Supporting Information

Pd-catalyzed 5-endo-trig-type cyclization of β,γ-unsaturated carbonyl compounds: An efficient ring closing reaction to give γ-butenolides and 3-pyrroline-2-ones

Gan B. Bajracharya, Priti S. Koranne, Rashid N. Nadaf, Randa Kassem Mohamed Gabr, Kazuhiro Takenaka, Shinobu Takizawa and Hiroaki Sasai*

The Institute of Scientific and Industrial Research (ISIR), Osaka University
8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
Fax +81(6)68798469; E-mail sasai@sanken.osaka-u.ac.jp
General information:

1H and 13C NMR spectra were recorded with JEOL JNM-EX270 (1H NMR, 270 MHz; 13C NMR, 67.7 MHz). 1H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CDCl$_3$ at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet), and coupling constants (Hz). 13C NMR spectra reported in ppm (δ) relative to the central line of triplet for CDCl$_3$ at 77 ppm. IR spectral data were obtained on PERKIN ELMER 2000 FTIR; absorption bands are reported in cm$^{-1}$. ESI/TOF mass spectra were obtained with JMS-T100LC. HRMS spectra were obtained with JEOL MStation JMS-700. Elemental analysis was performed on PERKIN-ELMER 2400. Column chromatography was carried out by SiO$_2$ 60 N (spherical, neutral, 40–100 μm, KANTO Chemical Co.). Analytical thin layer chromatography (TLC) was performed on 0.2 mm pre-coated plate SiO$_2$ 60 F$_{254}$ (Merck). All manipulations were conducted under an argon atmosphere using standard Schlenk techniques.

Materials:

Unless otherwise noted, all materials were obtained from commercial suppliers. Freshly distilled THF and DCM were used (THF was distilled from sodium/benzophenone and DCM was distilled over CaH$_2$). (E)-3-hexenoic acid (1a), (E)-3-pentenoic acid (1b), (E)-3-heptenoic acid (1c), (E)-3-decenoic acid (1d), (E)-3-octenoic acid and (E)-4-phenyl-but-3-enioic acid were commercially available. Carboxylic acids 1a-d as starting materials for the reaction were used without any purification. Substrates (E)-5-phenyl-3-pentenoic acid (1e) and (E)-5-methyl-3-hexenoic acid (1f) were synthesized by the SiO$_2$-catalyzed Knoevenagel condensation between the corresponding aldehyde and malonic acid using a microwave oven (kitchen type, National NE-M310Z). (E)-4-Phenoxy-3-butenioic acid (1g) was synthesized following the reported procedure.2 Methylation3 of 1a afforded (E)-2-methyl-3-hexenoic acid (1h). Cyclohex-1-enyl acetic acid was synthesized starting from cyclohex-1-enyl acetonitrile.4

General procedure for the synthesis of alkenamides:5

The corresponding carboxylic acid precursor (5 mmol) was taken in a flask and to this was added 1 equivalent of p-toluenesulfonyl isocyanate. The mixture was dissolved in dry THF under argon atmosphere using argon filled balloon and then stirred at room temperature for 10 min. Et$_3$N (1 equivalent, 5 mmol, 0.7 mL) was added drop-wise to the reaction mixture via a syringe. After stirring for 3h at room temperature, the solution was diluted with EtOAc (15 mL) and washed with 1N HCl then with brine. After drying with Na$_2$SO$_4$, the organic phase was concentrated and purified by flash silica gel column chromatography [hexane to hexane/EtOAc (9/1)] to give alkenamides 7.
Analytical data of the alkenamides:

(E)-N-Tosyl-3-hexenamide (7a):

