone (3/1 mL) was added TsOH.H₂O (7.6 mg, 0.040 mmol). After stirring for 5 min. the excess solvent was removed under reduced pressure to give the product as a pale yellow solid and the desired product was recrystallised from hexane and CHCl₃ (19 mg, 71%). ¹H NMR (400 MHz, [D₇]DMF:CD₂Cl₂; 1:1): 9.01 (2H, J = 6.4 Hz, J (¹⁹⁵Pt) = 38.8 Hz, H₉n), 8.23 – 8.10 (3H, m, H₉+h), 7.78 – 7.55 (10H, m, H₆+a+g+z+j+k+o+p), 7.24 – 7.16 (4H, m, H₆+c+j+l), 7.03 – 6.99 (1H, m, H₉b), 6.38 – 6.22 (1H, m, H₉f), 2.34 (3H, s, H₉m); ¹³C
NMR (100 MHz, [D$_7$]DMF:CD$_2$Cl$_2$; 1:1): 176.9, 157.6, 157.6, 153.5, 140.0, 139.7, 139.3, 135.6, 132.1, 131.6, 129.4, 129.3, 128.5 (2C), 128.3, 127.0, 125.9 (2C), 124.5, 117.6, 115.9, 114.9, 107.9; LR-FABMS (3-NOBA matrix): m/z = 504 [M-OTs]$^+$; HR-FABMS (3-NOBA matrix); m/z = 504.10397 (calc. for C$_{22}$H$_{17}$N$_2$Pt, 504.10340).

To a yellow solution of [LPt(DMSO)] (0.067 g, 0.13 mmol) in CH$_2$Cl$_2$ (10 mL) was added PyCF$_3$ (0.020 g, 0.13 mmol), which resulted in a darkening of the solution to orange. The reaction was stirred overnight at room temperature and the excess solvent was removed under reduced pressure. Purification of the crude product using column chromatography on alumina (90.5:9:0.5 EtOAc:CH$_2$Cl$_2$:NEt$_3$) and subsequent recrystallisation (CH$_2$Cl$_2$/hexane) gave an orange solid (0.062 g, 83%). m.p. 228-232 ºC (dec); 1H NMR (400 MHz,[D$_7$]DMF:CD$_2$Cl$_2$; 1:1): 9.48 (2H, d, J = 6.0 Hz, J (Pt) = 45.6 Hz, H$_g$), 8.02 – 7.99 (2H, m, H$_h$), 7.74 (1H, t, J = 8.0 Hz, H$_f$), 7.58 (2H, d, J = 6.8 Hz, H$_d$), 7.47 (2H, d, J = 8.0 Hz, H$_c$), 7.23 – 7.18 (2H, m, H$_e$), 7.13 – 7.07 (2H, m, H$_e$), 6.95 – 6.86 (2H, m, H$_a$); 13C NMR (100 MHz, [D$_7$]DMF:CD$_2$Cl$_2$; 1:1): 171.6, 167.5, 154.5, 148.7, 139.7, 132.3, 129.8, 127.9, 125.0, 123.5, 123.0, 122.3, 114.1; UV/Vis ([D$_7$]DMF:CD$_2$Cl$_2$; 1:1); λ_{max} / nm (ε / M$^{-1}$ cm$^{-1}$): 392 (2717), 340 (6584), 270 (18991); LR-FABMS (3-NOBA matrix): m/z = 572 [MH]$^+$; HR-FABMS (3-NOBA matrix); m/z = 572.0916 (calc. for C$_{23}$H$_{16}$N$_2$F$_3$Pt, 572.09078).
To a solution of [L\text{Pt}(\text{PyCF}_3)] (12.4 mg, 0.022 mmol) in 1:1 CH\textsubscript{2}Cl\textsubscript{2}/acetone (4 mL) was added TsOH.H\textsubscript{2}O (4.1 mg, 0.022 mmol). After stirring for 5 min. the excess solvent was removed under reduced pressure to give the product as a pale yellow solid (16.1 mg, 98%). 1H NMR (400 MHz, [D\textsubscript{7}]DMF:CD\textsubscript{2}Cl\textsubscript{2}; 1:1): 9.39 – 9.22 (2H, m, H\textsubscript{n}), 8.20 (1H, t, J = 7.6 Hz, H\textsubscript{j}), 8.10 (1H, d, J = 7.6 Hz, H\textsubscript{p}), 7.97-7.92 (2H, m, H\textsubscript{o}), 7.78 – 7.54 (8H, m, H\textsubscript{d+k+h+i+j}), 7.25 – 7.22 (2H, m, H\textsubscript{c+g}), 7.13 (2H, d, J = 6.4 Hz, H\textsubscript{i}), 7.04 – 7.00 (1H, m, H\textsubscript{b}), 6.36 – 6.25 (1H, m, H\textsubscript{a}), 2.35 (3H, s, H\textsubscript{m}); 13C NMR (100 MHz, [D\textsubscript{7}]DMF:CD\textsubscript{2}Cl\textsubscript{2}; 1:1): 171.4, 167.7, 161.5, 155.7, 154.7, 152.4, 142.7, 142.2, 139.6, 131.3, 128.8, 128.7, 128.4, 127.7, 127.5, 125.2, 124.6, 124.0, 123.9, 122.4, 122.3, 115.1, 20.1; LR-FABMS (3-NOBA matrix): m/z = 572[M-OTs]+; HR-FABMS (3-NOBA matrix); m/z = 572.08949 (calc. for C\textsubscript{23}H\textsubscript{16}N\textsubscript{2}F\textsubscript{3}Pt, 572.09078).
To a bright yellow solution of [L Pt(PyNMe$_2$)] (7.3 mg, 0.013 mmol) in 1:1 CH$_2$Cl$_2$/acetone (6 mL) was added pyridinium tosylate (3.3 mg, 0.013 mmol) and the pale yellow solution was stirred at RT for 5 mins. The excess solvent was removed under reduced pressure to give the product as a bright yellow solid (10.4 mg, 90%).

