# Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2011 data_global _journal_name_full Chem.Commun. _journal_coden_Cambridge 0182 _publ_contact_author_name 'Katrusiak, Andrzej' _publ_contact_author_email katran@amu.edu.pl _publ_section_title ; Pressure-induced collapse of guanidinium nitrate N\^aH\^a \^a\^aO bonded honeycomb layers into a 3-D pattern with varied H-acceptor capacity ; loop_ _publ_author_name A.Katrusiak M.Szafraski M.Podsiado # Attachment '- GN.cif' data_azg_polymorphII_0.36GPa _database_code_depnum_ccdc_archive 'CCDC 779718' #TrackingRef '- GN.cif' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; guanidinium nitrate ; _chemical_name_common 'guanidinium nitrate' _chemical_melting_point 486 _chemical_formula_moiety 'C H6 N3, N O3' _chemical_formula_sum 'C H6 N4 O3' _chemical_formula_weight 122.10 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'C 2/m' _symmetry_space_group_name_Hall '-C 2y' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z' '-x, -y, -z' 'x, -y, z' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z' _cell_length_a 12.340(3) _cell_length_b 7.2110(14) _cell_length_c 7.3900(15) _cell_angle_alpha 90.00 _cell_angle_beta 125.00(3) _cell_angle_gamma 90.00 _cell_volume 538.67(19) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 997 _cell_measurement_theta_min 3.47 _cell_measurement_theta_max 27.34 _exptl_crystal_description plate _exptl_crystal_colour colourless _exptl_crystal_size_max 0.34 _exptl_crystal_size_mid 0.31 _exptl_crystal_size_min 0.25 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.506 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 256 _exptl_absorpt_coefficient_mu 0.142 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.50 _exptl_absorpt_correction_T_max 0.90 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 0.36(5) GPa (360000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 360000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 997 _diffrn_reflns_av_R_equivalents 0.0359 _diffrn_reflns_av_sigmaI/netI 0.0134 _diffrn_reflns_limit_h_min -15 _diffrn_reflns_limit_h_max 15 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -6 _diffrn_reflns_limit_l_max 6 _diffrn_reflns_theta_min 3.47 _diffrn_reflns_theta_max 27.34 _reflns_number_total 100 _reflns_number_gt 82 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0000P)^2^+1.0702P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.38(7) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 100 _refine_ls_number_parameters 22 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0606 _refine_ls_R_factor_gt 0.0513 _refine_ls_wR_factor_ref 0.0834 _refine_ls_wR_factor_gt 0.0795 _refine_ls_goodness_of_fit_ref 1.160 _refine_ls_restrained_S_all 1.160 