Electronic Supplementary Information

IN-SITU FABRICATION OF ORDERED NANORING ARRAYS VIA THE RECONSTRUCTION OF PATTERNED BLOCK COPOLYMER THIN FILM

Xihong Zu^{a,b}, Xiaobo Hu^c, L. Andrew Lyon^c and Yulin Deng^a*

^a School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 500 10th street NW, Atlanta, GA 30332-0620 (USA)
E-mail: Yulin.deng@chbe.gatech.edu
^b School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
^c School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA 30332-0400 (USA)

Experimental

Materials

PS-b-P4VP diblock copolymer (M_n: 130 kg/mol for PS and 75 kg/mol for P4VP, M_w/M_n = 1.25) was purchased from Polymer Source Inc., USA. Zinc acetate dihydrate (C₄H₆O₄Zn.2H₂O, 98%) was purchased from Acros Organics, USA. Ferric chloride (FeCl₃, Anhydrous, \geq 98%) was purchased from Spectrum Chemical Mfg. Corp. USA. Titanium (IV) butoxide (Ti [O (CH₂)₃CH₃]₄, 97%) and Chloroform (99.8%) were purchased from Sigma-Aldrich, USA. Methanol (99.9%) and Ammonium Hydroxide (29%) were purchased from Fisher Scientific, USA. Silicon wafer (P<100>, 0.001-0.005 ohm-cm, Prime Grade) was purchased from University Wafer Inc.

Preparation of PS-b-P4VP thin film

Silicon wafer was used as the substrate for preparation of block copolymer thin films. The silicon wafers were cleaned consecutively in the order of DMF (N,N-Dimethylformamide), ethanol and de-ionized water, and then heated on a hotplate at 200 °C to eliminate any adsorbed moisture quickly. After that, PS-b-P4VP thin films with cylindrical nanodomains were fabricated by spin-coating at room temperature on a silicon substrate, typically at 3000 rpm and 60 s using a 0.5 wt% PS-b-P4VP chloroform solution.

Preparation of ZnO nanoring arrays

PS-b-P4VP monolayer film was immersed in 0.2 M $Zn(Ac)_2$ solution with methanol as solvent for 30 min to fully load $Zn(Ac)_2$ solution in the P4VP cores. The $Zn(Ac)_2$ -loaded film was then rinsed with anhydrous ethanol to remove the $Zn(Ac)_2$ that was on the film surface but not in the P4VP cores. After that, the $Zn(Ac)_2$ -loaded film was exposed to a vapor of ammonium hydroxide and methanol (the volume ratio of ammonium hydroxide (29%) to methanol is 1:2) for 2 h at 40 °C to produce $Zn(OH)_2$ in the P4VP cores and form nanorings. Finally, the thin film with $Zn(OH)_2$ was calcined to remove the copolymer and convert the $Zn(OH)_2$ to ZnO. The thin film with $Zn(OH)_2$ was heated at 170 °C in a furnace for 1 h, and then taken out of furnace. After sample was cooled down to room temperature, it was put in a furnace previously heated to 600 °C. The sample was left in the furnace and calcined for 6 h to make sure the polymer was burnt out completely. Ordered ZnO nanoring arrays which remain the original template patterns were successfully obtained.

Preparation of TiO₂ nanoring arrays

TiO₂ nanorings were synthesized by hydrolization of titanium (IV) butoxide. PS-b-P4VP monolayer film was immersed in 0.2 M titanium (IV) butoxide solution with methanol as solvent for 30 min to fully load titanium (IV) butoxide solution in the P4VP cores. The Ti[O(CH₂)₃CH₃]₄-loaded film was then rinsed with anhydrous ethanol to remove the titanium (IV) butoxide that was on the film surface but not in the P4VP cores. After that, Ti[O(CH₂)₃CH₃]₄-loaded film was exposed into the mixture vapor of ammonium hydroxide and methanol (the volume ratio of ammonium hydroxide (29%) to methanol is 1:2) for 2 h at 40 $^{\circ}$ C to produce Ti(OH)₄ in the P4VP cores and form nanorings. Finally, the thin film with Ti(OH)₄ was calcinated using the calcination method discussed above to make Ti(OH)₄ thermal decompose to TiO₂, and in-situ transferred to silicon substrate simultaneously.