This compound was obtained in 57% yield as colorless solid according to the general procedure described for the synthesis of alkenamides. 1H NMR (270 MHz, CDCl$_3$) δ 0.93 (t, $J = 7.6$ Hz, 3H), 1.95–2.06 (m, 2H), 2.41 (s, 3H), 2.95 (d, $J = 7.0$ Hz, 2H), 5.32–5.43 (m, 1H), 5.56–5.66 (m, 1H), 7.31 (d, $J = 8.1$ Hz, 2H), 7.92 (d, $J = 8.1$ Hz, 2H), 8.66 (br s, 1H). 13C NMR (67.7 MHz, CDCl$_3$) δ 13.2, 21.6, 25.4, 40.1, 118.9, 128.1, 129.3, 135.3, 138.5, 144.8, 169.5. IR (KBr) 3092, 1683, 1599, 1456, 1346, 1260, 1160, 1092 cm$^{-1}$. ESI/TOF mass 290 (M+Na)$^+$. Anal. Calcd for C$_{13}$H$_{17}$NO$_3$S: C, 58.40; H, 6.41; N, 5.24. Found: C, 58.47; H, 6.42; N, 5.20.

(E)-N-Tosyl-3-pentenamide (7b):

75% yield as colorless solid. 1H NMR (270 MHz, CDCl$_3$) δ 1.64 (d, $J = 5.9$ Hz, 3H), 2.41 (s, 3H), 2.94 (d, $J = 6.7$ Hz, 2H), 5.34–5.44 (m, 1H), 5.50–5.63 (m, 1H), 7.30 (d, $J = 8.4$ Hz, 2H), 7.92 (d, $J = 8.1$ Hz, 2H), 8.88 (br s, 1H). 13C NMR (67.7 MHz, CDCl$_3$) δ 18.0, 21.7, 40.3, 121.1, 128.2, 129.4, 132.1, 135.3, 145.0, 169.3. IR (KBr) 3246, 1722, 1595, 1434, 1340, 1246, 1164 cm$^{-1}$. ESI/TOF mass 276 (M+Na)$^+$. Anal. Calcd for C$_{12}$H$_{15}$NO$_3$S: C, 56.90; H, 5.97; N, 5.53. Found: C, 56.57; H, 5.94; N, 5.34.

(E)-N-Tosyl-3-heptenamide (7c):

75% yield as colorless crystalline solid. 1H NMR (270 MHz, CDCl$_3$) δ 0.85 (t, $J = 7.3$ Hz, 3H), 1.28–1.42 (m, 2H), 1.94–2.02 (m, 2H), 2.42 (s, 3H), 2.95 (d, $J = 6.7$ Hz, 2H), 5.33–5.43 (m, 1H), 5.53–5.64 (m, 1H), 7.31 (d, $J = 8.4$ Hz, 2H), 7.92 (d, $J = 8.4$ Hz, 2H), 8.44 (br s, 1H). 13C NMR (67.7 MHz, CDCl$_3$) δ 13.6, 21.7, 22.1, 34.5, 40.2, 120.0, 128.2, 129.4, 135.3, 137.1, 144.9, 169.3. IR (KBr) 3114, 2927, 1683, 1597, 1464, 1352, 1166, 1087 cm$^{-1}$. ESI/TOF mass 304 (M+Na)$^+$. Anal. Calcd for C$_{14}$H$_{19}$NO$_3$S: C, 59.76; H, 6.81; N, 4.98. Found: C, 60.05; H, 6.91; N, 4.81.

(E)-N-Tosyl-3-decenamide (7d):
78% yield as colorless semi-solid. 1H NMR (270 MHz, CDCl$_3$) δ 0.85 (t, $J = 6.5$ Hz, 3H), 1.21–1.29 (m, 8H), 1.94–2.03 (m, 2H), 2.41 (s, 3H), 2.95 (d, $J = 7.0$ Hz, 2H), 5.31–5.42 (m, 1H), 5.51–5.62 (m, 1H), 7.31 (d, $J = 8.6$ Hz, 2H), 7.92 (d, $J = 8.4$ Hz, 2H), 8.73 (br s, 1H). 13C NMR (67.7 MHz, CDCl$_3$) δ 14.1, 21.7, 22.6, 28.8, 28.9, 31.7, 32.5, 40.4, 119.8, 128.3, 129.4, 135.3, 137.8, 145.0, 169.1. IR (KBr) 3307, 1738, 1731, 1456, 1446, 1435, 1338, 1172, 1089 cm$^{-1}$. ESI/TOF mass Calcd for C$_{17}$H$_{25}$NO$_3$S (M+Na)$^+$ 346.1453, found 346.0959. Anal. Calcd for C$_{17}$H$_{25}$NO$_3$S: C, 63.13; H, 7.79; N, 4.33. Found: C, 62.85; H, 8.07; N, 4.15.

