# Electronic Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2011 data_global _journal_name_full Chem.Commun. _journal_coden_cambridge 0182 _journal_year ? _journal_volume ? _journal_page_first ? loop_ _publ_author_name _publ_author_address M.Bujak ; Faculty of Chemistry University of Opole Oleska 48 45-052 Opole Poland ; D.Blaser ; Fachbereich Chemie der Universit\"at Duisburg-Essen Campus Essen Universit\"atsstr. 7 D-45117 Essen, Germany ; A.Katrusiak ; Faculty of Chemistry Adam Mickiewicz University Grunwaldzka 6 60-780 Pozna\'n Poland ; R.Boese ; Fachbereich Chemie der Universit\"at Duisburg-Essen Campus Essen Universit\"atsstr. 7 D-45117 Essen, Germany ; # SUBMISSION DETAILS _publ_contact_author ; Prof. Dr. Boese, Roland Fachbereich Chemie der Universit\"at Duisburg-Essen Campus Essen, Universit\"atsstr. 7 D-45117 Essen, Germany ; _publ_contact_author_email roland.boese@.uni-due.de _publ_contact_author_fax '++49 (0)201 183 2535' _publ_contact_author_phone '++49 (0)201 183 2416' _publ_contact_letter ; Please consider this CIF submission for publication in in The Journal of the American Chemical Society ; _publ_requested_category FO _publ_requested_coeditor_name ? # TITLE AND AUTHOR LIST _publ_section_title ; Conformational Polymorphs of 1,1,2,2-Tetrachloroethane: Pressure vs. Temperature ; _publ_contact_author_name 'Prof. Dr. Boese, Roland' data_tcexdb0 _database_code_depnum_ccdc_archive 'CCDC 811781' #TrackingRef '- 1122TCELThp.cif' _audit_update_record ; 2010-10-30 # Formatted by publCIF ; ############################################################################# _ccdc_compound_id 1 # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,2,2-Tetrachloroethane ; _chemical_name_common 1,1,2,2-Tetrachloroethane _chemical_melting_point ? _chemical_formula_moiety 'C2 H2 Cl4' _chemical_formula_sum 'C2 H2 Cl4' _chemical_formula_weight 167.84 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 21' _symmetry_space_group_name_Hall 'P 2ac 2ab' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z' _cell_length_a 8.8687(19) _cell_length_b 10.501(2) _cell_length_c 12.835(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1195.3(4) _cell_formula_units_Z 8 _cell_measurement_temperature 215(2) _cell_measurement_pressure 100 _cell_measurement_reflns_used 3727 _cell_measurement_theta_min 2.49 _cell_measurement_theta_max 28.29 _exptl_crystal_description cylindric _exptl_crystal_colour colorless _exptl_crystal_size_max 0.3 _exptl_crystal_size_mid 0.3 _exptl_crystal_size_min 0.3 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.865 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 656 _exptl_absorpt_coefficient_mu 1.831 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.54 _exptl_absorpt_correction_T_max 0.74 _exptl_absorpt_process_details ; BRUKER AXS SMART APEX 2 Vers. 3.0-2009 R.H. Blessing, Acta Cryst. (1995) A51 33-38 ; _exptl_special_details ; The crystallization was performed on the diffractometer at a temperature of 215 K with a miniature zone melting procedure using focussed infrared-laser- radiation according to: R. Boese, M. Nussbaumer, "In Situ Crystallisation Techniques", in: "Organic Crystal Chemistry", Ed. D.W. Jones, Oxford University Press, Oxford, England, (1994) 20-37 ; # EXPERIMENTAL DATA _diffrn_ambient_temperature 215(1) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ; Siemens SMART three axis goniometer with APEX II area detector system ; _diffrn_measurement_method ; Data collection strategy APEX 2 / COSMO with chi = 0 deg, phi +/- 10 deg ; _diffrn_detector_area_resol_mean 512 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 4746 _diffrn_reflns_av_R_equivalents 0.0159 _diffrn_reflns_av_sigmaI/netI 0.0229 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 14 _diffrn_reflns_limit_l_min -17 _diffrn_reflns_limit_l_max 17 _diffrn_reflns_theta_min 2.51 _diffrn_reflns_theta_max 28.42 _reflns_number_total 2372 _reflns_number_gt 2243 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_cell_refinement 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_data_reduction 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_structure_solution 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_structure_refinement 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_molecular_graphics 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_publication_material 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Treatment of hydrogen atoms Riding model on idealized geometrics with the 1.2 fold isotropic displacement parameters of the equivalent Uij of the corresponding carbon atom ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0189P)^2^+0.8190P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.04(15) _chemical_absolute_configuration ad _refine_ls_number_reflns 2372 _refine_ls_number_parameters 111 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0298 _refine_ls_R_factor_gt 0.0273 _refine_ls_wR_factor_ref 0.0656 _refine_ls_wR_factor_gt 0.0640 _refine_ls_goodness_of_fit_ref 1.039 _refine_ls_restrained_S_all 1.039 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.70407(12) 0.05377(9) 0.00785(6) 0.0623(3) Uani 1 1 d . . . Cl2 Cl 0.91505(12) 0.25257(7) 0.07333(7) 0.0612(3) Uani 1 1 d . . . Cl3 Cl 0.81137(11) 0.19718(8) 0.31118(5) 0.0571(2) Uani 1 1 d . . . Cl4 Cl 0.92729(11) -0.02205(7) 0.19928(6) 0.0524(2) Uani 1 1 d . . . Cl5 Cl 0.41847(12) 0.00788(8) 0.41256(7) 0.0651(3) Uani 1 1 d . . . Cl6 Cl 0.17003(12) 0.18287(9) 0.45959(5) 0.0593(3) Uani 1 1 d . . . Cl7 Cl 0.41267(11) 0.27494(7) 0.28012(8) 0.0637(3) Uani 1 1 d . . . Cl8 Cl 0.33333(12) 0.04459(9) 0.16682(6) 0.0587(2) Uani 1 1 d . . . C1 C 0.7535(4) 0.1619(3) 0.1081(2) 0.0434(8) Uani 1 1 d . . . H1 H 0.6709 0.2196 0.1176 0.052 Uiso 1 1 d R . . C2 C 0.7772(4) 0.0891(2) 0.2077(2) 0.0381(7) Uani 1 1 d . . . H2 H 0.6866 0.0433 0.2233 0.046 Uiso 1 1 d R . . C3 C 0.2509(4) 0.0796(3) 0.3649(2) 0.0424(7) Uani 1 1 d . . . H3 H 0.1796 0.0133 0.3507 0.051 Uiso 1 1 d R . . C4 C 0.2767(4) 0.1536(3) 0.2658(2) 0.0408(7) Uani 1 1 d . . . H4 H 0.1834 0.1918 0.2450 0.049 Uiso 1 1 d R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0613(7) 0.0764(5) 0.0492(4) -0.0214(4) -0.0141(4) 0.0158(5) Cl2 0.0732(7) 0.0471(4) 0.0632(4) 0.0073(3) 0.0250(4) -0.0039(4) Cl3 0.0585(7) 0.0684(5) 0.0442(3) -0.0178(3) 0.0031(4) -0.0052(4) Cl4 0.0429(6) 0.0433(3) 0.0709(4) 0.0005(3) -0.0121(4) 0.0082(3) Cl5 0.0662(7) 0.0643(5) 0.0649(5) 0.0145(4) -0.0189(5) 0.0200(5) Cl6 0.0691(7) 0.0699(5) 0.0388(3) -0.0058(3) 0.0027(4) 0.0119(5) Cl7 0.0470(7) 0.0389(3) 0.1052(7) 0.0049(4) 0.0110(5) -0.0068(4) Cl8 0.0639(7) 0.0666(5) 0.0457(4) -0.0122(3) 0.0072(4) 0.0045(4) C1 0.044(2) 0.0437(15) 0.0428(13) -0.0024(11) 0.0035(13) 0.0094(13) C2 0.031(2) 0.0395(13) 0.0436(13) -0.0036(11) -0.0004(12) -0.0020(11) C3 0.045(2) 0.0415(14) 0.0410(13) 0.0038(11) -0.0061(12) 0.0007(12) C4 0.039(2) 0.0414(14) 0.0417(13) 0.0056(11) 0.0011(12) 0.0033(12) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.771(3) . ? Cl2 C1 1.777(3) . ? Cl3 C2 1.774(3) . ? Cl4 C2 1.774(3) . ? Cl5 C3 1.775(3) . ? Cl6 C3 1.780(3) . ? Cl7 C4 1.763(3) . ? Cl8 C4 1.782(3) . ? C1 C2 1.504(4) . ? C3 C4 1.508(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 Cl1 109.02(19) . . ? C2 C1 Cl2 111.9(2) . . ? Cl1 C1 Cl2 111.14(16) . . ? C1 C2 Cl3 109.59(19) . . ? C1 C2 Cl4 112.8(2) . . ? Cl3 C2 Cl4 109.76(16) . . ? C4 C3 Cl5 112.5(2) . . ? C4 C3 Cl6 108.88(19) . . ? Cl5 C3 Cl6 111.12(15) . . ? C3 C4 Cl7 112.8(2) . . ? C3 C4 Cl8 108.23(19) . . ? Cl7 C4 Cl8 110.23(17) . . ? _diffrn_measured_fraction_theta_max 0.800 _diffrn_reflns_theta_full 28.42 _diffrn_measured_fraction_theta_full 0.800 _refine_diff_density_max 0.386 _refine_diff_density_min -0.260 _refine_diff_density_rms 0.045 _vrf_PLAT029_tcexdb0 ; PROBLEM: _diffrn_measured_fraction_theta_full Low ....... 