Temperature-dependent crystal structure of the isopropanol clathrate of Dianin’s compound

Jackson J. Lee,* Rebecca O. Fuller,* Alexandre N. Sobolev,* Henrik F. Clausen,* Jacob Overgaard,* George A. Koutsantonis,* Bo B. Iversen* and Mark A. Spackman*

a Chemistry - M313, School of Biomedical, Biomolecular & Chemical Sciences, University of Western Australia, Crawley WA, Australia. Fax: +61 8 6488 1005; E-mail: mark.spackman@uwa.edu.au
b Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, DK-8000 Århus C, Denmark. Fax: +45 8619 6199; E-mail: bo@chem.ac.dk

Electronic Supplementary Information

Experimental

Dianin’s compound was prepared from a literature procedure (W. Baker, A. J. Floyd, J. F. W. McOmie, G. Pope, A. S. Weaving and J. H. Wild, J. Chem. Soc., 1956, 2010-2017). Clathrate complexes were prepared by recrystallisation of free Dianin’s compound (50 mg, 0.19 mol) from the desired guest which is a liquid at room temperature. Minimal amount of solvent was added, the solution filtered, then left to crystallise by slow evaporation.

Laboratory X-ray data were measured from single crystals using Oxford Diffraction Xcalibur or Gemini CCD diffractometers with monochromatic MoKα radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined on full matrix least-squares procedures on F2. A full matrix least-squares refinement procedure was used, minimising w(F02 - Fc2), with w = [σ2(F02) + (AP)2 + BP2]-1, where P = (F02 + 2Fc2)/3. Agreement factors (RF = Σ||F0|| - |Fc|/Σ|F0|) and GOF = Σ[w(F02 - Fc2)2]/(n-p)1/2 are cited where n is the number of reflections and p is the total number of parameters refined. Non-hydrogen non-disordered atoms were refined anisotropically. Some restraints were applied during refinement of the guest molecules for the reason of keeping their chemical integrity and to avoid the symmetry breaking. The positions of hydrogen atoms were partly localised from different Fourier syntheses, partly calculated from geometrical consideration and their atomic parameters were constrained to the bonded atoms during the refinement with O-H = 0.85 Å, Cm-H = 0.95 Å, Cm=H = 0.98 Å, and 0.99 Å in CH3.

Crystal data for guest-free DC:

C38H30O6, M = 628.34, colorless needle, 0.24 × 0.19 × 0.14 mm3, trigonal, space group R̅3 (No. 148), a = b = 26.7783(12) Å, c = 10.9031(4) Å, V = 6770.9(4) Å3, Z = 18, Dc = 1.185 g/cm3, μ = 0.076 mm-1, Fcalc = 2592, MoKα radiation, λ = 0.71073 Å, T = 100(2) K, 2θmax = 64.6°, 48523 reflections collected, 5194 unique (Rint = 0.0449). Final GOF = 1.003, R1 = 0.0479, wR2 = 0.1224, R indices based on 3511 reflections with I > 2σ(I) (refinement on F2), 181 parameters, 0 restraints. Lp and absorption corrections applied. CCDC 796805

Crystal data for DC/isopropanol at four temperatures:

T = 299 K: C38H30O6, M = 685.11, colorless prism, 0.42 × 0.33 × 0.21 mm3, trigonal, space group R̅3 (No. 148), a = b = 27.2014(10) Å, c = 11.0239(3) Å, V = 7646.0(3) Å3, Z = 6, Dc = 1.220 g/cm3, μ = 0.079 mm-1, Fcalc = 2796, MoKα radiation, λ = 0.71073 Å, T = 299(2) K, 2θmax = 64.5°, 26572 reflections collected, 5279 unique (Rint = 0.0205). Final GOF = 1.002, R1 = 0.0609, wR2 = 0.1786, R indices based on 3998 reflections with I > 2σ(I) (refinement on F2), 198 parameters, 2 restraints. Lp and absorption corrections applied. CCDC 796806

