Electronic Supplementary Information

A New Oxapalladacycle Generated via Ortho C-H Activation of Phenylphosphinic Acid: Efficient Catalyst for Markovnikov-Type Additions of E-H Bonds to Alkynes

Qing Xu, Ruwei Shen, Yutaka Ono, Ritsuko Nagahata, Shigeru Shimada, Midori Goto, and Li-Biao Han*

aNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
bCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

libiao-han@aist.go.jp

General..S2
X-ray Crystallography..S2
Characterizations of Adducts...S2
Preparation of Complexes 4b and 5a..S6
Monitoring 31P NMR Spectra of 4b-Catalyzed Addition of Ph$_2$P(O)H to 1-Octyne...S7
1H NMR and 13C NMR Spectra of New Products...S10
ESI-TOF MS of 3 in CH$_2$Cl$_2$..S17
ESI-TOF MS of 3 in CHCl$_3$ (1% DMSO)..S18
General. All reactions were carried out under nitrogen atmosphere in a sealed NMR or a Schlenk tube unless otherwise noted. Solvents were dried and purified under nitrogen before use by standard procedure. 1H, 13C and 31P NMR spectra were recorded on a JEOL LA-500 instrument (500 MHz for 1H, 125.4 MHz for 13C, and 201.9 MHz for 31P NMR spectroscopy). Unless otherwise noted, CDCl$_3$ was used as the solvent. Chemical shift values for 1H and 13C were referred to internal Me$_4$Si (0 ppm), and that for 31P was referred to H$_3$PO$_4$ (85% solution in D$_2$O, 0 ppm). Mass spectra were measured on a Shimadzu GCMS-QP2010 spectrometer (EI). HRMS and elemental analysis was performed by the Analytical Center at the National Institute of Advanced Industrial Science and Technology. Preparative GPC was carried out on a Japan Analytical Industry LC-908 instrument (1H and 2H columns) with CHCl$_3$ as eluent.

X-ray Crystallography. Data collection was performed on a Bruker Smart Apex CCD diffractometer (Mo Kα radiation, graphite monochromator). Data were corrected for absorption. For complex 3, the structures were solved by the Patterson method. Structure refinement was carried out by full-matrix least squares on F^2. All non-hydrogen atoms were refined anisotropically, with a similar U restraint for some of carbon atoms (C8-C12). All hydrogen atoms were located at calculated positions and refined with a riding model. Structure solution and refinement were performed using Crystal Structure software package with SHELX-97 program.

Characterizations of Adducts

\[\text{n-C}_6\text{H}_{13} \quad \text{P(O)Ph}_2 \]

This compound is known: Han, L.-B.; Hua, R.-M.; Tanaka, M. Angew. Chem. Int. Ed.
1998, 37, 94.

\[
\text{t-Bu} \quad \text{P(O)} \quad \text{Ph}_2
\]

\(^1\)H NMR: \(\delta 7.69-7.64\) (m, 4H), \(7.52-7.49\) (m, 2H), \(7.46-7.42\) (m, 4H), 5.99 (d, \(J_{P-H} = 45.2\) Hz, 1H), 5.20 (d, \(J_{P-H} = 22.0\) Hz, 1H), 1.27 (s, 9H). \(^{31}\)P NMR: \(\delta 34.8\). M/S (m/z) 284 (42, M^-), 228 (60), 227 (100), 201 (36). This compound is known: (a) Dobashi, N.; Fuse, K.; Hoshino, T.; Kanada, J.; Kashiwabara, T.; Kobata, C.; Nune, S. K.; Tanaka, M. Tetrahedron Lett. 2007, 48, 4669. (b) Takaki, K.; Takeda, M.; Koshiji, G.; Shishido, T.; Takehira, K. Tetrahedron Lett. 2001, 42, 6357.

\[
\text{Ph}_2(\text{O})\text{P} \quad \text{Ph}
\]

This compound is known: Han, L.-B.; Hua, R.-M.; Tanaka, M. Angew. Chem. Int. Ed. 1998, 37, 94.

\[
n-\text{C}_6\text{H}_{13} \quad \text{P(O)} \quad \text{Me}_2
\]