0.80 RESPONSE: The compounds are liquids at RT. The single crystals are formed by an in-situ zone melting process inside a quartz capillary using an IR-laser. The experimental setup does only allow for a omega scan of the single crystal. This limits the completeness to 75% to 95% depending on the crystal system. ; _vrf_REFLT03_tcexdb0 ; PROBLEM: Completeness (_total/calc) 137.11% RESPONSE: Refinement as racemic twinning with matrix -1 0 0 0 -1 0 0 0 -1 2 with Flack absolute structure parameter 0.04(15) in the final structure factor calculation ; _vrf_PLAT950_tcexdb0 ; PROBLEM: _diffrn_measured_fraction_theta_full Low ....... 0.75 RESPONSE: The compounds are liquids at RT. The single crystals are formed by an in-situ zone melting process inside a quartz capillaryusing an IR-laser. The experimental setup does only allow for a omega scan of the single crystal. The range of +/-h, +/-k and +/-l depending on the crystal system. ; ############################################################################# data_1122TCE_065GPa _database_code_depnum_ccdc_archive 'CCDC 811782' #TrackingRef '- 1122TCELThp.cif' # CHEMICAL DATA _audit_update_record ; 2010-10-30 # Formatted by publCIF ; _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,2,2-Tetrachloroethane ; _chemical_name_common 1,1,2,2-Tetrachloroethane _chemical_melting_point ? _chemical_formula_moiety 'C2 H2 Cl4' _chemical_formula_sum 'C2 H2 Cl4' _chemical_formula_weight 167.84 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/c' _symmetry_space_group_name_Hall '-P 2ybc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 6.1941(9) _cell_length_b 6.186(2) _cell_length_c 7.361(3) _cell_angle_alpha 90.00 _cell_angle_beta 104.90(2) _cell_angle_gamma 90.00 _cell_volume 272.57(15) _cell_formula_units_Z 2 _cell_measurement_temperature 295(2) _cell_measurement_pressure 650000 _cell_measurement_reflns_used 2619 _cell_measurement_theta_min 3.39 _cell_measurement_theta_max 28.57 _exptl_crystal_description cylindric _exptl_crystal_colour colorless _exptl_crystal_size_max 0.48 _exptl_crystal_size_mid 0.48 _exptl_crystal_size_min 0.22 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.045 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 164 _exptl_absorpt_coefficient_mu 2.008 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.218 _exptl_absorpt_correction_T_max 0.570 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 0.65(5) GPa (650000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 650000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1157 _diffrn_reflns_av_R_equivalents 0.1028 _diffrn_reflns_av_sigmaI/netI 0.0464 _diffrn_reflns_limit_h_min -7 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 5 _diffrn_reflns_limit_l_min -7 _diffrn_reflns_limit_l_max 7 _diffrn_reflns_theta_min 3.40 _diffrn_reflns_theta_max 25.34 _reflns_number_total 198 _reflns_number_gt 191 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A., 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae at al., 2008)' _computing_publication_material 'SHELXL--97 (Sheldrick, 2008)' # REFINEMENT DATA _refine_special_details ; Refinement of F\^2\^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F\^2\^, conventional R-factors R are based on F, with F set to zero for negative F\^2\^. The threshold expression of F\^2\^ > 2sigma(F\^2\^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F\^2\^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s\^2\^(Fo\^2\^)+(0.0600P)\^2\^+0.8610P] where P=(Fo\^2\^+2Fc\^2\^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 198 _refine_ls_number_parameters 31 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.0620 _refine_ls_R_factor_gt 0.0598 _refine_ls_wR_factor_ref 0.1469 _refine_ls_wR_factor_gt 0.1435 _refine_ls_goodness_of_fit_ref 1.174 _refine_ls_restrained_S_all 1.170 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.8851(14) 