1H NMR (400 MHz, [D$_7$]DMF:CD$_2$Cl$_2$; 1:1): 8.31 – 8.14 (6H, m, H$_{e+f+k+n}$), 7.85 (1H, d, J = 7.6 Hz, H$_d$), 7.74 – 7.66 (3H, m, H$_{m+q}$), 7.60 – 7.58 (2H, m, H$_{h}$), 7.46 (1H, dd, J = 7.6 Hz, 4J = 1.2 Hz, H$_g$), 7.27 – 7.20 (4H, m, H$_{c+j+l}$), 7.17 – 7.13 (4H, m, H$_{i+r}$), 7.09 – 7.05 (1H, m, H$_b$), 6.66 – 6.65 (2H, d, J = 7.2 Hz, H$_o$), 6.55 – 6.45 (1H, m, H$_a$), 3.12 (6H, s, H$_p$), 2.35 (3H, s, H$_s$); 13C NMR (100 MHz, [D$_7$]DMF:CD$_2$Cl$_2$; 1:1): 167.1, 161.5, 153.7, 150.0, 149.5, 145.8, 145.5, 139.8, 139.1, 139.0, 137.2, 137.0, 136.8, 132.1, 128.7, 128.3, 127.9, 127.7, 127.4, 125.2, 124.9, 123.7, 116.9, 108.1, 102.2, 38.3, 20.0; UV/Vis ([D$_7$]DMF:CD$_2$Cl$_2$; 1:1); λ_{max} / nm (ε / M$^{-1}$ cm$^{-1}$): 342 (2407), 285 (7897); LR-FABMS (3-NOBA matrix): m/z = 547 [M-PyH]$^+$; HR-FABMS (3-NOBA matrix); m/z = 547.14537 (calc. for C$_{24}$H$_{22}$N$_3$Pt, 547.14560).

![Structure](image.png)