\(^1\)H NMR: \(\delta 5.92\) (d, \(J_{P-H} = 19.5\) Hz, 1H), 5.86 (d, \(J_{P-H} = 39.1\) Hz, 1H), 2.24-2.19 (m, 2H), 1.55 (d, \(J_{P-H} = 12.2\) Hz, 6H), 1.56-1.49 (m, 2H), 1.37-1.31 (m, 6H), 0.90 (t, \(J_{H-H} = 6.1\) Hz, 3H). \(^{13}\)C NMR: \(\delta 145.8\) (d, \(J_{C-P} = 87.8\) Hz), 125.9 (d, \(J_{C-P} = 7.2\) Hz), 32.1, 31.6 (d, \(J_{C-P} = 11.4\) Hz), 29.4, 28.5 (d, \(J_{C-P} = 6.2\) Hz), 23.0, 16.6 (d, \(J_{C-P} = 69.2\) Hz), 14.5. \(^{31}\)P NMR: \(\delta 35.3\). M/S (m/z) 187 (M^-1), 173, 159, 145, 131, 104, 93, 78. HRMS Calcd for C\(_{10}\)H\(_{21}\)OP: 188.1330; found: 188.1325.

\[
\text{t-Bu} \quad \text{P(O)} \quad \text{Me}_2
\]

\(^1\)H NMR: \(\delta 5.75\) (d, \(J_{P-H} = 42.7\) Hz, 1H), 5.54 (d, \(J_{P-H} = 22.0\) Hz, 1H), 1.64 5.76 (d, \(J_{P-H} = 12.2\) Hz, 6H), 1.32 (s, 9H). \(^{13}\)C NMR: \(\delta 156.5\) (d, \(J_{C-P} = 82.7\) Hz), 122.6 (d, \(J_{C-P} = 11.4\) Hz), 38.0 (d, \(J_{C-P} = 9.3\) Hz), 30.4 (d, \(J_{C-P} = 4.1\) Hz), 20.4 (d, \(J_{C-P} = 70.3\) Hz). \(^{31}\)P NMR: \(\delta 39.2\). HRMS Calcd for C\(_8\)H\(_{17}\)OP: 160.1017; found: 160.1013.

\[
n-\text{C}_6\text{H}_{13} \quad \text{P(O)(OEt)} \quad \text{Ph}
\]

This compound is known: Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080.
t-Bu P(O)(OEt)Ph

1H NMR: δ 7.81-7.77 (m, 2H), 7.53-7.30 (m, 1H), 7.48-7.43 (m, 2H), 5.90 (d, $J_{P-H} = 44.0$ Hz, 1H), 5.82 (d, $J_{P-H} = 22.0$ Hz, 1H), 4.13-4.06 (m, 1H), 3.98-3.90 (m, 1H), 1.32 (t, $J_{H-H} = 7.4$ Hz, 3H), 1.22 (s, 9H). 13C NMR: δ 152.1 (d, $J_{C-P} = 117.8$ Hz), 133.1 (d, $J_{C-P} = 129.2$ Hz), 132.165 (d, $J_{C-P} = 3.1$ Hz), 132.161 (d, $J_{C-P} = 10.3$Hz), 128.7 (d, $J_{C-P} = 12.4$ Hz), 127.5 (d, $J_{C-P} = 10.3$ Hz), 60.9 (d, $J_{C-P} = 6.2$ Hz), 37.0 (d, $J_{C-P} = 11.4$ Hz), 30.7 (d, $J_{C-P} = 4.1$ Hz), 16.8 (d, $J_{C-P} = 6.2$ Hz). 31P NMR: δ 34.9. HRMS Calcd for C$_{14}$H$_{21}$O$_2$P: 252.1279; found: 252.1280.

This compound is known: Han, L.-B.; Tanaka, M. *J. Am. Chem. Soc.* 1996, 118, 1571.

n-C$_6$H$_{13}$ P(O)(OMe)$_2$

1H NMR: δ 6.03 (d, $J_{P-H} = 23.2$ Hz, 1H), 5.90 (d, $J_{P-H} = 48.8$ Hz, 1H), 3.72 (d, $J_{P-H} = 11.0$ Hz, 6H), 1.23 (s, 9H). 13C NMR: δ 147.9 (d, $J_{C-P} = 163.3$ Hz), 128.7 (d, $J_{C-P} = 8.3$ Hz), 52.6 (d, $J_{C-P} = 5.2$ Hz), 36.0 (d, $J_{C-P} = 11.4$ Hz), 30.4 (d, $J_{C-P} = 5.2$ Hz). 31P NMR: δ 23.0. HRMS Calcd for C$_8$H$_{17}$O$_3$P: 192.0915; found: 192.0925.

