Electronic Supplementary Information

Electrochemical meso-Functionalization of Magnesium(II) Porphine†

Charles H. Devillers,* Abdou K. D. Dime, Hélène Cattey and Dominique Lucas*

institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS 5260, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France.

E-mail: charles.devillers@u-bourgogne.fr; dominique.lucas@u-bourgogne.fr

Contents

<table>
<thead>
<tr>
<th>Experimental details</th>
<th>p.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolysis of 1 in pyridine:</td>
<td></td>
</tr>
<tr>
<td>- Maldi-Tof mass spectrum of the crude solution after electrolysis (Fig. 1)</td>
<td>p.4</td>
</tr>
<tr>
<td>- RDE voltammetry before and after electrolysis (Fig. 2)</td>
<td>p.4</td>
</tr>
</tbody>
</table>

| Characterization of $2^{+},PF_{6}^{-}$ in CD$_3$COCD$_3$: |
- 1H NMR (Fig. 3)	p.5
- 13C NMR (Fig. 4 and Fig. 5)	p.6-7
- COSY NMR (Fig. 6)	p.8
- NOESY NMR (Fig. 7)	p.9
- HSQC NMR (Fig. 8)	p.10
- Experimental and simulated isotopic patterns of $2^{+},PF_{6}^{-}$ from MALDI-TOF MS (Fig. 9)	p.11

| Characterization of $3^{+},PF_{6}^{-}$ in CD$_3$OD: |
- 1H NMR (Fig. 10)	p.12
- 13C NMR (Fig. 11 and Fig. 12)	p.13-14
- 31P NMR (Fig. 13)	p.15
- COSY NMR (Fig. 14)	p.16
- NOESY NMR (Fig. 15)	p.17
- HSQC NMR (Fig. 16)	p.18
- MALDI-TOF MS of $3^{+},PF_{6}^{-}$	p.19
- Experimental and simulated isotopic patterns of $3^{+},PF_{6}^{-}$ from MALDI-TOF MS (Fig. 18)	p.19

- UV-Visible spectra of 1 (in pyridine), $2^{+},PF_{6}^{-}$ (in pyridine) and $3^{+},PF_{6}^{-}$ (in CH$_2$Cl$_2$) (Fig. 19) | p.20 |

- References | p.20 |
Experimental Details

Synthesis
Magnesium porphine 1 was synthesized according to known procedures.¹ Data (¹H NMR, ¹³C NMR, UV-Visible absorption, and MALDI-TOF mass spectrum) were consistent with those obtained in reference ¹.

Materials
Pyridine (VWR-BDH-Prolabo, 99.90% on anhydrous product), PPh₃ (Fluka, puriss., >99%), tetraethylammonium hexafluorophosphate (TEAPF₆, Fluka puriss., electrochemical grade, ≥99.0%), 2,6-lutidine (Aldrich, purified by redistillation, ≥99%) and MeOH (Sigma-Aldrich, Chromasolv for HPLC, min. 99.9%) were used as received. Tetra-n-butylammonium hexafluorophosphate (TBAPF₆) was synthesized by mixing stoichiometric amounts of tetra-n-butylammonium hydroxide (Alfa-Aesar, 40% w/w aq. sol.) and hexafluorophosphate acid (Alfa-Aesar, ca 60% w/w aq. sol.). After filtration, the salt was recrystallized three times in ethanol and dried at 80 °C during at least two days. CH₂Cl₂ (Carlo Erba 99.5%) and CH₃CN (SDS, Carlo Erba, HPLC gradient 99.9%) were distilled from P₂O₅ and CaH₂ respectively.

Electrochemistry
All manipulations were performed using Schlenk techniques in an atmosphere of dry oxygen-free argon at room temperature (T = 20°C ± 3°C). The supporting electrolyte was degassed under vacuum before use and then dissolved to a concentration of 0.1 mol L⁻¹. Voltammetric analyses were carried out in a standard three-electrode cell, with an EG & G Princeton Applied Research (PAR) Model 273 potentiostat, connected to an interfaced computer that employed Electrochemistry Power Suite software. The reference electrode was a saturated calomel electrode (SCE) separated from the analysed solution by a sintered glass disk filled with the background solution. The auxiliary electrode was a platinum wire separated from the analysed solution by a sintered glass disk filled with the background solution. For all voltammetric measurements, the working electrode was a platinum electrode (Ø = 2 mm). In these conditions, when operating in pyridine (0.1 M TBAPF₆), the formal potential for the ferrocene (+/0) couple was found to be +0.55 V vs. SCE. When operating in a mixture of CH₂Cl₂/CH₃CN 4/1 (0.1 M TEAPF₆) the formal potential for the ferrocene (+/0) couple was found to be +0.40 V vs. SCE.

Bulk electrolyses were performed in a cell with three compartments separated with glass frits of medium porosity with an Amel 552 potentiostat coupled with an Amel 721 electronic integrator. A platinum wire spiral (l = 53 cm, Ø = 1 mm) was used as the working electrode, a platinum plate as the counter electrode and a saturated calomel electrode as the reference electrode. The electrolysis was followed by TLC and UV-visible absorption measurements and was stopped when the pink spot corresponding to 1 disappeared on TLC and when UV-visible absorption spectra and current did not evolve anymore. For pyridinium substitution, 2.0 ± 0.1 faraday per mol of 1 were necessary to exhaust totally the starting product. For the triphenylphosphonium substitution, 3.4 ± 0.2 faraday per mol of 1 were used.
Work-up procedures

$2^+PF_6^-$:
After electrolysis in pyridine, work-up involved evaporating the red solution mixture to dryness under reduce pressure. The resulting crude solid was dissolved in a minimum of cold (ca. −90 °C) MeOH and the precipitated supporting electrolyte was removed by filtration and washed with cooled MeOH. The red filtrate was evaporated to dryness and this precipitation/filtration procedure was repeated one more time. The crude product was then purified by column chromatography (SiO_2, 0 to 2% MeOH, 1% pyridine in CH_2Cl_2). The first light pink fraction was unreacted $1 (< 1 \text{ mg})$. The second red fraction corresponded to $2^+PF_6^-$.

