Supporting information

A practical solution-phase synthesis of an antagonistic peptide of TNF-\(\alpha\) based on hydrophobic tag strategy

Gegen Tana,\(^1\) Shingo Kitada,\(^1\) Shuji Fujita,\(^2\) Yohei Okada,\(^1\) Shokaku Kim,\(^1\) Kazuhiro Chiba\(^1\)*

\(^1\)Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan

\(^2\)JITSUBO Co. Ltd., 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan

Phone: +81-42-367-5667, Fax: +81-42-360-7167
chiba@cc.tuat.ac.jp

Table of contents:

1. General information
2. Additional schemes and figures
3. Experimental information
 3.1. Investigation of hydrophobic tag HO-\(\text{TAGa}\) (1)
 3.1.1. Preparation of N-Boc-Leu-O-\(\text{TAGa}\) (4)
 3.1.2. Acidic deprotection of N-Boc-Leu-O-\(\text{TAGa}\) (4)
 3.2. Investigation of hydrophobic tag HO-\(\text{TAGb}\) (2)
 3.2.1. Preparation of N-Boc-Leu-O-\(\text{TAGb}\) (5)
 3.2.2. Acidic deprotection of N-Boc-Leu-O-\(\text{TAGb}\) (5)
 3.3. Investigation of hydrophobic tag HO-\(\text{TAGc}\) (3)
 3.3.1. Preparation of N-Boc-Leu-O-\(\text{TAGc}\) (6)
 3.3.2. Acidic deprotection of N-Boc-Leu-O-\(\text{TAGc}\) (6)
 3.4. Preparation of N-Fmoc-Pro-O-\(\text{TAGc}\) (10)
 3.5. N-Fmoc group deprotection of N-Fmoc-Pro-O-\(\text{TAGc}\) (10)
 3.6. Preparation of N-Boc-Arg(Mts)-Pro-O-\(\text{TAGc}\) (12)
 3.7. N-Boc group deprotection of N-Boc-Arg(Mts)-Pro-O-\(\text{TAGc}\) (12)
 3.8. General method for the elongation of H-\(\text{Peptide-O-TAGc}\)
 3.9. General method for N-Fmoc group deprotection of N-Fmoc-\(\text{Peptide-O-TAGc}\)
 3.10. Acidic deprotection of N-Boc-A-TNF-\(\alpha\)(Mts)-O-\(\text{TAGc}\) (15)
 3.11. Mts group deprotection of H-A-TNF-\(\alpha\)(Mts)-OH (S3)
4. Spectra Information
1. General information

1H- and 13C-NMR spectra were recorded in CDCl$_3$ with TMS as the initial standard or CD$_3$OD on 600 MHz NMR spectrometers. The following abbreviations were used to explain multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sext, sextet; sept, septet; m, multiple and coupling constants, J, are reported in Hz. MS spectra were recorded by TOF-ESI and MS-MALDI-TOF. TLC analysis was carried out with F254 plates, detection of compounds was achieved by UV absorption (254 nm) and by charring after spraying with 12 molybdo(VI) phosphoric acid n-hydrate in 95% ethanol.

2. Additional schemes

Scheme S1 Investigation of hydrophobic tag HO-TAG$_a$ (1)

Scheme S2 Investigation of hydrophobic tag HO-TAG$_b$ (2)

Scheme S3 Introduction of N-Fmoc-proline to HO-TAG$_c$ (3)

Scheme S4 N-Fmoc group deprotection of N-Fmoc-Pro-O-TAG$_c$ (10)

Scheme S5 Introduction of N-Boc-arginine(Mts) to H-Pro-O-TAG$_c$ (11)
Figure S1 1H NMR spectrum of N-Boc-Leu-O-TAGc (6)

Figure S2 1H NMR spectrum of H-Leu-O-TAGc (7)

Figure S3 1H NMR spectrum of N-Fmoc-Pro-O-TAGc (10)
Figure S4 1H NMR spectrum of N-Boc-Arg(Mts)-Pro-O-TAGc (12)

Figure S5 1H NMR spectrum of a precipitate obtained through N-terminal Fmoc group deprotection of N-Fmoc-Arg(Mts)-Pro-O-TAGc (14)

Figure S6 HPLC spectrum of A-TNF-α (17)
3. Experimental information

3.1. Investigation of hydrophobic tag HO-TAGa (1)

3.1.1. Preparation of N-Boc-Leu-O-TAGa (4)

The hydrophobic tag \(\text{1} \) (458 mg, 0.500 mmol) was dissolved in \(\text{CH}_2\text{Cl}_2 \) (10 mL). N-Boc-Leu-OH (173 mg, 0.750 mmol), DMAP (12.2 mg, 0.100 mmol), and DIC (94.7 mg, 0.750 mmol) were then added to the solution. The reaction mixture was stirred at room temperature until the reaction completed. After the completion, CH\(_3\)CN was added to the reaction mixture to give \(\text{4} \) quantitatively as a precipitate.