(E)-N-Tosyl-3-octenamide (7e):

85% yield as colorless semi-solid. 1H NMR (270 MHz, CDCl$_3$) δ 0.82 (t, $J = 7.0$ Hz, 3H), 1.16–1.31 (m, 4H), 1.91–1.98 (m, 2H), 2.39 (s, 3H), 2.95 (d, $J = 6.7$ Hz, 2H), 5.31–5.42 (m, 1H), 5.47–5.58 (m, 1H), 7.29 (d, $J = 8.6$ Hz, 2H), 7.92 (d, $J = 8.4$ Hz, 2H), 9.11 (br s, 1H). 13C NMR (67.7 MHz, CDCl$_3$) δ 13.8, 21.6, 22.1, 31.0, 32.1, 40.1, 119.8, 128.1, 129.3, 135.3, 137.1, 144.8, 169.5. IR (KBr) 3306, 2872, 1728, 1598, 1435, 1338, 1172, 1088 cm$^{-1}$. ESI/TOF mass Calcd for C$_{15}$H$_{21}$NO$_3$S (M+Na)$^+$ 318.1140, found 318.0671. Anal. Calcd for C$_{15}$H$_{21}$NO$_3$S: C, 60.99; H, 7.17; N, 4.74. Found: C, 60.53; H, 7.03; N, 4.52.

(E)-N-Tosyl-4-phenyl-but-3-enamide (7f):

70% yield as colorless solid. 1H NMR (270 MHz, CDCl$_3$) δ 2.38 (s, 3H), 3.19 (d, $J = 6.7$ Hz, 2H), 6.08–6.19 (m, 1H), 6.41 (d, $J = 15.9$ Hz, 1H), 7.21–7.28 (m, 7H), 7.94 (d, $J = 8.4$ Hz, 2H), 9.26 (br s, 1H). 13C NMR (67.7 MHz, CDCl$_3$) δ 21.7, 40.4, 119.6, 126.2, 127.7, 128.2, 128.3, 129.5, 135.1, 135.2, 136.1, 145.0, 169.0. IR (KBr) 3358, 1687, 1596, 1452, 1349, 1246, 1172, 1091 cm$^{-1}$. ESI/TOF mass Calcd for C$_{17}$H$_{17}$NO$_3$S (M+Na)$^+$ 338.0827, found 338.0379. Anal. Calcd for C$_{17}$H$_{17}$NO$_3$S: C, 64.74; H, 5.43; N, 4.44. Found: C, 64.45; H, 5.40; N, 4.58.

N-Tosyl-(2-cyclohex-1-enyl)acetamide (7g):

75% yield as colorless solid. 1H NMR (270 MHz, CDCl$_3$) δ 1.54–1.58 (m, 4H), 1.77 (br m, 2H), 2.02 (br
m, 2H), 2.42 (s, 3H), 2.85 (s, 2H), 5.60 (br s, 1H), 7.31 (d, \(J = 8.6 \) Hz, 2H), 7.91 (d, \(J = 8.1 \) Hz, 2H), 8.12 (br s, 1H). \(^{13}\)C NMR (67.7 MHz, CDCl\(_3\)) \(\delta \) 21.68, 21.71, 22.5, 25.3, 28.1, 46.3, 128.1, 128.2, 129.4, 130.5, 135.3, 144.9, 168.9. IR (KBr) 3322, 1695, 1682, 1668, 1471, 1456, 1435, 1348, 1163, 1088 cm\(^{-1}\). ESI/TOF mass 316 (M+Na\(^+\)). Anal. Calcd for C\(_{15}\)H\(_{19}\)NO\(_3\)S: C, 61.41; H, 6.53; N, 4.77. Found: C, 61.27; H, 6.61; N, 4.56.