$3^+PF_6^-$:
The work-up involved evaporating the blue/green solution mixture to dryness under reduce pressure. The resulting crude solid was dissolved in a minimum of CH_2Cl_2 and this solution was washed four times with 250 mL of distilled water to remove the supporting electrolyte. The blue/green organic phase was evaporated to dryness. The crude product was then purified by column chromatography (Alumina, 0 to 1% MeOH in CH_2Cl_2). The first colourless fraction was unreacted PPh_3, the second blue/purple fraction was $3^+PF_6^-$.

Instruments
UV-visible absorption spectra were obtained with a Varian UV-vis spectrophotometer Cary 50 scan using quartz cells (Hellma).
Mass spectra were obtained on a Bruker ProFLEX III spectrometer (MALDI-TOF) using dithranol as matrix.
NMR spectra were measured on a BRUKER 600 MHz Avance II spectrometer. The reference was the residual non-deuterated solvent (CH_3COCH_3 or CH_3OH).
Fig. 1 MALDI-TOF mass spectrum of the crude solution resulting from the electrolysis of I in pyridine 0.1 M TBAPF$_6$; $E_{app} = 0.72$ V vs. SCE, \sim2 e, working electrode: Pt spiral.

Fig. 2 RDE voltammogram before (black/solid line) and after (red/dashed line) electrolysis of I in pyridine containing 0.1 M TBAPF$_6$ (WE: Pt, $\Theta = 2$ mm, 10 mV s$^{-1}$, $\omega = 500$ rpm, [I] = 5.0×10$^{-4}$ M).
Fig. 3 1H NMR spectrum of $2^\prime,PF_6^-$ in CD$_3$COCD$_3$, 600 MHz, 298 K.
Fig. 4 13C NMR spectrum of $2^+, PF_6^-$ in CD$_3$COCD$_3$, 150 MHz, 298 K.
(*): non attributed signals. These signals could be:
m, n, o, p or q (these 5 C are uncoupled with proton signals in the \(^1\)H-\(^{13}\)C HSQC experiment)

Fig. 5 Partial \(^{13}\)C NMR spectrum of \(2^+\cdot\text{PF}_6^-\) in CD\(_3\)COCD\(_3\), 150 MHz, 298 K.
Fig. 6 1H-1H COSY NMR spectrum of $2^+PF_6^-$ in CD$_3$COCD$_3$, 600 MHz, 298 K.
Fig. 7 1H-1H NOESY NMR spectrum of 2^iPF$_6$-iPy in CD$_3$COCD$_3$, 600 MHz, 298 K.
Fig. 8 1H-13C HSQC NMR spectrum of $2\text{'},\text{PF}_6^-$ in CD$_3$COCD$_3$, 600 MHz, 298 K.
Experimental spectrum of $2^+,PF_6^-$

Theoretical isotopic pattern for $C_{25}H_{16}MgN_5$+

Chemical Formula: $C_{25}H_{16}MgN_5^+$

Exact Mass: 410.13

Fig. 9 Partial MALDI-TOF mass spectrum of $2^+,PF_6^-$ centered on its isotopic pattern (red/solid curve) and simulated isotopic pattern for a formula corresponding to 2^+ (black/dotted curve).
Fig. 10 1H NMR spectrum of 3^+PF_6^- in CD$_3$OD, 600 MHz, 298 K.
Fig. 11 13C NMR spectrum of $3', PF_6^-$ in CD$_3$OD, 150 MHz, 298 K.
Fig. 12 Partial 13C NMR spectrum of $3^'+PF_6^-$ in CD$_3$OD, 150 MHz, 298 K. (*): non attributed signals. These signals could be: m, l, k, j, n or o (these 6 C are uncoupled with proton signals in 1H-13C HSQC experiment). The “o” signal is attributed thanks to its coupling constant in comparison with phosphonium compounds reported in the literature, see for example ref 2.

13C-31P coupling constants:
- g: d, $^3J = 10.2$ Hz
- i: d, $^3J = 2.6$ Hz
- h: d, $^3J = 13.0$ Hz
- f: d, $^3J = 4.5$ Hz
- o: d, $^3J = 88.0$ Hz
- 154.3 ppm: d, $J = 15.4$ Hz (m ?)
Fig. 13 31P NMR spectrum of $3^+PF_6^-$ in CD$_3$OD, 243 MHz, 298 K.
Fig. 14 1H-1H COSY NMR spectrum of 3^β,[PF$_6$]$^{-}$ in CD$_3$OD. 600 MHz, 298 K.
Fig. 15 1H–1H NOESY NMR spectrum of 3$^\text{PF}_6$ in CD$_3$OD, 600 MHz, 298 K.
Fig. 16 1H-13C HSQC NMR spectrum of 3+,PF$_6^-$ in CD$_3$OD, 600 MHz, 298 K.
Fig. 17 MALDI-TOF mass spectrum of $3^+,\text{PF}_6^-$.

Fig. 18 Partial MALDI-TOF mass spectrum of $3^+,\text{PF}_6^-$ centered on its isotopic pattern (red/solid curve) and simulated isotopic pattern for a formula corresponding to 3^+ (black/dotted curve).
Fig. 19 UV-Visible spectra of 1 in pyridine (black/solid line), 2',PF$_6^-$ in pyridine (red/dashed line) and 3',PF$_6^-$ in CH$_2$Cl$_2$ (blue/dotted line).

References