# Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2011 data_global _journal_name_full Chem.Commun. _journal_coden_cambridge 0182 _journal_year ? _journal_volume ? _journal_page_first ? loop_ _publ_author_name _publ_author_address S.Schulz ; Fachbereich Chemie der Universit\"at Duisburg-Essen Campus Essen Universit\"atsstr. 7 D-45117 Essen, Germany ; B.Lyhs ; Fachbereich Chemie der Universit\"at Duisburg-Essen Campus Essen Universit\"atsstr. 7 D-45117 Essen, Germany ; G.Janssen ; Fachbereich Chemie der Universit\"at Duisburg-Essen Campus Essen Universit\"atsstr. 7 D-45117 Essen, Germany ; D.Blaser ; Fachbereich Chemie der Universit\"at Duisburg-Essen Campus Essen Universit\"atsstr. 7 D-45117 Essen, Germany ; C.Wolper ; Fachbereich Chemie der Universit\"at Duisburg-Essen Campus Essen Universit\"atsstr. 7 D-45117 Essen, Germany ; #TrackingRef '- structures.cif' _publ_contact_author ; Prof. Dr. Schulz, Stephan Fachbereich Chemie der Universit\"at Duisburg-Essen Campus Essen, Universit\"atsstr. 7 D-45141 Essen, Germany ; _publ_contact_author_email stephan.schulz@.uni-due.de _publ_contact_author_fax '++49 (0)201 183 3830' _publ_contact_author_phone '++49 (0)201 183 4635' _publ_contact_letter ; ? ; _publ_requested_coeditor_name ? _publ_section_title ; Syntheses and Structures of Triazides of Heavy Group 15 Elements ; _publ_contact_author_name 'Prof. Dr. Schulz, Stephan' #============================================================================= # compound 3 #============================================================================= data_ben_bin33no3 _database_code_depnum_ccdc_archive 'CCDC 803386' _ccdc_compound_id ? _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C10 H10 Bi N11' _chemical_formula_weight 493.27 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Bi Bi -4.1077 10.2566 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'C m c 21' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z+1/2' 'x, -y, z+1/2' '-x, y, z' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z+1/2' 'x+1/2, -y+1/2, z+1/2' '-x+1/2, y+1/2, z' _cell_length_a 21.7967(16) _cell_length_b 10.8375(8) _cell_length_c 6.2825(5) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1484.06(19) _cell_formula_units_Z 4 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 9892 _cell_measurement_theta_min 3.4 _cell_measurement_theta_max 30.7 _exptl_crystal_description prism _exptl_crystal_colour colourless _exptl_crystal_size_max 0.15 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.10 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.208 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 920 _exptl_absorpt_coefficient_mu 11.896 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.5245 _exptl_absorpt_correction_T_max 0.7461 _exptl_absorpt_process_details ; BRUKER AXS SMART APEX 2 Vers. 3.0-2009 R.H. Blessing, Acta Cryst. (1995) A51 33-38 ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'Triumph graphite' _diffrn_measurement_device_type ; Bruker D8 KAPPA series II with APEX II area detector system ; _diffrn_measurement_method ; Data collection strategy APEX 2/COSMO ; _diffrn_detector_area_resol_mean 