The effects of reaction conditions:

Table S1. The effect of metal source on the reaction of 1a when using ligand 3

<table>
<thead>
<tr>
<th>Entry</th>
<th>Metal source</th>
<th>Yield of 2a (%)(^{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)(_2)</td>
<td>75 (40)(^{b})</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OCOCF(_3))(_2)</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Pd(acac)(_2)</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>PdCl(_2)(CH(_3)CN)(_2)</td>
<td>Trace</td>
</tr>
<tr>
<td>5</td>
<td>PdCl(_2)</td>
<td>Trace</td>
</tr>
<tr>
<td>6</td>
<td>Pd(hfacac)(_2)</td>
<td>Trace</td>
</tr>
<tr>
<td>7</td>
<td>Pd(CH(_3)CN)(_4)(BF(_4))(_2)</td>
<td>no reaction</td>
</tr>
<tr>
<td>8</td>
<td>Pd(_2)(dba)(_3) \cdot) CHCl(_3)</td>
<td>no reaction</td>
</tr>
<tr>
<td>9</td>
<td>Ni(acac)(_2)</td>
<td>no reaction</td>
</tr>
<tr>
<td>10</td>
<td>Cu(OAc)(_2)</td>
<td>no reaction</td>
</tr>
<tr>
<td>11</td>
<td>AgOTf</td>
<td>no reaction</td>
</tr>
<tr>
<td>12</td>
<td>Rh(_2)(OAc)(_4)</td>
<td>no reaction</td>
</tr>
</tbody>
</table>

\(^{a}\) Determined by \(^1\)H NMR. \(^{b}\) 5 mol\% of catalyst.
Table S2. The effect of solvent and additive on the reaction of 1a when using ligand 3

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Additive (2 equiv)</th>
<th>Yield of 2a (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCE</td>
<td>none</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>DCM</td>
<td>none</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>THF</td>
<td>none</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>acetone</td>
<td>none</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>MeOH</td>
<td>none</td>
<td>no reaction</td>
</tr>
<tr>
<td>6</td>
<td>DCM</td>
<td>Na₂CO₃</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>DCM</td>
<td>NaOAc</td>
<td>trace</td>
</tr>
<tr>
<td>8</td>
<td>DCM</td>
<td>Cs₂CO₃</td>
<td>trace</td>
</tr>
<tr>
<td>9</td>
<td>DCM</td>
<td>K₂CO₃</td>
<td>trace</td>
</tr>
<tr>
<td>10</td>
<td>DCM</td>
<td>NEt₃</td>
<td>trace</td>
</tr>
</tbody>
</table>

^aDetermined by ¹H NMR.

General procedure for synthesis of γ-butenolides:

A mixture of (P^*.R*,R*)-i-Pr-SPRIX (±)-4 (6.2 mg, 0.0165 mmol, 11 mol %) and Pd(OAc)₂ (3.4 mg, 0.015 mmol, 10 mol %) in DCE (2 mL) was stirred at 30 °C for 2 h under an argon atmosphere in a Schlenk tube. To this solution were added p-benzoquinone (32.4 mg, 0.3 mmol, 2 equiv) and substrate 1a (17.1 mg, 0.15 mmol) via a syringe. The reaction mixture was stirred at 30 °C and the reaction course was monitored by TLC as well as ¹H NMR spectroscopy. After 12 h, the reaction mixture was filtered through a short column of SiO₂ using ethyl acetate as an eluent, and the resulting filtrate was concentrated. The residue was purified by flash SiO₂ column chromatography (sample loaded after adsorption in small amounts of SiO₂ and eluted with hexane/acetone; 99/1 to 96/4) to afford the corresponding γ-butenolide, 5-ethyl-2(5H)-furanone 2a (15.8 mg, 94%).