t-Bu POO

1H NMR: δ 5.88 (d, $J_{P-H} = 23.2$ Hz, 1H), 5.60 (d, $J_{P-H} = 50.0$ Hz, 1H), 2.39-2.33 (m, 2H), 1.59-1.54 (m, 2H), 1.52 (s, 6H), 1.37-1.30 (m, 6H), 1.34 (s, 6H), 0.88 (t, $J_{H-H} = 6.1$ Hz, 3H). 13C NMR: δ 141.4 (d, $J_{C-P} = 166.4$ Hz), 126.7 (d, $J_{C-P} = 9.3$ Hz), 88.6, 33.3 (d, $J_{C-P} = 11.4$ Hz), 32.0, 29.2, 28.4 (d, $J_{C-P} = 5.2$ Hz), 25.4 (d, $J_{C-P} = 2.1$ Hz), 24.5 (d, $J_{C-P} = 4.1$ Hz), 23.0, 14.5. 31P NMR: δ 31.1. HRMS Calcd for C$_{14}$H$_{27}$O$_3$P: 274.1698; found: 274.1695.

t-Bu P(O)(OMe) 2

1H NMR: δ 5.93 (d, $J_{P-H} = 24.4$ Hz, 1H), 5.73 (d, $J_{P-H} = 50.0$ Hz, 1H), 1.51 (s, 6H), 1.32 (s, 6H), 1.27 (s, 9H). 13C NMR: δ 151.4 (d, $J_{C-P} = 158.1$ Hz), 124.7 (d, $J_{C-P} = 8.3$ Hz).
Hz), 88.4, 36.0 (d, \(J_{C\text{-}P} = 13.4 \text{ Hz} \)), 30.9 (d, \(J_{C\text{-}P} = 5.2 \text{ Hz} \)), 25.4 (d, \(J_{C\text{-}P} = 4.1 \text{ Hz} \)), 24.3 (d, \(J_{C\text{-}P} = 5.2 \text{ Hz} \)). \(^{31}\text{P NMR: } \delta = 31.0\). HRMS Calcd for \(C_{12}H_{23}O_3P \): 246.1385; found: 246.1381.

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
n-C_6H_{13} & \\
\end{align*}
\]

\(^{1}\text{H NMR: } \delta = 5.76 \text{ (d, } J_{P\text{-}H} = 25.6 \text{ Hz, } 1\text{H}), 5.38 \text{ (d, } J_{P\text{-}H} = 56.1 \text{ Hz, } 1\text{H}), 2.41\text{-}2.35 \text{ (m, } 2\text{H}), 1.54\text{-}1.49 \text{ (m, } 2\text{H}), 1.35\text{-}1.27 \text{ (m, } 6\text{H}), 1.26 \text{ (s, } 12\text{H}), 1.13 \text{ (s, } 12\text{H}), 0.88 \text{ (t, } J_{H\text{-}H} = 7.4 \text{ Hz, } 3\text{H}). \(^{13}\text{C NMR: } \delta = 151.6 \text{ (d, } J_{C\text{-}P} = 204.6 \text{ Hz}), 121.0 \text{ (d, } J_{C\text{-}P} = 7.2 \text{ Hz}), 78.7, 33.3 \text{ (d, } J_{C\text{-}P} = 11.4 \text{ Hz}), 32.2, 29.6, 28.6 \text{ (d, } J_{C\text{-}P} = 8.3 \text{ Hz}), 24.9 \text{ (d, } J_{C\text{-}P} = 4.1 \text{ Hz}), 24.2 \text{ (d, } J_{C\text{-}P} = 6.2 \text{ Hz}), 23.1 \text{ (d, } J_{C\text{-}P} = 1.0 \text{ Hz}), 14.5. \(^{31}\text{P NMR: } \delta = -31.6.\) This compound is known: L.-B. Han, Y. Ono, Q. Xu, S. Shimada, *Bull. Chem. Soc. Jpn.* in press.

\[
\begin{align*}
n-C_6H_{13} & \quad \text{SPh} \\
n-C_6H_{13} & \\
\end{align*}
\]

\[
\begin{align*}
n-C_6H_{13} \quad & \quad n-C_6H_{13} \\
n-C_6H_{13} \quad & \quad n-C_6H_{13} \\
\end{align*}
\]

\[
\begin{align*}
t-Bu \quad & \quad t-Bu \\
t-Bu \quad & \quad t-Bu \\
\end{align*}
\]