[trans-HL Pt(PyNMe$_2$)(PyCF$_3$)]OTs

To a bright yellow solution of [L Pt(PyNMe$_2$)] (8.4 mg, 0.015 mmol) in 1:1 CH$_2$Cl$_2$/acetone (6 mL) was added trifluoromethylpyridinium tosylate (5.2 mg, 0.015 mmol) and the pale yellow solution was stirred at RT for 5 mins. The excess solvent was removed under reduced pressure to give the product as a bright yellow solid (11.5
mg, 81%). \(^1\)H NMR (400 MHz, CD\(_2\)Cl\(_2\)): 8.36 (2H, d, \(J = 6.4\) Hz, H\(_k\)), 8.20 (2H, d, \(J = 7.2\) Hz, H\(_m\)), 8.10 (1H, t, \(J = 8.0\) Hz, H\(_j\)), 7.94 (1H, d, \(J = 8.0\) Hz, H\(_e\)), 7.71 (2H, d, \(J = 7.6\) Hz, H\(_{d+i+j+q}\)), 7.53 – 7.50 (2H, m, H\(_h\)), 7.31 – 7.23 (8H, m, H\(_c+g+i+l+q\)), 7.13 – 7.06 (3H, m, H\(_b+p\)), 6.52 – 6.44 (3H, m, H\(_{a+n}\)), 3.07 (6H, s, H\(_o\)), 2.36 (3H, s, H\(_r\)); \(^{13}\)C NMR (100 MHz,[D\(_7\)]DMF:CD\(_2\)Cl\(_2\); 1:1): 167.07, 153.9, 151.4, 150.2, 150.1, 145.8, 144.5, 139.4, 139.1, 138.7, 137.9, 132.2, 129.0, 128.5, 128.2, 127.9, 127.6, 125.3, 124.1, 124.0, 123.9, 120.9, 120.9, 118.8, 117.1, 108.3, 38.4, 20.1; UV/Vis ([D\(_7\)]DMF:CD\(_2\)Cl\(_2\); 1:1); \(\lambda_{\text{max}}\) / nm \((\epsilon / \text{M}^{-1} \text{cm}^{-1})\): 386 (2943), 336 (8939), 285 (33618); LR-FABMS (3-NOBA matrix): \(m/z = 548\) [MH-PyCF\(_3\)]\(^+\); HR-FABMS (3-NOBA matrix); \(m/z = 548.15420\) (calc. for C\(_{24}\)H\(_{23}\)N\(_3\)Pt, 548.15452).
Ligand Exchange Reactions

![Scheme S1](image)

Scheme S1. Equilibrium between \(\text{PyNMe}_2 + [\text{LPt(PrR)}] \rightleftharpoons [\text{LPt(PyNMe}_2]) + \text{PyR} \)

Experimental procedure under irradiative and non-irradiative conditions

(i) Irradiative conditions

To a 0.01 M solution of \([\text{LPt(PrR)}]\) (7.95 µmol) in 1:1 v/v [D\(_7\)]DMF:CD\(_2\)Cl\(_2\) (0.35 mL:0.35 mL) was added PyNMe\(_2\) (0.97 mg, 7.95 µmol). The mixture was agitated for one minute to give a clear solution and then placed in a quartz NMR tube. The sample was irradiated with broad band 275-375 nm light at 313 K until no further changes could be detected by \(^1\text{H}\) NMR spectroscopy.

(ii) Non-irradiative conditions

To a 0.01 M solution of \([\text{LPt(PrR)}]\) (7.95 µmol) in 1:1 v/v [D\(_7\)]DMF:CD\(_2\)Cl\(_2\) (0.35 mL:0.35 mL) was added PyNMe\(_2\) (0.97 mg, 7.95 µmol). The mixture was agitated for one minute to give a clear solution and then placed in a darkened NMR tube and wrapped in aluminium foil. The sample was maintained at 313 K until no further changes could be detected by \(^1\text{H}\) NMR spectroscopy.
Figure S1. Representative 1H NMR spectra showing the equilibration of PyNMe$_2$ + [Lp(PyCF$_3$)] \leftrightharpoons [Lp(PyNMe$_2$)] + PyCF$_3$ under irradiative conditions.

Table S1. Equilibrium ratios and equilibration times for PyNMe$_2$ + [Lp(PyR)] \leftrightharpoons [Lp(PyNMe$_2$)] + PyR under irradiative and non-irradiative conditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting Complex</th>
<th>Pt(PyR): Pt(PyNMe$_2$)</th>
<th>Time (h)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Lp(PyH)]</td>
<td>17:83</td>
<td>10.5</td>
<td>Irradiative</td>
</tr>
<tr>
<td>2</td>
<td>[Lp(PyH)]</td>
<td>28:72</td>
<td>264</td>
<td>Non-irradiative</td>
</tr>
<tr>
<td>3</td>
<td>[Lp(PyCF$_3$)]</td>
<td>11:89</td>
<td>4</td>
<td>Irradiative</td>
</tr>
<tr>
<td>4</td>
<td>[Lp(PyCF$_3$)]</td>
<td>15:85</td>
<td>44</td>
<td>Non-irradiative</td>
</tr>
</tbody>
</table>
Scheme S2. [cis-HL\textit{Pt}(Py\textit{NMe}_2)\textit{Pt}(Py\textit{R})OTs] followed by base mediated cyclometallation to aid analysis.