General procedure for synthesis of 3-pyrrolin-2-ones:

A mixture of (P^*.R*,R*)-i-Pr-SPRIX (±)-4 (6.2 mg, 0.0165 mmol, 11 mol %) and Pd(OAc)₂ (3.4 mg, 0.015 mmol, 10 mol %) in CH₂Cl₂ (2 mL) was stirred at 30 °C for 2 h under an argon atmosphere in
a Schlenk test tube. To this solution were added \(p \)-benzoquinone (32.4 mg, 0.3 mmol, 2 equiv) and substrate (\(E \))-N-tosyl-3-heptenamide (7c, 42.2 mg, 0.15 mmol). The reaction mixture was stirred at 30 °C and the reaction course was monitored by TLC. The mixture was filtered through a short column of SiO\(_2\) using ethyl acetate as an eluent, and the resulting filtrate was concentrated. The residue was purified by flash silica gel column chromatography (sample loaded after adsorption in small amounts of silica gel and eluted with hexane/acetone; 98/2 to 90/10) to afford the corresponding N-tosyl-5-propyl-3-pyrrolin-2-one (8c, 40.6 mg, 97%).

Analytical data of the products

5-Ethyl-2(5\(H \))-furanone (2a).

![Image of 5-Ethyl-2(5\(H \))-furanone](image)

\(^1\)H NMR (270 MHz, CDCl\(_3\)) \(\delta \) 0.99 (t, \(J = 7.4 \) Hz, 3H), 1.90–1.63 (m, 2H), 5.01–4.96 (m, 1H), 6.10 (dd, \(J = 2.2, 5.7 \) Hz, 1H), 7.42 (dd, \(J = 0.8, 5.7 \) Hz, 1H). \(^{13}\)C NMR (67.7 MHz, CDCl\(_3\)) \(\delta \) 9.1, 26.4, 84.3, 121.7, 155.7, 173.0.

5-Methyl-2(5\(H \))-furanone (2b).

![Image of 5-Methyl-2(5\(H \))-furanone](image)

\(^1\)H NMR (270 MHz, CDCl\(_3\)) \(\delta \) 1.45 (d, \(J = 6.7 \) Hz, 3H), 5.18–5.10 (m, 1H), 6.10 (dd, \(J = 1.9, 5.7 \) Hz, 1H), 7.46 (dd, \(J = 1.3, 5.7 \) Hz, 1H). \(^{13}\)C NMR (67.7 MHz, CDCl\(_3\)) \(\delta \) 18.9, 79.6, 121.2, 157.2, 172.8.

5-Propyl-2(5\(H \))-furanone (2c).

![Image of 5-Propyl-2(5\(H \))-furanone](image)

\(^1\)H NMR (270 MHz, CDCl\(_3\)) \(\delta \) 0.97 (t, \(J = 7.3 \) Hz, 3H), 1.51–1.41 (m, 2H), 1.74–1.61 (m, 2H), 5.04–4.99 (m, 1H), 6.10 (dd, \(J = 1.9, 5.7 \) Hz, 1H), 7.45 (dd, \(J = 1.3, 5.7 \) Hz, 1H). \(^{13}\)C NMR (67.7 MHz, CDCl\(_3\)) \(\delta \) 13.8, 18.4, 35.2, 83.2, 121.4, 156.1, 172.9.

5-Hexyl-2(5\(H \))-furanone (2d).

![Image of 5-Hexyl-2(5\(H \))-furanone](image)

\(^1\)H NMR (270 MHz, CDCl\(_3\)) \(\delta \) 0.85 (t, \(J = 7.0 \) Hz, 3H), 1.47–1.26 (m, 8H), 1.81–1.57 (m, 2H), 5.03–4.98 (m, 1H), 6.07 (dd, \(J = 1.9, 5.7 \) Hz, 1H), 7.42 (dd, \(J = 1.4, 5.9 \) Hz, 1H). \(^{13}\)C NMR (67.7 MHz,
CDCl$_3$ δ 14.1, 22.6, 25.0, 29.0, 31.6, 33.2, 83.4, 121.4, 156.1, 173.0.