512 _diffrn_reflns_number 31065 _diffrn_reflns_av_R_equivalents 0.0327 _diffrn_reflns_av_sigmaI/netI 0.0191 _diffrn_reflns_limit_h_min -31 _diffrn_reflns_limit_h_max 31 _diffrn_reflns_limit_k_min -15 _diffrn_reflns_limit_k_max 15 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 1.87 _diffrn_reflns_theta_max 30.55 _reflns_number_total 2319 _reflns_number_gt 2234 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009' _computing_cell_refinement 'BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009' _computing_data_reduction 'BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009' _computing_structure_solution 'BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009' _computing_structure_refinement 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_molecular_graphics 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_publication_material 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0121P)^2^+0.5372P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.001(6) _refine_ls_number_reflns 2319 _refine_ls_number_parameters 106 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0138 _refine_ls_R_factor_gt 0.0126 _refine_ls_wR_factor_ref 0.0287 _refine_ls_wR_factor_gt 0.0284 _refine_ls_goodness_of_fit_ref 1.114 _refine_ls_restrained_S_all 1.114 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Bi1 Bi 0.5000 0.870448(8) 0.87697(6) 0.01064(3) Uani 1 2 d S . . N1 N 0.5000 0.7507(3) 1.1747(5) 0.0186(6) Uani 1 2 d S . . N2 N 0.5000 0.6405(3) 1.1396(6) 0.0269(8) Uani 1 2 d S . . N3 N 0.5000 0.5365(4) 1.1149(8) 0.079(2) Uani 1 2 d S . . N4 N 0.43495(9) 0.9933(2) 1.0736(3) 0.0151(4) Uani 1 1 d . . . N5 N 0.38534(9) 1.02106(18) 1.0004(3) 0.0134(4) Uani 1 1 d . . . N6 N 0.33765(10) 1.0494(2) 0.9404(3) 0.0226(5) Uani 1 1 d . . . N7 N 0.39967(10) 0.74430(19) 0.8050(3) 0.0164(4) Uani 1 1 d . . . C1 C 0.35158(12) 0.7347(2) 0.9372(4) 0.0191(5) Uani 1 1 d . . . H1 H 0.3543 0.7720 1.0737 0.023 Uiso 1 1 calc R . . C2 C 0.29817(10) 0.67274(19) 0.8832(9) 0.0216(4) Uani 1 1 d . . . H2 H 0.2648 0.6681 0.9803 0.026 Uiso 1 1 calc R . . C3 C 0.29453(14) 0.6177(2) 0.6843(5) 0.0236(6) Uani 1 1 d . . . H3 H 0.2587 0.5741 0.6427 0.028 Uiso 1 1 calc R . . C4 C 0.34389(16) 0.6274(2) 0.5477(5) 0.0265(6) Uani 1 1 d . . . H4 H 0.3426 0.5908 0.4104 0.032 Uiso 1 1 calc R . . C5 C 0.39528(14) 0.6916(2) 0.6149(4) 0.0218(5) Uani 1 1 d . . . H5 H 0.4291 0.6983 0.5202 0.026 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Bi1 0.00867(4) 0.01337(4) 0.00986(5) -0.00038(12) 0.000 0.000 N1 0.0211(16) 0.0213(14) 0.0134(14) 0.0038(11) 0.000 0.000 N2 0.040(2) 0.0243(17) 0.0165(17) 0.0054(12) 0.000 0.000 N3 0.177(7) 0.022(2) 0.038(3) 0.011(2) 0.000 0.000 N4 0.0100(9) 0.0223(9) 0.0130(11) -0.0025(10) 0.0007(7) 0.0014(8) N5 0.0114(9) 0.0169(9) 0.0118(9) -0.0026(7) 0.0017(8) 0.0011(7) N6 0.0144(10) 0.0317(11) 0.0217(13) -0.0037(8) -0.0024(8) 0.0058(9) N7 0.0147(10) 0.0185(9) 0.0160(9) 0.0000(7) -0.0004(8) -0.0040(7) C1 0.0196(12) 0.0175(10) 0.0201(14) 0.0002(8) -0.0001(9) -0.0022(9) C2 0.0149(9) 0.0179(8) 0.0322(13) 0.002(2) 0.004(2) -0.0025(7) C3 0.0198(13) 0.0180(12) 0.0331(16) 