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.893(2) 0.0000 0.246(5) 0.060(3) Uiso 1 2 d S . . N1 N 0.9817(19) 0.0000 0.221(5) 0.063(2) Uiso 1 2 d S . . H11 H 1.0162 -0.1031 0.2196 0.075 Uiso 0.50 1 calc PR . . H12 H 1.0102 0.1031 0.2049 0.075 Uiso 0.50 1 calc PR . . N2 N 0.8520(13) 0.1480(6) 0.269(3) 0.067(2) Uiso 1 1 d . . . H3 H 0.8864 0.2512 0.2677 0.080 Uiso 1 1 calc R . . H2 H 0.7889 0.1477 0.2869 0.080 Uiso 1 1 calc R . . N3 N 0.569(2) 0.0000 0.280(5) 0.070(2) Uiso 1 2 d S . . O1 O 0.4454(19) 0.0000 0.227(5) 0.095(3) Uiso 1 2 d S . . O2 O 0.6167(9) 0.1520(5) 0.284(2) 0.072(2) Uiso 1 1 d . . . # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N1 1.206(9) . ? C1 N2 1.236(6) 6 ? C1 N2 1.236(6) . ? N3 N3 0.00(14) 1 ? N3 O2 1.240(5) 1 ? N3 O2 1.240(5) . ? N3 O2 1.240(5) 6 ? N3 O1 1.336(17) . ? O1 N3 1.336(17) 1 ? O2 O2 0.00(2) 1 ? O2 N3 1.240(5) 1 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 C1 N2 120.1(4) . 6 ? N1 C1 N2 120.1(4) . . ? N2 C1 N2 119.4(8) 6 . ? N3 N3 O2 0(10) 1 1 ? N3 N3 O2 0(10) 1 . ? O2 N3 O2 0.0(6) 1 . ? N3 N3 O2 0(10) 1 6 ? O2 N3 O2 124.3(7) 1 6 ? O2 N3 O2 124.3(7) . 6 ? N3 N3 O1 0(10) 1 . ? O2 N3 O1 117.2(7) 1 . ? O2 N3 O1 117.2(7) . . ? O2 N3 O1 117.2(7) 6 . ? N3 O1 N3 0(3) 1 . ? O2 O2 N3 0(10) 1 1 ? O2 O2 N3 0(10) 1 . ? N3 O2 N3 0(2) 1 . ? _diffrn_measured_fraction_theta_max 0.151 _diffrn_reflns_theta_full 27.34 _diffrn_measured_fraction_theta_full 0.151 _refine_diff_density_max 0.082 _refine_diff_density_min -0.087 _refine_diff_density_rms 0.018 ################################################################## data_azg_polymorphIV_0.68GPa _database_code_depnum_ccdc_archive 'CCDC 779719' #TrackingRef '- GN.cif' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; guanidinium nitrate ; _chemical_name_common 'guanidinium nitrate' _chemical_melting_point 486 _chemical_formula_moiety 'C H6 N3, N O3' _chemical_formula_sum 'C H6 N4 O3' _chemical_formula_weight 122.10 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P c' _symmetry_space_group_name_Hall 'P -2yc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x, -y, z+1/2' _cell_length_a 4.8990(10) _cell_length_b 4.9170(10) _cell_length_c 10.350(2) _cell_angle_alpha 90.00 _cell_angle_beta 100.80(3) _cell_angle_gamma 90.00 _cell_volume 244.90(9) _cell_formula_units_Z 2 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 1866 _cell_measurement_theta_min 4.14 _cell_measurement_theta_max 28.93 _exptl_crystal_description plate _exptl_crystal_colour colourless _exptl_crystal_size_max 0.25 _exptl_crystal_size_mid 0.25 _exptl_crystal_size_min 0.24 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.656 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 128 _exptl_absorpt_coefficient_mu 0.156 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.26 _exptl_absorpt_correction_T_max 0.84 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 0.68(5) GPa (680000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 680000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 1866 _diffrn_reflns_av_R_equivalents 0.0491 _diffrn_reflns_av_sigmaI/netI 0.0387 _diffrn_reflns_limit_h_min -4 _diffrn_reflns_limit_h_max 4 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -9 _diffrn_reflns_limit_l_max 9 _diffrn_reflns_theta_min 4.14 _diffrn_reflns_theta_max 28.93 _reflns_number_total 350 _reflns_number_gt 286 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0000P)^2^+0.2119P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.48(3) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 2(6) _refine_ls_number_reflns 350 _refine_ls_number_parameters 34 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.0902 _refine_ls_R_factor_gt 0.0669 _refine_ls_wR_factor_ref 0.0667 _refine_ls_wR_factor_gt 0.0609 _refine_ls_goodness_of_fit_ref 1.203 _refine_ls_restrained_S_all 1.200 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C -0.209(4) 0.1069(13) 0.048(2) 0.0291(17) Uiso 1 1 d . . . N1 N -0.325(2) 0.3244(10) 0.0059(13) 0.0363(15) Uiso 1 1 d . . . H12 H -0.2651 0.4149 -0.0541 0.044 Uiso 1 1 calc R . . H11 H -0.4656 0.3831 0.0367 0.044 Uiso 1 1 calc R . . N2 N -0.262(3) -0.0026(12) 0.1497(15) 0.042(2) Uiso 1 1 d . . . H21 H -0.1631 -0.1369 0.1853 0.051 Uiso 1 1 calc R . . H22 H -0.3980 0.0562 0.1838 0.051 Uiso 1 1 calc R . . N3 N -0.008(3) -0.0096(12) 0.0175(18) 0.050(2) Uiso 1 1 d . . . H31 H 0.0698 -0.1431 0.0641 0.061 Uiso 1 1 calc R . . H32 H 0.0547 0.0426 -0.0508 0.061 Uiso 1 1 calc R . . N4 N 0.234(3) -0.5580(14) 0.2656(16) 0.037(2) Uiso 1 1 d . . . O1 O 0.026(3) -0.4480(11) 0.3220(14) 0.0534(19) Uiso 1 1 d . . . O2 O 0.276(3) -0.4662(11) 0.1779(13) 0.0409(17) Uiso 1 1 d . . . O3 O 0.361(3) -0.7565(8) 0.3274(13) 0.0411(13) Uiso 1 1 d . . . # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N3 1.23(4) . ? C1 N2 1.25(4) . ? C1 N1 1.253(9) . ? N1 H12 0.8600 . ? N1 H11 0.8600 . ? N2 H21 0.8600 . ? N2 H22 0.8600 . ? N3 H31 0.8600 . ? N3 H32 0.8600 . ? N4 N4 0.00(2) 1 ? N4 N4 0.00(2) 1 ? N4 O2 1.07(3) . ? N4 O2 1.07(3) 1 ? N4 O3 1.266(8) . ? N4 O1 1.37(3) . ? N4 O1 1.37(3) 1 ? O1 O1 0.00(3) 1 ? O1 N4 1.37(3) 1 ? O1 N4 1.37(3) 1 ? O2 O2 0.00(3) 1 ? O2 N4 1.07(3) 1 ? O2 N4 1.07(3) 1 ? O3 N4 1.266(8) 1 ? O3 N4 1.266(8) 1 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N3 C1 N2 108.7(9) . . ? N3 C1 N1 130(2) . . ? N2 C1 N1 121(2) . . ? C1 N1 H12 120.0 . . ? C1 N1 H11 120.0 . . ? H12 N1 H11 120.0 . . ? C1 N2 H21 120.0 . . ? C1 N2 H22 120.0 . . ? H21 N2 H22 120.0 . . ? C1 N3 H31 120.0 . . ? C1 N3 H32 120.0 . . ? H31 N3 H32 120.0 . . ? N4 N4 N4 0(10) 1 1 ? N4 N4 O2 0(10) 1 . ? N4 N4 O2 0(10) 1 . ? N4 N4 O2 0(10) 1 1 ? N4 N4 O2 0(10) 1 1 ? O2 N4 O2 0.0(18) . 