5-Benzyl-2(5H)-furanone (2e):8

![5-Benzyl-2(5H)-furanone](image)

1H NMR (270 MHz, CDCl$_3$) δ 2.95 (dd, $J = 7.0, 13.0$ Hz, 1H), 3.15 (dd, $J = 6.2, 13.0$ Hz, 1H), 5.22 (t, $J = 6.7$ Hz, 1H), 6.07 (dd, $J = 1.6, 5.7$ Hz, 1H), 7.45–7.15 (m, 6H). 13C NMR (67.7 MHz, CDCl$_3$) δ 39.6, 83.4, 121.9, 127.2, 128.6, 129.2, 134.7, 155.4, 172.6.

5-Isopropyl-2(5H)-furanone (2f):7

![5-Isopropyl-2(5H)-furanone](image)

1H NMR (270 MHz, CDCl$_3$) δ 0.93 (d, $J = 6.7$ Hz, 6H), 2.06–1.89 (m, 1H), 4.80–4.76 (m, 1H), 6.08 (dd, $J = 1.9, 5.7$ Hz, 1H), 7.39 (dd, $J = 1.3, 5.7$ Hz, 1H). 13C NMR (67.7 MHz, CDCl$_3$) δ 17.7, 17.9, 31.7, 87.9, 122.2, 154.7, 172.9.

5-Phenoxy-2(5H)-furanone (2g):

![5-Phenoxy-2(5H)-furanone](image)

1H NMR (270 MHz, CDCl$_3$) δ 6.34 (dd, $J = 1.3, 5.7$ Hz, 1H), 6.42 (t, $J = 1.3$ Hz, 1H), 7.41–7.90 (m, 6H). 13C NMR (67.7 MHz, CDCl$_3$) δ 100.7, 116.9, 123.7, 125.2, 129.7, 149.6, 156.1, 169.7. IR (KBr) 3113, 1790, 1760, 1592, 1494, 1366, 1221, 1158, 1082, 1017 cm$^{-1}$. HRMS (EI) Calcd for C$_{10}$H$_9$O$_3$ (M+H$^+$) 177.0551. Found 177.0539; HRMS(FAB) Calcd for C$_{10}$H$_9$O$_3$ (M+H$^+$) 177.0551. Found 177.0564.

5-Ethyl-3-methyl-2(5H)-furanone (2h):9

![5-Ethyl-3-methyl-2(5H)-furanone](image)

1H NMR (270 MHz, CDCl$_3$) δ 0.99 (t, $J = 7.3$ Hz, 3H), 1.82–1.62 (m, 2H), 1.92 (t, $J = 1.6$ Hz, 3H), 4.90–4.78 (m, 1H), 7.05–7.01 (m, 1H). 13C NMR (67.7 MHz, CDCl$_3$) δ 9.2, 10.7, 26.7, 82.1, 130.1, 148.2, 174.1.

N-Tosyl-5-ethyl-3-pyrrolin-2-one (8a):

8
1H NMR (270 MHz, CDCl$_3$) δ 0.76 (t, J = 7.6 Hz, 3H), 1.97–2.21 (m, 2H), 2.41 (s, 3H), 4.81–4.87 (m, 1H), 6.01 (dd, J = 1.6, 6.2 Hz, 1H), 7.14 (dd, J = 1.9, 5.9 Hz, 1H), 7.30 (d, J = 8.6 Hz, 2H), 7.94 (d, J = 8.6 Hz, 2H). 13C NMR (67.7 MHz, CDCl$_3$) δ 7.9, 21.7, 25.1, 65.3, 125.9, 127.9, 129.5, 135.8, 144.8, 151.4, 168.9. IR (KBr) 2974, 2882, 1728, 1599, 1455, 1361, 1169, 1091, 1001 cm$^{-1}$. ESI/TOF mass 288 (M+Na)$^+$. Anal. Calcd for C$_{13}$H$_{15}$NO$_3$S: C, 58.85; H, 5.70; N, 5.28. Found: C, 58.81; H, 5.65; N, 5.17.