3.1.2. Acidic deprotection of N-Boc-Leu-O-TAGa (4)

Compound \(\text{4} \) (113 mg, 0.100 mmol) was dissolved in 50% TFA in \(\text{CH}_2\text{Cl}_2 \) (20 mL). The reaction mixture was stirred at room temperature until the reaction completed. After the completion, CH\(_3\)CN was added to give complex precipitate, including decomposed \(\text{1} \), and hydrolyzed leucine \(\text{S1} \) was obtained in 86% yield from the filtrate by addition of IPE.

3.2. Investigation of hydrophobic tag HO-TAGb (2)

3.2.1. Preparation of N-Boc-Leu-O-TAGb (5)
The hydrophobic tag 2 (379 mg, 0.500 mmol) was dissolved in CH$_2$Cl$_2$ (10 mL). N-Boc-Leu-OH (173 mg, 0.750 mmol), DMAP (12.2 mg, 0.100 mmol), and DIC (94.7 mg, 0.750 mmol) were then added to the solution. The reaction mixture was stirred at room temperature until the reaction completed. After the completion, CH$_3$CN was added to the reaction mixture to give 5 quantitatively as a precipitate.

3.2.2. Acidic deprotection of N-Boc-Leu-O-TAGb (5)

![Diagram of compound S2]

Compound 5 (97.1 mg, 0.100 mmol) was dissolved in 50% TFA in CH$_2$Cl$_2$ (20 mL). The reaction mixture was stirred at room temperature until the reaction completed. After the completion, CH$_3$CN was added to give resorcinarene S2, cleaved and cyclized product of 5, quantitatively as a precipitate.

3.3. Investigation of hydrophobic tag HO-TAGc (3)

![Diagram of compound 3]

3.3.1. Preparation of N-Boc-Leu-O-TAGc (6)

![Diagram of compound 6]

The hydrophobic tag 3 (379 mg, 0.500 mmol) was dissolved in CH$_2$Cl$_2$ (10 mL). N-Boc-Leu-OH (173 mg, 0.750 mmol), DMAP (12.2 mg, 0.100 mmol), and DIC (94.7 mg, 0.750 mmol) were then added to the solution. The reaction mixture was
stirred at room temperature until the reaction completed. After the completion, CH$_3$CN was added to the reaction mixture to give 6 quantitatively as a precipitate.

3.3.2. Acidic deprotection of N-Boc-Leu-O-TAGc (6)

![Image](https://example.com/image1)

Compound 6 (97.1 mg, 0.100 mmol) was dissolved in 50% TFA in CH$_2$Cl$_2$ (20 mL). The reaction mixture was stirred at room temperature until the reaction completed. After the completion, CH$_3$CN was added to give H-Leu-O-TAGc (9) quantitatively as a precipitate.

3.4. Preparation of N-Fmoc-Pro-O-TAGc (10)

![Image](https://example.com/image2)

The hydrophobic tag 3 (757 mg, 1.00 mmol) was dissolved in CH$_2$Cl$_2$ (10 mL). N-Fmoc-Pro-OH (506 mg, 1.50 mmol), DMAP (24.4 mg, 0.200 mmol), and DIC (189 mg, 1.50 mmol) were then added to the solution. The reaction mixture was stirred at room temperature until the reaction completed. After the completion, CH$_3$CN was added to the reaction mixture to give 10 quantitatively as a precipitate.

3.5. N-Fmoc group deprotection of N-Fmoc-Pro-O-TAGc (10)

![Image](https://example.com/image3)

Compound 10 (1.08 g, 1.00 mmol) was dissolved in 1% DBU and 1% piperidine in CH$_2$Cl$_2$ (20 mL). The reaction mixture was stirred at room temperature until the reaction completed. After the completion, 6 M HCl was added to the solution to neutralize (pH 7.0), and then CH$_3$CN was added to give H-Pro-O-TAGc (11) quantitatively as a precipitate.
3.6. Preparation of N-Boc-Arg(Mts)-Pro-O-TAGc (12)

Compound 11 (854 mg, 1.00 mmol) was dissolved in CH$_2$Cl$_2$ (10 mL). N-Boc-Arg(Mts)-OH (548 mg, 1.20 mmol), HBTU (455 mg, 1.20 mmol), HOBT (162 mg, 1.20 mmol), and DIPEA (310 mg, 2.40 mmol) were then added to the solution. The reaction mixture was stirred at room temperature until the reaction completed. After the completion, CH$_3$CN was added to the reaction mixture to give 12 quantitatively as a precipitate.

3.7. N-Boc group deprotection of N-Boc-Arg(Mts)-Pro-O-TAGc (12)

Compound 12 (1.29 g, 1.00 mmol) was dissolved in toluene (10 mL), and then 4 M HCl/dioxane (5 mL) was added. The reaction mixture was stirred at room temperature until the reaction completed. After the completion, CH$_3$CN was added to give H-Arg(Mts)-Pro-O-TAGc (13) quantitatively as a precipitate.

