Supplementary Information: Coarse-grained simulations of stretching entangled DNA using oscillating electric fields.

Richard S. Graham1 and Ronald G. Larson2

1School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
2Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

The accompanying movie shows the DNA primitive path during a simulation illustrating the stretching mechanism. Model parameter used are the same as in the main text, with the field given by $\epsilon = 10$ and $\omega \tau_e = 0.3$. The simulation runs for a time period of $23\tau_e$. The colours represent the local stretch, with red being highly stretched through to light green being unstretched.