Experimental procedure under irradiative and non-irradiative conditions

(i) Irradiative conditions
To a 0.01 M solution of [HL\textit{Pt}(Py\textit{R})OTs] (7.95 \(\mu\)mol) in 1:1 v/v [D\textsubscript{7}]DMF:CD\textsubscript{2}Cl\textsubscript{2} (0.35 mL:0.35 mL) was added Py\textit{NMe}_2 (0.97 mg, 7.95 \(\mu\)mol). The mixture was agitated for one minute to give a clear solution and then placed in a quartz NMR tube. The sample was irradiated with broad band 275-375 nm light at 313 K until no further changes could be detected by 1H NMR spectroscopy. \textit{P}_1-t\textit{Bu} (10.1 \(\mu\)L, 39.75 \(\mu\)mol) was added directly to the NMR tube and then the sample was vigorously shaken for 30 seconds before a final 1H NMR spectrum was recorded.

(ii) Non-irradiative conditions
To a 0.01 M solution of [HL\textit{Pt}(Py\textit{R})OTs] (7.95 \(\mu\)mol) in 1:1 v/v [D\textsubscript{7}]DMF:CD\textsubscript{2}Cl\textsubscript{2} (0.35 mL:0.35 mL) was added Py\textit{NMe}_2 (0.97 mg, 7.95 \(\mu\)mol). The mixture was agitated for one minute to give a clear solution and then placed in a darkened NMR tube and wrapped in aluminium foil. The sample was maintained at 313 K until no further changes could be detected by 1H NMR spectroscopy. \textit{P}_1-t\textit{Bu} (10.1 \(\mu\)L, 39.75 \(\mu\)mol)
μmol) was added directly to the NMR tube and then the sample was vigorously shaken for 30 seconds before a final 1H NMR spectrum was recorded.

Figure S2. Representative 1H NMR spectra to show the equilibration of $[\text{cis-}H \text{L} \text{Pt(PyH)(PyNMe}_2\text{)}]\text{OTs} \rightleftharpoons [\text{trans-}H \text{L} \text{Pt(PyNMe}_2\text{)(PyH)}]\text{OTs}$ under irradiative conditions, followed by base mediated cyclometallation to aid analysis.
Table S2. Equilibrium ratios and equilibration times for $[\text{cis-}HL\text{Pt(PyH)(PyNMe}_2\text{)}\text{]}\text{OTs}$ $\rightleftharpoons [\text{trans-}HL\text{Pt(PyNMe}_2\text{)(PyR)}\text{]}\text{OTs}$ under irradiative and non-irradiative conditions. aThe ratio of cis:trans was indirectly measured by converting the corresponding C^N complexes to $\text{C}^\text{N}^\text{C}$ complexes using the base $\text{P}1$-tBu, and then by integration of the resultant $[\text{L}\text{Pt(PyR)}]$ and $[\text{L}\text{Pt(PyNMe}_2\text{)}]$ complexes. b264 h at 313 K + 264 h at 333 K.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting Complex</th>
<th>cis:trans^a</th>
<th>Time (h)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[\text{cis-}HL\text{Pt(PyH)(PyNMe}_2\text{)}\text{]}\text{OTs}$</td>
<td>26:74</td>
<td>6.5</td>
<td>Irradiative</td>
</tr>
<tr>
<td>2</td>
<td>$[\text{cis-}HL\text{Pt(PyH)(PyNMe}_2\text{)}\text{]}\text{OTs}$</td>
<td>49:51</td>
<td>528b</td>
<td>Non-irradiative</td>
</tr>
<tr>
<td>3</td>
<td>$[\text{cis-}HL\text{Pt(PyCF}_3\text{)(PyNMe}_2\text{)}\text{]}\text{OTs}$</td>
<td>20:80</td>
<td>4</td>
<td>Irradiative</td>
</tr>
<tr>
<td>4</td>
<td>$[\text{cis-}HL\text{Pt(PyCF}_3\text{)(PyNMe}_2\text{)}\text{]}\text{OTs}$</td>
<td>30:70</td>
<td>528b</td>
<td>Non-irradiative</td>
</tr>
</tbody>
</table>
Scheme S3. PyNMe$_2$.TsOH + $[\text{cis-HLPt(PyR)}(S)]$OTs \longrightarrow PyR.TsOH + $[\text{cis-HLPt(PyNMe$_2$)}(S)]$OTs followed by base mediated cyclometallation to aid analysis.

Experimental procedure under irradiative and non-irradiative conditions

(i) Irradiative conditions
To a 0.01 M solution of $[\text{HLPt(PyNMe$_2$)}]$OTs (5.84 mg, 7.95 µmol) in 1:1 v/v [D$_7$]DMF:CD$_2$Cl$_2$ (0.35 mL:0.35 mL) was added PyR.TsOH (7.95 µmol). The mixture was agitated for one minute to give a clear solution and then placed in a quartz NMR tube. The sample was irradiated with broad band 275-375 nm light at 313 K until no further changes could be detected by 1H NMR spectroscopy. P$_{t}$-Bu (10.1 µL, 39.75 mmol) was added directly to the NMR tube and then the sample was vigorously shaken for 30 seconds before a final 1H NMR spectrum was recorded.