Preparation of Complex 4b. The mixture of 3 (64.6 mg, 0.2 mmol) and dppe (80.0 mg, 0.2 mmol) in 4 mL CH₂Cl₂ was stirred at room temperature under nitrogen till 3 totally dissolved. Standing of the solution filtrate after adding drops of hexane at room temperature gave a white solid, which was collected and washed with CH₂Cl₂ and hexane. Dec. 168 °C. ¹H NMR (CD₂Cl₂): δ 7.99-7.58 (m, 9H), 7.56-6.99 (m, 17H), 6.87-6.84 (m, 1H), 6.61-6.54 (m, 2H), 2.62-2.37 (m, 2H), 2.34-2.21 (m, 1H), 2.16-2.02 (m, 1H). ³¹P NMR (CD₂Cl₂): δ 61.3 (dd, Jₚ₋ₚ = 29.4 Hz, Jₚ₋ₚ = 7.4 Hz, 1P), 47.2 (dd, Jₚ₋ₚ = 33.1 Hz, Jₚ₋ₚ = 7.4 Hz, 1P), 38.2 (dd, Jₚ₋ₚ = 33.1 Hz, Jₚ₋ₚ = 29.4 Hz, 1P).

Preparation of Complex 5a. The mixture of 3 (0.162 g, 0.5 mmol), dmpe (84 µL, 0.5 mmol) and Ph₂P(O)H (0.101 g, 0.5 mmol) in 5 mL CH₂Cl₂ was stirred at room temperature under nitrogen till 3 totally dissolved. Standing of the solution filtrate after adding drops of hexane at room temperature gave colorless crystals, which were collected and washed with CH₂Cl₂ and hexane. ³¹P NMR (CD₂Cl₂): δ 71.9 (ddd, Jₚ₋ₚ = 447.0 Hz, Jₚ₋ₚ = 34.4 Hz, Jₚ₋ₚ = 7.6 Hz, 1P), 32.1 (ddd, Jₚ₋ₚ = 447.0 Hz, Jₚ₋ₚ = 26.8 Hz, 1P), 23.5 (dd, Jₚ₋ₚ = 9.6 Hz, Jₚ₋ₚ = 11.5 Hz, 1P), 20.3 (ddd, Jₚ₋ₚ = 36.3 Hz, Jₚ₋ₚ = 26.7 Hz, Jₚ₋ₚ = 11.5 Hz, 1P).
Monitoring 31P NMR Spectra of 4b-Catalyzed Addition of Ph$_2$P(O)H to 1-Octyne. 4b (11 mg, 0.015 mmol, 15 mol%; Chart 1) was added to a mixture of Ph$_2$P(O)H (20.2 mg, 0.1 mmol) and 1-octyne (16 µL, 0.11 mmol) dissolved in CD$_2$Cl$_2$ (0.5 mL) in a NMR tube. After 2 h, 31P NMR showed the complete conversion of 4b to 5b (ca. 15 mol%; Chart 2). The solvent was changed to d$_8$-toluene, and the tube was heated at 70 °C overnight (19 h). 31P NMR showed that all starting Ph$_2$P(O)H and 5b were completely disappeared, and 99% yield of the adducts (branched/linear ratio = 99/1) together with 4b (ca. 15 mol%) were obtained (Chart 3).
Chart 2. After 2 h at room temperature of a mixture of 4b with Ph₂P(O)H and 1-octyne: 4b totally converted to 5b (ca. 15 mol%); trace adduct (29.97 ppm) was also observed.
Chart 3. Heating at 70 °C for 19 h: Ph₂P(O)H and 5b completely disappeared to give the adducts (branched/linear 99/1), while 4b was regenerated (cat. 15 mol%).
1H NMR and 13C NMR Spectra of New Compounds

1H NMR

13C NMR
$t\text{-Bu}P(O)\text{Me}_2$

1H NMR

13C NMR
t-Bu P(OMe)$_2$ O

1H NMR

1C NMR

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011
^{1}H NMR

^{13}C NMR
Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011

1H NMR

13C NMR
ESI-TOF MS of 3 in CH$_2$Cl$_2$
ESI-TOF MS of 3 (with 1% DMSO) in CHCl₃