1 ? N4 N4 O3 0(10) 1 . ? N4 N4 O3 0(10) 1 . ? O2 N4 O3 127(2) . . ? O2 N4 O3 127(2) 1 . ? N4 N4 O1 0(10) 1 . ? N4 N4 O1 0(10) 1 . ? O2 N4 O1 118.1(10) . . ? O2 N4 O1 118.1(10) 1 . ? O3 N4 O1 115.1(17) . . ? N4 N4 O1 0(10) 1 1 ? N4 N4 O1 0(10) 1 1 ? O2 N4 O1 118.1(10) . 1 ? O2 N4 O1 118.1(10) 1 1 ? O3 N4 O1 115.1(17) . 1 ? O1 N4 O1 0.0(15) . 1 ? O1 O1 N4 0(10) 1 1 ? O1 O1 N4 0(10) 1 . ? N4 O1 N4 0.0(13) 1 . ? O1 O1 N4 0(10) 1 1 ? N4 O1 N4 0.0(13) 1 1 ? N4 O1 N4 0.0(13) . 1 ? O2 O2 N4 0(10) 1 1 ? O2 O2 N4 0(10) 1 . ? N4 O2 N4 0.0(15) 1 . ? O2 O2 N4 0(10) 1 1 ? N4 O2 N4 0.0(15) 1 1 ? N4 O2 N4 0.0(15) . 1 ? N4 O3 N4 0.0(8) 1 . ? N4 O3 N4 0.0(8) 1 1 ? N4 O3 N4 0.0(8) . 1 ? _diffrn_measured_fraction_theta_max 0.276 _diffrn_reflns_theta_full 28.93 _diffrn_measured_fraction_theta_full 0.276 _refine_diff_density_max 0.098 _refine_diff_density_min -0.112 _refine_diff_density_rms 0.029 data_azg_polymorphIV_0.79GPa _database_code_depnum_ccdc_archive 'CCDC 779720' #TrackingRef '- GN.cif' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; guanidinium nitrate ; _chemical_name_common 'guanidinium nitrate' _chemical_melting_point 486 _chemical_formula_moiety 'C H6 N3, N O3' _chemical_formula_sum 'C H6 N4 O3' _chemical_formula_weight 122.10 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P c' _symmetry_space_group_name_Hall 'P -2yc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x, -y, z+1/2' _cell_length_a 4.8950(10) _cell_length_b 4.8916(10) _cell_length_c 10.337(2) _cell_angle_alpha 90.00 _cell_angle_beta 101.56(3) _cell_angle_gamma 90.00 _cell_volume 242.49(9) _cell_formula_units_Z 2 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 844 _cell_measurement_theta_min 4.17 _cell_measurement_theta_max 26.23 _exptl_crystal_description plate _exptl_crystal_colour colourless _exptl_crystal_size_max 0.36 _exptl_crystal_size_mid 0.25 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.672 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 128 _exptl_absorpt_coefficient_mu 0.158 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.51 _exptl_absorpt_correction_T_max 0.89 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 0.79(5) GPa (790000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 790000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 844 _diffrn_reflns_av_R_equivalents 0.0402 _diffrn_reflns_av_sigmaI/netI 0.0261 _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 5 _diffrn_reflns_limit_l_min -5 _diffrn_reflns_limit_l_max 6 _diffrn_reflns_theta_min 4.17 _diffrn_reflns_theta_max 26.23 _reflns_number_total 254 _reflns_number_gt 226 