3.8. General method for the elongation of H-Peptide-O-TAGc

H-Peptide-O-TAGc was dissolved in THF (10 mL). Fmoc-AAs (1.2 mol equiv.), HBTU (1.2 mol equiv.), HOBT (1.2 mol equiv.), and DIPEA (2.4 mol equiv.) were then added to the solution. The reaction mixture was stirred at room temperature until the reaction completed. After the completion, CH$_3$CN was added to the reaction mixture to give N-Fmoc-AA-Peptide-O-TAGc quantitatively as a precipitate.

3.9. General method for N-Fmoc group deprotection of N-Fmoc-Peptide-O-TAGc

N-Fmoc-Peptide-O-TAGc was dissolved in 1% DBU and 1% piperidine in CH$_2$Cl$_2$
(20 mL). The reaction mixture was stirred at room temperature until the reaction completed. After the completion, 6 M HCl was added to the solution to neutralize (pH 7.0), and then CH₃CN was added to give H-Peptide-O-TAGc quantitatively as a precipitate.

3.10. Acidic deprotection of N-Boc-A-TNF-α(Mts)-O-TAGc (15)

\[
\text{Boc-Asp(Bu)-Phe-Leu-Pro-His(Trt)-Tyr(Bu)-Lys(Boc)-Asn(Trt)-Thr(Bu)-Ser(Bu)-Leu-Gly-His(Trt)-Arg(Mts)-Pro-O-TAGc}
\]

\[
\text{H-Asp-Leu-Pro-His-Tyr-Lys-Thr-Ser-Leu-Gly-His-Arg(Mts)-Pro-OH}
\]

Compound 15 (38.6 mg, 0.0100 mmol) was dissolved in 2.5% TIS and 2.5% H₂O in TFA (5 mL). The reaction mixture was stirred at room temperature until the reaction completed. After the completion, the solution was filtrated by hydrophilic PTFE filter, and then IPE was added to the filtrate to give H-A-TNF-α(Mts)-OH (S3) in 94% yield as a precipitate.

3.11. Mts group deprotection of H-A-TNF-α(Mts)-OH (S3)

\[
\text{H-Asp-Phe-Leu-Pro-His-Tyr-Lys-Thr-Ser-Leu-Gly-His(Trt)-Arg-Mts-Pro-OH}
\]

Compound S3 (19.6 mg, 0.100 mmol) was dissolved in 1 M TFMSA/TFA (5 mL) in the presence of thioanisole. The reaction mixture was stirred at 0 °C until the reaction completed. After the completion, IPE was added to the reaction mixture to give H-A-TNF-α-OH (16) in 91% yield, >98% purity as a precipitate. Purity was determined by HPLC.

4. Spectra information

N-Boc-Leu-O-TAGc (6)

\(^1\)H NMR (CDCl₃, 600 MHz) δ 6.45 (2H, s), 6.40 (1H, s), 5.07 (2H, dd, J=19.8, 12.5 Hz), 4.90 (1H, d, J=8.1 Hz), 4.41-4.30 (1H, m), 3.92 (4H, t, J=6.6 Hz), 1.76 (4H, quint, J=7.3 Hz), 1.70 (1H, sext, J=6.6 Hz), 1.66-1.60 (1H, m), 1.53-1.47 (1H, m), 1.43 (9H, s), 1.38-1.12 (76H, m), 0.93 (3H, d, J=6.6 Hz), 0.92 (3H, d, J=6.6 Hz), 0.88 (6H, t, J=6.6 Hz) \(^{13}\)C NMR (CDCl₃, 150 MHz) δ 173.3, 160.4, 155.4, 106.3, 101.2, 68.1, 66.9, 52.2, 41.8, 31.9, 29.7, 29.7, 29.7, 29.6, 29.6, 29.4, 29.4, 29.3, 28.3, 26.1, 24.8, 22.8, 22.7, 21.9, 14.1 HRMS calc. for C₆₂H₁₁₅NO₆ 992.8622 (M+Na), found 992.8658

H-Leu-O-TAGc (9)
\[\text{N-Fmoc-Pro-O-Tagc (10) dr 1:1} \]

\[\text{H-Pro-O-Tagc (11)} \]

\[\text{N-Boc-Arg(Mts)-Pro-O-Tagc (12)} \]
H-Arg(Mts)-Pro-O-TAGc (13)
HRMS calc. for C_{71}H_{125}N_{5}O_{7}S 1192.9378 (M+H), found 1192.9269

N-Boc-A-TNF-α(Mts)-O-TAGc (15)
HRMS calc. for C_{224}H_{314}N_{24}O_{30}S 3875.3401 (M+Na), found 3875.1307

H-A-TNF-α(Mts)-OH (S3)
HRMS calc. for C_{90}H_{130}N_{24}O_{24}S 982.9798 (M+H)^{2+}, found 982.9800

H-A-TNF-α-OH (16)
HRMS calc. for C_{81}H_{120}N_{24}O_{22} 891.4583 (M+H)^{2+}, found 891.4601