N-Tosyl-5-methyl-3-pyrrolin-2-one (8b):10

1H NMR (270 MHz, CDCl$_3$) δ 1.57 (d, J = 6.7 Hz, 3H), 2.41 (s, 3H), 4.81–4.90 (m, 1H), 5.96 (dd, J = 1.6, 5.9 Hz, 1H), 7.11 (dd, J = 1.9, 5.9 Hz, 1H), 7.30 (d, J = 8.6 Hz, 2H), 7.94 (d, J = 8.6 Hz, 2H). 13C NMR (67.7 MHz, CDCl$_3$) δ 19.1, 21.7, 60.5, 124.9, 127.9, 129.5, 136.0, 144.8, 153.1, 168.4. IR (KBr) 2939, 1722, 1596, 1493, 1455, 1353, 1293, 1168, 1090, 1005 cm$^{-1}$. ESI/TOF mass 274 (M+Na)$^+$. Anal. Calcd for C$_{12}$H$_{13}$NO$_3$S: C, 57.35; H, 5.21; N, 5.57. Found: C, 56.83; H, 5.03; N, 5.31.

N-Tosyl-5-propyl-3-pyrrolin-2-one (8c):

1H NMR (270 MHz, CDCl$_3$) δ 0.89 (t, J = 7.0 Hz, 3H), 1.10–1.23 (m, 2H), 1.79–1.93 (m, 1H), 2.06–2.19 (m, 1H), 2.41 (s, 3H), 4.82–4.86 (m, 1H), 5.98 (dd, J = 1.6, 6.2 Hz, 1H), 7.16 (dd, J = 2.2, 6.2 Hz, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H). 13C NMR (67.7 MHz, CDCl$_3$) δ 13.9, 17.3, 21.7, 34.2, 64.5, 125.5, 127.8, 129.4, 135.9, 144.7, 151.7, 168.7. IR (KBr) 2960, 1720, 1597, 1356, 1169, 1089 cm$^{-1}$. ESI/TOF mass 302 (M+Na)$^+$. Anal. Calcd for C$_{14}$H$_{17}$NO$_3$S: C, 60.19; H, 6.13; N, 5.01. Found: C, 60.28; H, 6.26; N, 4.79.

N-Tosyl-5-hexyl-3-pyrrolin-2-one (8d):
1H NMR (270 MHz, CDCl₃) δ 0.83 (t, J = 6.5 Hz, 3H), 1.02–1.23 (m, 8H), 1.80–1.94 (m, 1H), 2.06–2.20 (m, 1H), 2.39 (s, 3H), 4.83–4.85 (m, 1H), 5.98 (dd, J = 0.8, 6.2 Hz, 1H), 7.16 (dd, J = 1.3, 6.2 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.93 (d, J = 8.1 Hz, 2H). 13C NMR (67.7 MHz, CDCl₃) δ 14.1, 21.7, 22.5, 22.6, 31.6, 32.0, 64.6, 125.5, 127.8, 129.4, 135.9, 144.7, 151.8, 168.8. IR (KBr) 2922, 1722, 1716, 1599, 1471, 1360 cm⁻¹. ESI/TOF mass 344 (M+Na)⁺. Anal. Calcd for C₁₇H₂₃NO₃S: C, 63.52; H, 7.21; N, 4.36. Found: C, 63.88; H, 7.18; N, 4.07.