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0334P)^2^+0.1499P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.81(10) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0(5) _refine_ls_number_reflns 254 _refine_ls_number_parameters 74 _refine_ls_number_restraints 14 _refine_ls_R_factor_all 0.0371 _refine_ls_R_factor_gt 0.0324 _refine_ls_wR_factor_ref 0.0781 _refine_ls_wR_factor_gt 0.0738 _refine_ls_goodness_of_fit_ref 1.121 _refine_ls_restrained_S_all 1.090 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C -0.2001(17) 0.1000(15) 0.0613(14) 0.033(4) Uani 1 1 d U . . N1 N -0.3264(15) 0.3270(15) 0.0047(15) 0.051(8) Uani 1 1 d . . . H11 H -0.4646 0.3963 0.0333 0.061 Uiso 1 1 calc R . . H12 H -0.2689 0.4028 -0.0600 0.061 Uiso 1 1 calc R . . N2 N -0.2869(16) -0.0088(13) 0.1562(17) 0.038(11) Uani 1 1 d . . . H21 H -0.2155 -0.1600 0.1895 0.046 Uiso 1 1 calc R . . H22 H -0.4176 0.0683 0.1876 0.046 Uiso 1 1 calc R . . N3 N 0.0015(17) -0.0155(11) 0.0112(12) 0.050(13) Uani 1 1 d . . . H31 H 0.0749 -0.1667 0.0434 0.060 Uiso 1 1 calc R . . H32 H 0.0585 0.0610 -0.0535 0.060 Uiso 1 1 calc R . . N4 N 0.2273(14) -0.5604(15) 0.2728(15) 0.034(4) Uani 1 1 d U . . O1 O 0.0358(12) -0.4542(9) 0.3192(11) 0.062(8) Uani 1 1 d . . . O2 O 0.2890(13) -0.4652(11) 0.1690(12) 0.058(9) Uani 1 1 d . . . O3 O 0.3459(14) -0.7629(10) 0.3273(17) 0.058(8) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.037(4) 0.029(4) 0.039(12) -0.009(4) 0.019(7) -0.005(3) N1 0.051(5) 0.039(7) 0.07(3) 0.007(5) 0.030(11) 0.005(3) N2 0.041(5) 0.045(6) 0.03(4) 0.006(5) 0.007(12) 0.006(3) N3 0.057(7) 0.038(7) 0.06(4) -0.002(4) 0.027(16) 0.009(3) N4 0.027(4) 0.036(3) 0.040(12) -0.006(5) 0.009(6) 0.001(3) O1 0.061(5) 0.050(5) 0.09(3) 0.003(5) 0.041(10) 0.003(3) O2 0.072(6) 0.042(5) 0.07(3) 0.013(4) 0.048(12) 0.006(3) O3 0.061(4) 0.040(4) 0.08(3) 0.014(4) 0.024(9) 0.012(3) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N2 1.262(19) . ? C1 N3 1.329(14) . ? C1 N1 1.346(14) . ? N1 H11 0.8600 . ? N1 H12 0.8600 . ? N2 H21 0.8600 . ? N2 H22 0.8600 . ? N3 H31 0.8600 . ? N3 H32 0.8600 . ? N4 N4 0.00(5) 1 ? N4 N4 0.00(5) 1 ? N4 O3 1.227(13) . ? N4 O1 1.248(10) . ? N4 O1 1.248(10) 1 ? N4 O2 1.260(16) 1 ? N4 O2 1.260(16) . ? O1 O1 0.00(3) 1 ? O1 N4 1.248(10) 1 ? O1 N4 1.248(10) 1 ? O2 O2 0.00(3) 1 ? O2 N4 1.260(16) 1 ? O2 N4 1.260(16) 1 ? O3 N4 1.227(13) 1 ? O3 N4 1.227(13) 1 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N2 C1 N3 121.0(8) . . ? N2 C1 N1 119.3(8) . . ? N3 C1 N1 119.6(12) . . ? C1 N1 H11 120.0 . . ? C1 N1 H12 120.0 . . ? H11 N1 H12 120.0 . . ? C1 N2 H21 120.0 . . ? C1 N2 H22 120.0 . . ? H21 N2 H22 120.0 . . ? C1 N3 H31 120.0 . . ? C1 N3 H32 120.0 . . ? H31 N3 H32 120.0 . . ? N4 N4 N4 0(10) 1 1 ? N4 N4 O3 0(10) 1 . ? N4 N4 O3 0(10) 1 . ? N4 N4 O1 0(10) 1 . ? N4 N4 O1 0(10) 1 . ? O3 N4 O1 118.8(12) . . ? N4 N4 O1 0(10) 1 1 ? N4 N4 O1 0(10) 1 1 ? O3 N4 O1 118.8(12) . 