0.0031(11) -0.0089(12) -0.0053(10) C4 0.0348(17) 0.0254(13) 0.0193(14) -0.0009(10) -0.0058(12) -0.0104(11) C5 0.0235(14) 0.0236(12) 0.0184(13) -0.0002(10) 0.0024(11) -0.0077(11) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Bi1 N1 2.277(3) . ? Bi1 N4 2.304(2) 4_655 ? Bi1 N4 2.304(2) . ? Bi1 N7 2.618(2) . ? Bi1 N7 2.618(2) 4_655 ? Bi1 N4 2.797(2) 3_574 ? Bi1 N4 2.797(2) 2_674 ? N1 N2 1.214(4) . ? N2 N3 1.138(5) . ? N4 N5 1.213(3) . ? N4 Bi1 2.797(2) 2_675 ? N5 N6 1.148(3) . ? N7 C5 1.327(3) . ? N7 C1 1.341(3) . ? C1 C2 1.386(3) . ? C2 C3 1.387(6) . ? C3 C4 1.380(5) . ? C4 C5 1.385(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Bi1 N4 83.62(9) . 4_655 ? N1 Bi1 N4 83.62(9) . . ? N4 Bi1 N4 75.96(10) 4_655 . ? N1 Bi1 N7 81.04(6) . . ? N4 Bi1 N7 155.27(7) 4_655 . ? N4 Bi1 N7 83.13(7) . . ? N1 Bi1 N7 81.04(6) . 4_655 ? N4 Bi1 N7 83.13(7) 4_655 4_655 ? N4 Bi1 N7 155.27(7) . 4_655 ? N7 Bi1 N7 113.27(9) . 4_655 ? N1 Bi1 N4 149.40(4) . 3_574 ? N4 Bi1 N4 111.86(4) 4_655 3_574 ? N4 Bi1 N4 75.42(4) . 3_574 ? N7 Bi1 N4 74.61(6) . 3_574 ? N7 Bi1 N4 125.54(7) 4_655 3_574 ? N1 Bi1 N4 149.40(4) . 2_674 ? N4 Bi1 N4 75.42(4) 4_655 2_674 ? N4 Bi1 N4 111.86(4) . 2_674 ? N7 Bi1 N4 125.54(7) . 2_674 ? N7 Bi1 N4 74.61(6) 4_655 2_674 ? N4 Bi1 N4 60.92(8) 3_574 2_674 ? N2 N1 Bi1 114.3(3) . . ? N3 N2 N1 177.4(5) . . ? N5 N4 Bi1 119.25(15) . . ? N5 N4 Bi1 125.40(16) . 2_675 ? Bi1 N4 Bi1 111.00(8) . 2_675 ? N6 N5 N4 176.8(2) . . ? C5 N7 C1 117.9(2) . . ? C5 N7 Bi1 116.13(18) . . ? C1 N7 Bi1 125.88(16) . . ? N7 C1 C2 122.9(3) . . ? C1 C2 C3 118.5(3) . . ? C4 C3 C2 118.9(3) . . ? C3 C4 C5 118.6(3) . . ? N7 C5 C4 123.3(3) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N4 Bi1 N1 N2 -141.74(5) 4_655 . . . ? N4 Bi1 N1 N2 141.74(5) . . . . ? N7 Bi1 N1 N2 57.72(5) . . . . ? N7 Bi1 N1 N2 -57.72(5) 4_655 . . . ? N4 Bi1 N1 N2 95.10(17) 3_574 . . . ? N4 Bi1 N1 N2 -95.10(17) 2_674 . . . ? N1 Bi1 N4 N5 -125.8(2) . . . . ? N4 Bi1 N4 N5 149.20(16) 4_655 . . . ? N7 Bi1 N4 N5 -44.11(19) . . . . ? N7 Bi1 N4 N5 -177.69(16) 4_655 . . . ? N4 Bi1 N4 N5 31.72(17) 3_574 . . . ? N4 Bi1 N4 N5 81.52(17) 2_674 . . . ? N1 Bi1 N4 Bi1 76.35(8) . . . 2_675 ? N4 Bi1 N4 Bi1 -8.64(11) 4_655 . . 2_675 ? N7 Bi1 N4 Bi1 158.05(9) . . . 2_675 ? N7 Bi1 N4 Bi1 24.5(2) 4_655 . . 2_675 ? N4 Bi1 N4 Bi1 -126.13(11) 3_574 . . 2_675 ? N4 Bi1 N4 Bi1 -76.32(11) 2_674 . . 2_675 ? N1 Bi1 N7 C5 -129.4(2) . . . . ? N4 Bi1 N7 C5 178.30(19) 4_655 . . . ? N4 Bi1 N7 C5 146.0(2) . . . . ? N7 Bi1 N7 C5 -53.2(2) 4_655 . . . ? N4 Bi1 N7 C5 69.32(19) 3_574 . . . ? N4 Bi1 N7 C5 34.0(2) 2_674 . . . ? N1 Bi1 N7 C1 54.8(2) . . . . ? N4 Bi1 N7 C1 2.4(3) 4_655 . . . ? N4 Bi1 N7 C1 -29.8(2) . . . . ? N7 Bi1 N7 C1 130.92(18) 4_655 . . . ? N4 Bi1 N7 C1 -106.5(2) 3_574 . . . ? N4 Bi1 N7 C1 -141.83(19) 2_674 . . . ? C5 N7 C1 C2 -0.1(4) . . . . ? Bi1 N7 C1 C2 175.72(19) . . . . ? N7 C1 C2 C3 0.4(4) . . . . ? C1 C2 C3 C4 -0.4(4) . . . . ? C2 C3 C4 C5 0.1(4) . . . . ? C1 N7 C5 C4 -0.2(4) . . . . ? Bi1 N7 C5 C4 -176.4(2) . . . . ? C3 C4 C5 N7 0.2(4) . . . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A C2 H2 N6 0.95 2.59 3.268(3) 128.6 8_545 _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 30.55 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 1.038 _refine_diff_density_min -0.762 _refine_diff_density_rms 0.091 _vrf_PLAT220_ben_bin33no3 ; PROBLEM: Large Non-Solvent N Ueq(max)/Ueq(min) ... RESPONSE: The ADP's of N1, N2 and N3 indicate either a strong thermal movement of terminal group (ADPs increase towards the end of the azido-group) or a minor disorder with the N atoms placed slightly off the mirror plane. It was not possible to identify separate positions for disorderd atoms. ; data_ben_084lt _database_code_depnum_ccdc_archive 'CCDC 808989' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'N9 Sb' _chemical_formula_weight 247.84 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Sb Sb -0.5866 1.5461 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 6.6694(6) _cell_length_b 6.9045(6) _cell_length_c 7.0314(6) _cell_angle_alpha 83.651(5) _cell_angle_beta 65.850(5) _cell_angle_gamma 83.595(5) _cell_volume 292.85(4) _cell_formula_units_Z 2 _cell_measurement_temperature 103(2) _cell_measurement_reflns_used 2561 _cell_measurement_theta_min 2.97 _cell_measurement_theta_max 25.12 _exptl_crystal_description plate _exptl_crystal_colour colorless _exptl_crystal_size_max 0.07 _exptl_crystal_size_mid 0.05 _exptl_crystal_size_min 0.01 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.811 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 228 _exptl_absorpt_coefficient_mu 4.642 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.64 _exptl_absorpt_correction_T_max 0.75 _exptl_absorpt_process_details ; BRUKER AXS SMART APEX 2 Vers. 3.0-2009 R.H. Blessing, Acta Cryst. (1995) A51 33-38 ; _exptl_special_details ; The crystallization was performed on the diffractometer at a temperature of 296 K with a sublimation procedure using focussed infrared-laser- radiation according to: R. Boese, M. Nussbaumer, "In Situ Crystallisation Techniques", in: "Organic Crystal Chemistry", Ed. D.W. Jones, Oxford University Press, Oxford, England, (1994) 20-37 ; _diffrn_ambient_temperature 103(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'Triumph graphite' _diffrn_measurement_device_type ; Bruker D8 KAPPA series II with APEX II area detector system ; _diffrn_measurement_method ; Data collection strategy APEX 2/COSMO ; _diffrn_detector_area_resol_mean 512 _diffrn_reflns_number 3719 _diffrn_reflns_av_R_equivalents 0.0275 _diffrn_reflns_av_sigmaI/netI 0.0291 _diffrn_reflns_limit_h_min -7 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min -7 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 2.98 _diffrn_reflns_theta_max 25.20 _reflns_number_total 1012 _reflns_number_gt 933 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009' _computing_cell_refinement 'BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009' _computing_data_reduction 'BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009' _computing_structure_solution 'BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009' _computing_structure_refinement 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_molecular_graphics 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_publication_material 