(i) Non-irradiative conditions
To a 0.01 M solution of $[\text{HLPt(PyNMe$_2$)}]$OTs (5.84 mg, 7.95 µmol) in 1:1 v/v [D$_7$]DMF:CD$_2$Cl$_2$ (0.35 mL:0.35 mL) was added PyR.TsOH (7.95 µmol). The mixture was agitated for one minute to give a clear solution and then placed in a darkened NMR tube and wrapped in aluminium foil. The sample was maintained at 313 K until no further changes could be detected by 1H NMR spectroscopy. P$_{t}$-Bu...
(10.1 µL, 39.75 mmol) was added directly to the NMR tube and then the sample was vigorously shaken for 30 seconds before a final 1H NMR spectrum was recorded.

Figure S3. Representative 1H NMR spectra to show the equilibration of PyNMe$_2$·TsOH + [cis-HLP(PyH)(S)]OTs \leftrightarrow PyCF$_3$·TsOH + [cis-HLP(PyNMe_2)(S)]OTs under irradiative conditions, followed by base mediated cyclometallation to aid analysis..
Table S3. Equilibrium ratios and equilibration times for PyNMe₂.TsOH + [cis-HL]Pt(PyR(S)]OTs ↔ PyR.TsOH + [cis-HL]Pt(PyNMe₂)(S)]OTs under irradiative and non-irradiative conditions. aThe ratio of [cis-HL]Pt(PyR(S)]OTs:[cis-HL]Pt(PyNMe₂)(S)]OTs was indirectly measured by converting the C^N complexes to the corresponding C^N^C complexes using the base P₁⁻tBu, and then by integration of the resultant [L]Pt(PyR)] and [L]Pt(PyNMe₂)] complexes. b312 h at 313 K + 264 h at 333 K.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting PyR.TsOH</th>
<th>Pt(PyR):Pt(PyNMe₂)⁶</th>
<th>Time (h)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PyH.TsOH</td>
<td>70:30</td>
<td>6.5</td>
<td>Irradiative</td>
</tr>
<tr>
<td>2</td>
<td>PyH.TsOH</td>
<td>41:59</td>
<td>576b</td>
<td>Non-irradiative</td>
</tr>
<tr>
<td>3</td>
<td>PyCF₃.TsOH</td>
<td>85:15</td>
<td>5.5</td>
<td>Irradiative</td>
</tr>
<tr>
<td>4</td>
<td>PyCF₃.TsOH</td>
<td>63:37</td>
<td>576b</td>
<td>Non-irradiative</td>
</tr>
</tbody>
</table>

Figure S4. Emission spectrum for the broad band 275-375 nm light used for the irradiative studies.

References
Appendix A: 1H and 13C NMR spectra

Figure S5: 1H NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [LPt(Py)].
Figure S6: 1H NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [L Pt(PyNMe$_2$)].
Figure S7: 1H NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [LPt(PyCF$_3$)].
Figure S8: 1H NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [HLPt(Py)(OTs)].
Figure S9: 1H NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [HLPt(PyCF$_3$)(OTs)].
Figure S10: 1H NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [HLPt(PyNMe$_2$)(OTs)].
Figure S11: 1H NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [HLPt(PyNMe$_2$)(Py)]OTs.
Figure S12: 1H NMR spectrum (400 MHz, CD$_2$Cl$_2$, 300 K) of [HLPt(PyNMe$_2$)(PyCF$_3$)]OTs.
Figure S13: 13C NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [LPr(Py)].
Figure S14: 13C NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [L Pt(PyCF$_3$)].
Figure S15: 13C NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [LPt(PyNMe$_2$)].
Figure S16: 13C NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [HLPt(Py)(OTs)].
Figure S17: 13C NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [HLPt(CF$_3$)(OTs)].
Figure S18: 13C NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [HLPt(PyNMe$_2$)(OTs)].
Figure S19: 13C NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [LPt(PyNMe$_2$)(Py)]OTs.
Figure S20: 13C NMR spectrum (400 MHz, 1:1 [D$_7$]DMF:CD$_2$Cl$_2$, 300 K) of [LPt(PyNMe$_2$)(PyCF$_3$)]OTs.