1 ? O1 N4 O1 0.0(8) . 1 ? N4 N4 O2 0(10) 1 1 ? N4 N4 O2 0(10) 1 1 ? O3 N4 O2 121.2(10) . 1 ? O1 N4 O2 120.0(8) . 1 ? O1 N4 O2 120.0(8) 1 1 ? N4 N4 O2 0(10) 1 . ? N4 N4 O2 0(10) 1 . ? O3 N4 O2 121.2(10) . . ? O1 N4 O2 120.0(8) . . ? O1 N4 O2 120.0(8) 1 . ? O2 N4 O2 0.0(5) 1 . ? O1 O1 N4 0(10) 1 1 ? O1 O1 N4 0(10) 1 . ? N4 O1 N4 0.0(15) 1 . ? O1 O1 N4 0(10) 1 1 ? N4 O1 N4 0.0(15) 1 1 ? N4 O1 N4 0.0(15) . 1 ? O2 O2 N4 0(10) 1 1 ? O2 O2 N4 0(10) 1 . ? N4 O2 N4 0.0(9) 1 . ? O2 O2 N4 0(10) 1 1 ? N4 O2 N4 0.0(9) 1 1 ? N4 O2 N4 0.0(9) . 1 ? N4 O3 N4 0.0(17) 1 . ? N4 O3 N4 0.0(17) 1 1 ? N4 O3 N4 0.0(17) . 1 ? _diffrn_measured_fraction_theta_max 0.269 _diffrn_reflns_theta_full 26.23 _diffrn_measured_fraction_theta_full 0.269 _refine_diff_density_max 0.076 _refine_diff_density_min -0.086 _refine_diff_density_rms 0.019 data_azg_polymorphIV_1.51GPa _database_code_depnum_ccdc_archive 'CCDC 779721' #TrackingRef '- GN.cif' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; guanidinium nitrate ; _chemical_name_common 'guanidinium nitrate' _chemical_melting_point 486 _chemical_formula_moiety 'C H6 N3, N O3' _chemical_formula_sum 'C H6 N4 O3' _chemical_formula_weight 122.10 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P c' _symmetry_space_group_name_Hall 'P -2yc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x, -y, z+1/2' _cell_length_a 4.8670(10) _cell_length_b 4.8450(10) _cell_length_c 10.140(2) _cell_angle_alpha 90.00 _cell_angle_beta 102.91(3) _cell_angle_gamma 90.00 _cell_volume 233.06(8) _cell_formula_units_Z 2 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 888 _cell_measurement_theta_min 4.21 _cell_measurement_theta_max 25.64 _exptl_crystal_description plate _exptl_crystal_colour colourless _exptl_crystal_size_max 0.34 _exptl_crystal_size_mid 0.30 _exptl_crystal_size_min 0.25 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.740 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 128 _exptl_absorpt_coefficient_mu 0.164 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.50 _exptl_absorpt_correction_T_max 0.88 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 1.51(5) GPa (1510000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 1510000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 888 _diffrn_reflns_av_R_equivalents 0.0597 _diffrn_reflns_av_sigmaI/netI 0.0366 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 5 _diffrn_reflns_limit_l_min -4 _diffrn_reflns_limit_l_max 4 _diffrn_reflns_theta_min 4.21 _diffrn_reflns_theta_max 25.64 _reflns_number_total 239 _reflns_number_gt 206 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0000P)^2^+0.2647P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 