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0212P)^2^+2.1026P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens notdet _refine_ls_hydrogen_treatment none _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1012 _refine_ls_number_parameters 91 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0303 _refine_ls_R_factor_gt 0.0254 _refine_ls_wR_factor_ref 0.0639 _refine_ls_wR_factor_gt 0.0622 _refine_ls_goodness_of_fit_ref 1.120 _refine_ls_restrained_S_all 1.120 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Sb1 Sb 0.16997(6) 0.45382(6) 0.68458(6) 0.01478(15) Uani 1 1 d . . . N1 N 0.1364(9) 0.6458(7) 0.9185(8) 0.0186(11) Uani 1 1 d . . . N2 N 0.1992(9) 0.8114(8) 0.8589(8) 0.0190(11) Uani 1 1 d . . . N3 N 0.2559(10) 0.9634(8) 0.8088(9) 0.0282(13) Uani 1 1 d . . . N4 N 0.3750(8) 0.6537(7) 0.4561(8) 0.0190(11) Uani 1 1 d . . . N5 N 0.2798(8) 0.7867(7) 0.3815(8) 0.0195(11) Uani 1 1 d . . . N6 N 0.2000(9) 0.9062(8) 0.3070(9) 0.0267(13) Uani 1 1 d . . . N7 N -0.1127(8) 0.6091(7) 0.6556(8) 0.0175(11) Uani 1 1 d . . . N8 N -0.2619(8) 0.6668(7) 0.8172(8) 0.0179(12) Uani 1 1 d . . . N9 N -0.4045(9) 0.7186(8) 0.9623(9) 0.0254(12) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Sb1 0.0124(2) 0.0201(2) 0.0109(2) 0.00043(15) -0.00386(17) -0.00225(15) N1 0.023(3) 0.022(3) 0.010(3) 0.000(2) -0.005(2) -0.006(2) N2 0.024(3) 0.025(3) 0.012(3) 0.000(2) -0.012(2) -0.003(2) N3 0.040(4) 0.025(3) 0.026(3) 0.003(3) -0.019(3) -0.009(3) N4 0.011(3) 0.026(3) 0.016(3) 0.006(2) -0.001(2) -0.005(2) N5 0.016(3) 0.024(3) 0.010(3) 0.001(2) 0.003(2) -0.003(2) N6 0.022(3) 0.029(3) 0.018(3) 0.004(2) 0.000(3) 0.005(2) N7 0.011(3) 0.029(3) 0.009(3) -0.004(2) -0.003(2) 0.008(2) N8 0.015(3) 0.022(3) 0.020(3) 0.002(2) -0.010(3) -0.004(2) N9 0.017(3) 0.038(3) 0.016(3) -0.003(3) -0.002(3) 0.006(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Operators for generating equivalent atoms: $1 -x, -y+1, -z+2 $2 -x+1, -y+1, -z+1 $3 -x, -y+1, -z+1 Distance DIST 2.7678 (0.0051) Sb1 - N1_$1 2.8185 (0.0050) Sb1 - N4_$2 2.6592 (0.0048) Sb1 - N7_$3 Angle ANGL 65.11 ( 0.20) N1 - Sb1 - N1_$1 99.21 ( 0.18) N1 - Sb1 - N4_$2 149.69 ( 0.17) N1 - Sb1 - N7_$3 152.34 ( 0.18) N4 - Sb1 - N1_$1 65.24 ( 0.20) N4 - Sb1 - N4_$2 77.47 ( 0.18) N4 - Sb1 - N7_$3 82.12 ( 0.17) N7 - Sb1 - N1_$1 153.53 ( 0.17) N7 - Sb1 - N4_$2 65.12 ( 0.21) N7 - Sb1 - N7_$3 124.12 ( 0.14) N1_$1 - Sb1 - N4_$2 121.62 ( 0.15) N1_$1 - Sb1 - N7_$3 ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Sb1 N4 2.119(5) . ? Sb1 N7 2.136(5) . ? Sb1 N1 2.151(5) . ? N1 N2 1.231(7) . ? N2 N3 1.125(7) . ? N4 N5 1.248(7) . ? N5 N6 1.128(7) . ? N7 N8 1.235(7) . ? N8 N9 1.133(8) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N4 Sb1 N7 89.92(19) . . ? N4 Sb1 N1 88.4(2) . . ? N7 Sb1 N1 88.52(19) . . ? N2 N1 Sb1 117.8(4) . . ? N3 N2 N1 178.5(6) . . ? N5 N4 Sb1 116.1(4) . . ? N6 N5 N4 177.4(6) . . ? N8 N7 Sb1 117.1(4) . . ? N9 N8 N7 177.4(6) . . ? _diffrn_measured_fraction_theta_max 0.963 _diffrn_reflns_theta_full 25.20 _diffrn_measured_fraction_theta_full 0.963 _refine_diff_density_max 1.269 _refine_diff_density_min -0.802 _refine_diff_density_rms 0.165