T = 182 K: C38H30O6, M = 685.11, colorless prism, 0.42 × 0.33 × 0.21 mm3, trigonal, space group R̅3 (No. 148), a = b = 27.0106(4) Å, c = 10.9760(1) Å, V = 6934.94(12) Å3, Z = 6, Dc = 1.243 g/cm3, μ = 0.080 mm-1, Fcalc = 2796, MoKα radiation, λ = 0.71073 Å, T = 182(2) K, 2θmax = 64.5°, 26137 reflections collected, 5148 unique (Rint = 0.0153). Final GOF = 1.003, R1 = 0.0617, wR2 = 0.1729, R indices based on 4279 reflections with I > 2σ(I) (refinement on F2), 197 parameters, 2 restraints. Lp and absorption corrections applied. CCDC 796807

T = 100 K: C38H30O6, M = 685.11, colorless prism, 0.42 × 0.33 × 0.21 mm3, trigonal, space group R̅3 (No. 148), a = b = 53.9718(10) Å, c = 11.0324(3) Å, V = 27831.39(9) Å3, Z = 24, Dc = 1.239 g/cm3, μ = 0.080 mm-1, Fcalc = 11184, MoKα radiation, λ = 0.71073 Å, T = 100(2) K, 2θmax = 56.6°, 64482 reflections collected, 14214 unique (Rint = 0.0214). Final GOF = 1.005, R1 = 0.0501, wR2 = 0.1221, R indices based on 11522 reflections with I > 2σ(I) (refinement on F2), 793 parameters, 1 restraint. CCDC 796808

T = 15 K: C38H30O6, M = 865.11, colorless needle, 0.08 × 0.03 × 0.02 mm3, trigonal, space group R̅3 (No. 148), a = b = 53.7098(13) Å, c = 10.9911(3) Å, V = 27458.6(10) Å3, Z = 64, Dc = 1.256 g/cm3, μ = 0.052 mm-1, Fcalc = 11184, Bruker APEX II, synchrotron radiation at Argonne Advanced Photon Source (APS), λ = 0.41328 Å, T = 15(2) K, 2θmax = 57.1°, 835170 reflections collected, 70274 unique (Rint = 0.0488). Final GOF = 1.057, R1 = 0.0669, wR2 = 0.1711, R indices based on 53909 reflections with I > 2σ(I) (refinement on F2), 830 parameters, 1 restraint. CCDC 796809

Electronic Supplementary Information

This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Information

Experimental

Dianin’s compound was prepared from a literature procedure (W. Baker, A. J. Floyd, J. F. W. McOmie, G. Pope, A. S. Weaving and J. H. Wild, J. Chem. Soc., 1956, 2010-2017). Clathrate complexes were prepared by recrystallisation of free Dianin’s compound (50 mg, 0.19 mol) from the desired guest which is a liquid at room temperature. Minimal amount of solvent was added, the solution filtered, then left to crystallise by slow evaporation.

Laboratory X-ray data were measured from single crystals using Oxford Diffraction Xcalibur or Gemini CCD diffractometers with monochromatic MoKα radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined on full matrix least-squares procedures on F2. A full matrix least-squares refinement procedure was used, minimising w(F02 - Fc2), with w = [σ2(F02) + (AP)2 + BP2]-1, where P = (F02 + 2Fc2)/3. Agreement factors (RF = Σ||F0|| - |Fc|/Σ|F0|) and GOF = Σ[w(F02 - Fc2)2]/(n-p)1/2 are cited where n is the number of reflections and p is the total number of parameters refined. Non-hydrogen non-disordered atoms were refined anisotropically. Some restraints were applied during refinement of the guest molecules for the reason of keeping their chemical integrity and to avoid the symmetry breaking. The positions of hydrogen atoms were partly localised from different Fourier syntheses, partly calculated from geometrical consideration and their atomic parameters were constrained to the bonded atoms during the refinement with O-H = 0.85 Å, Cm-H = 0.95 Å, Cm=H = 0.98 Å, and 0.99 Å in CH3.