Electronic Supplementary Information (ESI)

An Effective and Catalytic Oxidation Using Recyclable Fluorous IBX.

Tsuyoshi Miura,* Kosuke Nakashima, Norihiro Tada, and Akichika Itoh

*Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan

E-mail: miura@gifu-pu.ac.jp;

1. General Information p.2
2. Preparation of fluorous IBX p.2
3. Procedure for recycling and reusing fluorous organocatalyst p.3
4. References p.4
5. 1H and 13C NMR spectra p.5
1. General Information

1H NMR and 13C NMR spectra were measured with a JEOL AL 400 spectrometer (400 MHz for 1H NMR and 100 MHz for 13C NMR), or JEOL ECA 500 spectrometer (500 MHz for 1H NMR and 125 MHz for 13C NMR). The chemical shifts are expressed in ppm downfield from tetramethylsilane ($\delta = 0.00$) as an internal standard. The high-resolution Mass spectra (HRMS) of the compounds were recorded using a JEOL JMS-SX102A spectrometer. For thin layer chromatographic (TLC) analyses, Merck precoated TLC plates (silica gel 60 F$_{254}$, Art 5715) were used.

2. Preparation of fluorous IBX

Methyl 5-hydroxy-2-iodobenzoate (2)

![Structure of Methyl 5-hydroxy-2-iodobenzoate (2)]

5-Hydroxy-2-iodobenoic acid1 (1, 4.39 g, 16.0 mmol) was added to a solution of hydrochloric acid in methanol, which was prepared by the slow addition of acetyl chloride (7 mL) to methanol (45 mL) at 0 °C. After stirring for 5 h at reflux temperature, the reaction mixture was evaporated. The residue was purified by flash column chromatography on silica gel with CHCl$_3$ to afford pure methyl 5-hydroxy-2-iodobenzoate (2, 4.16 g, 90%) as a pale yellow powder.

Fluorous methyl ester 3

![Structure of Fluorous methyl ester 3]

Potassium carbonate (2.07 g, 15.0 mmol) was added to a solution of 2 (1.98 g, 7.12 mmol) in dry acetonitrile (150 mL) under an argon atmosphere. The mixture was stirred for 10 min at 70 °C, then cooled to room temperature. Fluorous tosylate2 was added to the reaction mixture under an argon atmosphere. After stirring for 19 h at 70 °C, the reaction mixture was added to water, and the mixture was extracted three times with EtOAc. The EtOAc layers were combined, washed with brine, dried over anhydrous MgSO$_4$, and evaporated. The residue was purified by flash column chromatography on silica gel with a 20:1 mixture of hexane and EtOAc to afford the pure 3 (5.13 g, 98%) as a colorless powder.

mp 66-68 °C; 1H NMR (400 MHz, CDCl$_3$): $\delta = 2.13$ (m, 2H), 2.31 (m, 2H), 3.94 (s, 3H), 4.05 (t, $J = 5.8$ Hz, 2H), 6.78 (dd, $J = 8.6, 2.9$ Hz, 1H), 7.36 (d, $J = 2.9$ Hz, 1H), 7.85 (d, $J = 8.6$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 20.5, 27.8$ (t, $^2J_{C,F} = 22.1$ Hz), 52.5, 66.7, 82.9, 107.0-121.0 (complex signals of –CF$_2$ or –CF$_3$), 117.0, 119.7, 135.9, 142.0, 158.4, 166.6. HRMS (FAB) Calcd for C$_{19}$H$_{14}$O$_3$F$_{17}$I (M+H)$^+$: 738.9639. Found: 738.9634.
To a solution of compound 3 (5.13 g, 6.96 mmol) in 1,4-dioxane (100 mL) was added 10% aq. NaOH (34 mL) at room temperature. After stirring for 4 h at 70 °C, 2 M aq. HCl was added, and the reaction mixture was adjusted to pH 3. The mixture was extracted three times with EtOAc. The EtOAc layers were combined, washed with brine, dried over anhydrous MgSO₄, and concentrated. The residue was purified by flash column chromatography on silica gel with a 1:2 mixture of hexane and EtOAc to afford the pure 4 (4.95 g, 98%) as a colorless powder. mp 100-101 °C; ¹H NMR (500 MHz, CDCl₃): δ = 2.13 (m, 2H), 2.32 (m, 2H), 4.07 (t, J = 6.3 Hz, 2H), 6.81 (dd, J = 8.6, 3.4 Hz, 1H), 7.57 (d, J = 3.4 Hz, 1H), 7.92 (d, J = 8.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 20.4, 27.8 (t, J_C-F = 22.0 Hz), 66.7, 83.6, 107.0-121.0 (complex signals of –CF₂- or –CF₃), 117.8, 120.8, 133.9, 142.7, 158.5, 170.8; Anal. Calcd for C₁₈H₁₀F₁₇IO₃: C, 29.85; H, 1.39. Found: C, 29.70; H, 1.51.

Fluorous IBX (5):

To a solution of compound 4 (1.11 g, 1.53 mmol) in MeCN (20 mL) and H₂O (10 mL) was added Oxone (4.69 g, 7.64 mmol) at room temperature. After stirring for 10 h at 70 °C, the reaction mixture was cooled to 0 °C. The precipitated fluorous IBX (5) was filtered, and washed with cool water. The collected 5 was dried in vacuo, and reasonably pure compound 5 (1.15 g, 100%) was obtained as a colorless powder, then used in the next step without further purification. mp 196-198 °C; ¹H NMR (500 MHz, DMSO-d⁶): δ = 2.02 (m, 2H), 2.44 (m, 2H), 4.23 (t, J = 6.3 Hz, 2H), 7.46 (m, 2H), 7.99 (d, J = 9.2 Hz, 1H).

3. Procedure for recycling and reusing fluorous organocatalyst 4 (Table 3):

A typical procedure of oxidation using fluorous organocatalyst 4 is as follows: To a colorless solution of diphenylmethanol (6a, 100 mg, 0.543 mmol) and the organocatalyst 4 (39.3 mg, 0.054 mmol) in MeNO₂ (1.6 mL) and H₂O (0.6 mL) were added Oxone (334 mg, 0.543 mmol) and Bu₄NHSO₄ (18.4 mg, 0.054 mmol) at room temperature. The reaction mixture was stirred at 70 °C for 8 h, and then was cooled to room temperature. The precipitated fluorous IBA (9) was filtered, and washed with water and ether. The collected 9 was dried in vacuo, and was used in the next step without further purification. The filtrate was extracted three times with AcOEt. The AcOEt layers were combined, washed with brine, dried over anhydrous MgSO₄, and evaporated. The residue was purified by flash column chromatography on silica gel with a 5:1 mixture of hexane and AcOEt to afford pure benzophenone (7a, 86.4 mg, 87%).
fluorous IBA (9): colorless solid. HRMS (FAB) Calcd for C_{18}H_{11}O_{4}F_{17}I (M+H)^+: 740.9431. Found: 740.9439.

Compounds 2^3, 7a^4, 7b^5, 7c^5, 7d^5, 7e^6, 7f^7, 7g^8, 7h^5, 7i^4, 7j^5, 7k^4, and 8^9 are known compounds that exhibited spectroscopic data identical to those reported in the literature.

5. References
5. NMR Data

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2011