Supporting Information

Insight into the Chiral Induction in Supramolecular Stacks through Preferential Chiral Solvation

Subi J. George, Željko Tomović, Albertus P.H.J. Schenning and E.W. Meijer

a Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: a.p.h.j.schenning@tue.nl, e.w.meijer@tue.nl

b Supramolecular Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India-560064

General Methods

Optical spectroscopy. UV-vis and Circular Dichroism measurement were performed on a Jasco J-815 spectropolarimeter where the sensitivity, time constant and scan rate were chosen appropriately. Corresponding temperature dependent measurements were performed with a PFD-425S/15 Peltier-type temperature controller with a temperature range of 263-383 K and adjustable temperature slope.

Atomic Force Microscopy (AFM). AFM images were recorded under ambient conditions using a Digital Instrument Multimode Nanoscope IV operating in the tapping mode regime. Microfabricated silicon cantilever tips (NS) with a resonance frequency of approximately 300 kHz and a spring constant of about 50 Nm⁻¹ were used. Mica substrates were freshly cleaved before use.
Fig S1. Absorption spectra of **A-OPV4UT** (2×10^{-4} M) in R-citronellol at molecularly dissolved state (90°C) and at the self-assembled state (20°C).
Fig S2. Temperature dependent a) absorption and b) CD spectra of A-OPV3UT in R-citronellol at an interval of 5 K when cooled from 353 K to 263 K. c) Mirror image CD spectra and d) cooling curves of A-OPV3UT in enantiomeric citronellol chiral solvents. The cooling curves are obtained by monitoring the CD intensity at 420 nm (2 x 10^{-4} M, dT/dt = - 60 K/hr). The difference in CD intensity could be due to the difference in enantiomeric excess (ee); ee of R-citronellol is 98% and that of S-citronellol is > 99%.
Fig. S3 Temperature dependent CD spectra of a) A-OPV3UT and b) A-OPV4T in S-citronellol at an interval of 5 K when cooled from molecularly dissolved state (2 x 10^{-4} M, dT/dt = -60 K/hr).

Fig S4. (a) Temperature dependent absorption spectra of A-OPV4T (2 x 10^{-4} M) in S-citronellol; (b) and (c) AFM images of the self-assembled fibers of A-OPV4T from S-citronellol.
Fig S5. CD (top) and absorption (bottom) cooling curves of AOPV4T in S-2,6-dimethyl octane. The cooling curves are obtained by monitoring the CD intensity at 470 nm (2 x 10^{-4} M, dT/dt = -60 K/hr).