N-Tosyl-5-butyl-3-pyrrolin-2-one (8e):

1H NMR (270 MHz, CDCl₃) δ 0.82 (t, J = 7.0 Hz, 3H), 1.02–1.32 (m, 4H), 1.81–1.95 (m, 1H), 2.06–2.19 (m, 1H), 2.40 (s, 3H), 4.82–4.85 (m, 1H), 5.98 (dd, J = 1.6, 5.9 Hz, 1H), 7.16 (dd, J = 1.9, 6.2 Hz, 1H), 7.29 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.4 Hz, 2H). 13C NMR (67.7 MHz, CDCl₃) δ 13.9, 21.7, 22.5, 25.8, 31.8, 64.5, 125.6, 127.8, 129.4, 135.9, 144.8, 151.8, 168.8. IR (KBr) 2960, 1728, 1594, 1360, 1169, 1089 cm⁻¹. ESI/TOF mass 316 (M+Na)⁺. Anal. Calcd for C₁₅H₁₉NO₃S: C, 61.41; H, 6.53; N, 4.77. Found: C, 61.52; H, 6.79; N, 4.56.

N-Tosyl-5-phenyl-3-pyrrolin-2-one (8f):

1H NMR (270 MHz, CDCl₃) δ 2.29 (s, 3H), 5.74–5.76 (m, 1H), 6.06 (dd, J = 1.3, 6.2 Hz, 1H), 7.02–7.08 (m, 5H), 7.19–7.30 (m, 3H), 7.34 (d, J = 8.1 Hz, 2H). 13C NMR (67.7 MHz, CDCl₃) δ 21.7, 67.4, 124.8, 127.7, 127.8, 128.7, 128.9, 129.1, 133.3, 135.6, 144.5, 151.0, 168.5. IR (KBr) 3096, 1738, 1732, 1596, 1456, 1357, 1295, 1166, 1090, 1073 cm⁻¹. ESI/TOF mass 336 (M+Na)⁺. Anal. Calcd for C₁₇H₁₅NO₃S: C, 65.16; H, 4.82; N, 4.47. Found: C, 65.01; H, 4.68; N, 4.33.

Synthesis of (E)-2,2-dideuterio-hex-3-enoic acid (1a-d):

Diisopropylamine (0.48 mL, 2 equiv) in THF (10 mL) was cooled to –20 °C. To this solution was added slowly 2.0 M solution of n-BuLi in THF (1.7 mL, 2 equiv). After stirring for 30 min, a solution of (E)-3-hexenoic acid (1a, 196 mg, 1.7 mmol) in THF (1 mL) was added dropwise via syringe. The reaction mixture became deep yellow in color. After 30 min, it was quenched with D₂O (0.75 mL) and then allowed to warm at rt. The mixture was neutralized with 2N HCl and extracted with ethyl acetate
(30 mL × 3) then dried with Na₂SO₄. Filtration followed by solvent evaporation gave 1a-d in quantitative yield (197 mg, 43% D at α-position). The procedure was repeated once again to obtain 1a-d labeled with 81% D. Analytical data: ¹H NMR (270 MHz, CDCl₃) δ 0.96 (t, J = 7.3 Hz, 3H), 2.11–2.01 (m, 2H), 3.03 (s, 0.36H), 5.69–5.46 (m, 2H).

The effect of N-protecting group on the reaction

![Chemical structure](attachment:chemical_structure.png)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Ee of 2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>1b: R = Me</td>
<td>2b</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>1c: R = Pr</td>
<td>2c</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>1e: R = Bn</td>
<td>2e</td>
<td>52</td>
</tr>
<tr>
<td>4b</td>
<td>1f: R = iPr</td>
<td>2f</td>
<td>50</td>
</tr>
<tr>
<td>5c</td>
<td>1g: R = OPn</td>
<td>2g</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>1h:</td>
<td>2h</td>
<td>4</td>
</tr>
</tbody>
</table>

*a Reaction conditions: Pd(OAc)₂ (10 mol %), (P,R,R)-4 (11 mol %), p-benzoquinone (2 equiv.), DCE, 30 °C, 24 h. *b DCM. *c 75 °C. *d Determined by HPLC (Chiralcel OB-H; λ 220 nm, hexane/IPA=9/1)

References

