CO Catalytic Oxidation by Metal Organic Framework Containing High Density of Reactive Copper Sites

Yonggang Zhao,a,\# Moothetty Padmanabhan,a,\# Qihan Gong,a Nobuko Tsumori,b,* Qiang Xu,c and Jing Lia,*

a Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey, 08854, USA
b Toyama National College of Technology, 13, Hongo-machi, Toyama, 939-8630, JAPAN
c National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka,563-8577, JAPAN

Supporting Information
Experimental Section

Materials: All chemicals were purchased from commercial sources (Alfa Aesar, Acros, Aldrich or TCI America) and used as received.

Compound 1: 1 was prepared by a hydrothermal method. Cu(CH$_3$COO)$_2$·H$_2$O (0.199g, 1.0 mmol) and nip (0.213g, 1.0 mmol) were dissolved in 10mL of water. The mixture was first stirred for 15 mins to form a blue gel, then sealed in a Parr reaction vessel and heated at 373 K for 2 days. After naturally cooling down to room temperature, very uniform blue crystalline powder (diameter around 50μm) of 1 (0.080g, 88% yield based on metal) was isolated by filtration. The product was washed with water and DMF orderly, and then dried under vacuum.

PXRD Analysis: Powder X-ray diffraction experiments were conducted using a D/M-2200T automated system (Ultima+, Rigaku) with Cu Kα radiation (λ=1.5406 Å). The PXRD patterns were collected between 2θ angles of 3° to 50° at a scan rate of 5 deg·min$^{-1}$. Graphite monochromator was used and the generator power settings were at 40 kV and 40 mA.

Thermogravimetric Analysis: The thermal properties of the compound were evaluated using a TA Instruments Q50 TG unit. The samples (~10 mg) were loaded onto a sample pan and heated from room temperature to 600 °C at a rate of 10 °C·min$^{-1}$ under N$_2$ (flow and purge rate at 40 mL·min$^{-1}$ and 60 mL·min$^{-1}$, respectively).

Catalysis Experiment: The catalytic oxidation of CO was conducted by using a fixed bed plug flow reactor system. Pure CO, O$_2$ and He were supplied through mass flow controllers and mixed with each other, and then the final reactant gas (37 ml min$^{-1}$) was passed through the catalyst bed. The catalyst (0.11 g) was mixed with quartz sand
(>300 µm, 0.22 g) and filled in the reactor made of stainless steel and then calcinated in argon at 120°C for 3 h and in the reaction gas at 250°C for 1 h. The reaction gas was composed from CO (1 vol. %), O₂ (20 vol. %) and He (balance), and hourly space velocity (SV) was 20,000 mL·h⁻¹·g(cat.)⁻¹. The reaction temperature was programmed between room temperature and 250°C and monitored by thermocouple.

The reactant CO and product CO₂ were analyzed by using an on-line gas chromatograph (GC) system, which was composed of two gas chromatographs; one (GC-8A, Shimadzu) with Molecular Sieve 5A (3 m) for CO and one (GC-2014, Shimadzu) with Porapack Q (4 m) for CO₂, respectively. The retention times of gases were checked by comparison with those of authentic samples. Conversions of CO to CO₂ were calculated from the data (X_CO) from the GC for CO according to

\[X_{CO} = (1 - A_{CO} / A_{CO}^*) \times 100 \, (%) \]

where \(A_{CO}^* \) and \(A_{CO} \) are the peak areas of CO before and after the reaction, respectively. Conversions of CO to CO₂ were calculated from the data from the GC (X_CO₂) for CO₂ according to

\[X_{CO2} = A_{CO2} / A_{CO2}^* \times 100 \, (%) \]

where \(A_{CO2}^* \) is the peak area of CO₂ after the complete conversion of CO to CO₂ and \(A_{CO2} \) is the peak area of CO₂ after the reaction. The values of \(X_{CO2} \) and \(X_{CO} \) are almost in agreement with each other.

Reaction rate \((R, \text{ mol of CO}_2 (\text{mol of Cu s})^{-1})\) was calculated as follows:

\[R_{GC} = X_{GC} \times F_{CO} / M_{Cu} \]
F_{CO} (mol s$^{-1}$) is flow rate of CO in reactant gas, and M_{Cu} is the amount of Cu (mol) in used catalyst (0.11g) calculated from the formula weight of proposed dehydrated form $[Cu_5(OH)_2(nip)_4]$.

Fig S1. Paddle-wheel Cu$_2$ building unit and perspective view of the microporous framework of Cu(mip)(H$_2$O).

Fig S2. Coordination environment of crystallographically independent copper centers in the pentameric Cu$_5$ building unit.
Fig S3. Two coordinated modes of the nip ligand.

Fig. S4. Thermogravimetric (TG) profile of compound 1.
Fig. S5. TG profile of compound 1’ after the adsorption of NH3.

Fig. S6. FT-IR spectra of the compound 1’ (black dot) and 1’ after exposure to vapor of ammonia (red solid).
Fig. S7. PXRD patterns of 1: A) before catalytic reactions; B) after catalytic reaction at 200 °C for 20 hr and re-exposure to air for a long period of time. Sample was rehydrated by adsorbing water from air; and C) after catalytic reaction at 175 °C for 20 hr and re-exposure to air for a long period of time.