Preparation of Fe₂O₃ nanoring arrays

PS-b-P4VP monolayer film was immersed in 0.2 M FeCl₃ solution with methanol as solvent for 30 min to fully load FeCl₃ solution in the P4VP cores. The FeCl₃-loaded film was rinsed firstly with hexane and dry at ambient temperature, and then rinsed with anhydrous ethanol to completely remove the FeCl₃ that was on the film surface but not in the P4VP cores. After that, FeCl₃-loaded film was exposed into the mixture vapor of ammonium hydroxide and methanol (the volume ratio of ammonium hydroxide (29%) to methanol is 1:2) for 2 h at 40 °C to produce Fe(OH)₃ in the P4VP cores and form nanorings. After that, the thin film with Fe(OH)₃ was calcinated using the calcination method discussed above to make Fe(OH)₃ thermal decompose to Fe₂O₃ nanorings, and in-situ transferred to silicon substrate simultaneously.

Preparation of Au nanoring arrays

A PS-b-P4VP monolayer film was immersed in 1 mM HAuCl₄ solution with methanol as solvent for 30 min to fully load HAuCl₄ solution in the P4VP cores. The HAuCl₄-loaded film was then rinsed with anhydrous ethanol to remove HAuCl₄ that was on the film surface but not in the P4VP cores. After that, HAuCl₄-loaded film was exposed into methanol vapor for 2 h at 40 $^{\circ}$ C to form nanorings. Finally, the array of Au nanorings were obtained by the calcination method discussed above and in-situ transferred to silicon substrate simultaneously.

Characterization

The atomic force microscopy (AFM) images were taken on an Asylum Research MFP-3D AFM (Santa Barbara, CA). Imaging was performed and processed using the MFP-3D software written in the IgorPro (Wave Metrics Inc., Lake Oswego, OR) environment. Noncontact mode aluminum-coated silicon nitride cantilevers were purchased from NanoWorld. All images were taken in air under ambient conditions. Scanning electron microscopy (SEM) images were obtained using a LEO 1530 with energy-dispersive X-ray spectroscopy (EDX).

Figure S1. XPS results and discussion: We tested the components of $Zn(Ac)_2$ -loaded PS-b-P4VP thin films after exposing into the vapor mixture of ammonium hydroxide and methanol at 40 °C for 2 h by XPS (SSX-100 X-ray photoelectron spectroscopy (XPS) with A1 K Alpha source). The C1s binding energy in C-C bonds was 285.1 eV. The binding energy of the Zn2p3 core level electrons appeared at 1022.0 eV, and O 1s appeared at 531.9 eV. The binding energy of N 1s due to P4VP blocks was 399.8 eV. The XPS clearly shows the present of Zn in the thin film after Zn(Ac)₂ was loaded into the thin film.

Figure S1. XPS spectra of $Zn(Ac)_2$ -loaded PS-b-P4VP thin film after exposing into the vapor mixture of ammonium hydroxide and methanol at 40 °C for 2 h.

Figure S2: Different calcination methods will affect the final nanopatterns. This was tested by calcinating patterned nanoparticles (not nanorings) by one step calcination (directly raising the temperature to 600 °C) and a two-step method (the thin film was first heated to 170 °C, kept for 1 h at that temperature, and finally heated to 600 °C for 6 h). The SEM results shown in Figure S3 clearly demonstrated that the two-step calcination method is better than one-step method (these pictures were obtained for patterned nanoparticles but not for nanorings).

Figure S2. SEM images of Au nanoparticle arrays calcined with different temperature programs (PS-b-P4VP monolayer film as template). (a) Heat to 600 °C at 10 °C/min and then keep 6 h. (b) Put in furnace at 600 °C and keep 6 h. (c) Heat to 170 °C at 10 °C/min and keep 1 h, then take out of the sample and put in again at 600 °C to calcine 6 h.

Figure S3. Influence of HAuCl₄ concentration on arrays of Au nanorings after calcinations at 600 °C. (a) 50 mM HAuCl₄, (b) 1 mM HAuCl₄, (c) 0.05 mM HAuCl₄.

<u>Supplementary Material (ESI) for Chemical Communications</u> <u>This journal is (c) The Royal Society of Chemistry 2010</u>