1(6) _refine_ls_number_reflns 239 _refine_ls_number_parameters 33 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.0533 _refine_ls_R_factor_gt 0.0449 _refine_ls_wR_factor_ref 0.0729 _refine_ls_wR_factor_gt 0.0703 _refine_ls_goodness_of_fit_ref 1.198 _refine_ls_restrained_S_all 1.192 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C -0.2044(17) 0.1115(13) 0.0644(19) 0.0200(18) Uiso 1 1 d . . . N1 N -0.3305(15) 0.3381(11) 0.0042(17) 0.0369(19) Uiso 1 1 d . . . H11 H -0.4759 0.4043 0.0282 0.044 Uiso 1 1 calc R . . H12 H -0.2662 0.4177 -0.0585 0.044 Uiso 1 1 calc R . . N2 N -0.2823(14) -0.0207(14) 0.1575(17) 0.031(2) Uiso 1 1 d . . . H22 H -0.4263 0.0342 0.1864 0.037 Uiso 1 1 calc R . . H21 H -0.1911 -0.1653 0.1918 0.037 Uiso 1 1 calc R . . N3 N -0.0018(13) -0.0088(12) 0.0118(16) 0.035(2) Uiso 1 1 d . . . H31 H 0.0664 -0.1662 0.0419 0.042 Uiso 1 1 calc R . . H32 H 0.0587 0.0722 -0.0516 0.042 Uiso 1 1 calc R . . N4 N 0.2288(16) -0.5713(13) 0.2647(17) 0.0262(19) Uiso 1 1 d . . . O1 O 0.0300(11) -0.4667(10) 0.3229(13) 0.0417(18) Uiso 1 1 d . . . O2 O 0.2949(12) -0.4616(15) 0.1735(18) 0.044(2) Uiso 1 1 d . . . O3 O 0.3495(12) -0.7816(8) 0.3263(12) 0.0324(15) Uiso 1 1 d . . . # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N2 1.27(3) . ? C1 N1 1.337(11) . ? C1 N3 1.35(2) . ? N4 N4 0.00(2) 1 ? N4 N4 0.00(2) 1 ? N4 O2 1.17(2) . ? N4 O2 1.17(2) 1 ? N4 O3 1.269(10) . ? N4 O1 1.340(19) . ? N4 O1 1.340(19) 1 ? O1 O1 0.000(15) 1 ? O1 N4 1.340(19) 1 ? O1 N4 1.340(19) 1 ? O2 O2 0.00(4) 1 ? O2 N4 1.17(2) 1 ? O2 N4 1.17(2) 1 ? O3 N4 1.269(10) 1 ? O3 N4 1.269(10) 1 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N2 C1 N1 124.9(15) . . ? N2 C1 N3 116.2(9) . . ? N1 C1 N3 118.3(17) . . ? N4 N4 N4 0(10) 1 1 ? N4 N4 O2 0(10) 1 . ? N4 N4 O2 0(10) 1 . ? N4 N4 O2 0(10) 1 1 ? N4 N4 O2 0(10) 1 1 ? O2 N4 O2 0.0(11) . 1 ? N4 N4 O3 0(10) 1 . ? N4 N4 O3 0(10) 1 . ? O2 N4 O3 125.0(13) . . ? O2 N4 O3 125.0(13) 1 . ? N4 N4 O1 0(10) 1 . ? N4 N4 O1 0(10) 1 . ? O2 N4 O1 121.9(8) . . ? O2 N4 O1 121.9(8) 1 . ? O3 N4 O1 112.8(14) . . ? N4 N4 O1 0(10) 1 1 ? N4 N4 O1 0(10) 1 1 ? O2 N4 O1 121.9(8) . 1 ? O2 N4 O1 121.9(8) 1 1 ? O3 N4 O1 112.8(14) . 1 ? O1 N4 O1 0.0(10) . 1 ? O1 O1 N4 0(10) 1 1 ? O1 O1 N4 0(10) 1 . ? N4 O1 N4 0.0(14) 1 . ? O1 O1 N4 0(10) 1 1 ? N4 O1 N4 0.0(14) 1 1 ? N4 O1 N4 0.0(14) . 1 ? O2 O2 N4 0(10) 1 1 ? O2 O2 N4 0(10) 1 . ? N4 O2 N4 0.0(9) 1 . ? O2 O2 N4 0(10) 1 1 ? N4 O2 N4 0.0(9) 1 1 ? N4 O2 N4 0.0(9) . 1 ? N4 O3 N4 0.0(14) 1 . ? N4 O3 N4 0.0(14) 1 1 ? N4 O3 N4 0.0(14) . 1 ? _diffrn_measured_fraction_theta_max 0.274 _diffrn_reflns_theta_full 25.64 _diffrn_measured_fraction_theta_full 0.274 _refine_diff_density_max 0.111 _refine_diff_density_min -0.109 _refine_diff_density_rms 0.034