0.4797(16) 1.0174(15) 0.050(2) Uani 1 1 d D . . H1 H 0.882(14) 0.514(11) 1.139(13) 0.060 Uiso 1 1 d D . . Cl1 Cl 0.8093(3) 0.2067(4) 0.9869(3) 0.0519(9) Uani 1 1 d D . . Cl2 Cl 0.6846(3) 0.6431(4) 0.8564(3) 0.0596(10) Uani 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.055(4) 0.046(11) 0.048(9) 0.004(3) 0.013(4) 0.012(5) Cl1 0.0526(13) 0.051(3) 0.049(3) -0.0003(7) 0.0070(12) -0.0039(9) Cl2 0.0467(12) 0.070(3) 0.056(3) 0.0123(10) 0.0029(12) 0.0131(11) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C1 1.531(17) 3_767 ? C1 Cl1 1.751(11) . ? C1 Cl2 1.792(10) . ? C1 H1 0.93(9) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 C1 Cl1 111.5(9) 3_767 . ? C1 C1 Cl2 108.2(9) 3_767 . ? Cl1 C1 Cl2 110.0(6) . . ? C1 C1 H1 112(6) 3_767 . ? Cl1 C1 H1 106(4) . . ? Cl2 C1 H1 109(4) . . ? _diffrn_measured_fraction_theta_max 0.394 _diffrn_reflns_theta_full 25.34 _diffrn_measured_fraction_theta_full 0.394 _refine_diff_density_max 0.280 _refine_diff_density_min -0.245 _refine_diff_density_rms 0.071 _vrf_REFLT03_1122TCE_065GPa ; PROBLEM: Reflection count < 85% complete (theta max?) RESPONSE: All the Alerts generated below are the 'typical high-pressure crystallography warnings'. 1,1,2,2-Tetrachloroethane (1122TCE) is a liquid at ambient conditions. A single crystal of 1122TCE was obtained by the in-situ high-pressure crystallization technique in a diamond-anvil cell (DAC). The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio and, in consequence, in a low-bond precision. The number of reflections depends on the crystal system and a single-crystal orientation in a DAC. ; _vrf_PLAT022_1122TCE_065GPa ; PROBLEM: Ratio Unique / Expected Reflections too Low .... 0.39 RESPONSE: 1,1,2,2-Tetrachloroethane (1122TCE) is a liquid at ambient conditions. A single crystal of 1122TCE was obtained by the in-situ high-pressure crystallization technique in a diamond-anvil cell (DAC). The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio and, in consequence, in a low-bond precision. The number of reflections depends on the crystal system and a single-crystal orientation in a DAC. ; _vrf_PLAT029_1122TCE_065GPa ; PROBLEM: _diffrn_measured_fraction_theta_full Low ....... 0.39 RESPONSE: 1,1,2,2-Tetrachloroethane (1122TCE) is a liquid at ambient conditions. A single crystal of 1122TCE was obtained by the in-situ high-pressure crystallization technique in a diamond-anvil cell (DAC). The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio and, in consequence, in a low-bond precision. The number of reflections depends on the crystal system and a single-crystal orientation in a DAC. ; _vrf_PLAT088_1122TCE_065GPa ; PROBLEM: Poor Data / Parameter Ratio .................... 6.39 RESPONSE: 1,1,2,2-Tetrachloroethane (1122TCE) is a liquid at ambient conditions. A single crystal of 1122TCE was obtained by the in-situ high-pressure crystallization technique in a diamond-anvil cell (DAC). The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio and, in consequence, in a low-bond precision. The number of reflections depends on the crystal system and a single-crystal orientation in a DAC. ; _vrf_PLAT340_1122TCE_065GPa ; PROBLEM: Low Bond Precision on C-C Bonds (x 1000) Ang .. 13 RESPONSE: 1,1,2,2-Tetrachloroethane (1122TCE) is a liquid at ambient conditions. A single crystal of 1122TCE was obtained by the in-situ high-pressure crystallization technique in a diamond-anvil cell (DAC). The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio and, in consequence, in a low-bond precision. The number of reflections depends on the crystal system and a single-crystal orientation in a DAC. ; _vrf_PLAT951_1122TCE_065GPa ; PROBLEM: Reported and Calculated Kmax Values Differ by .. 2 RESPONSE: 1,1,2,2-Tetrachloroethane (1122TCE) is a liquid at ambient conditions. A single crystal of 1122TCE was obtained by the in-situ high-pressure crystallization technique in a diamond-anvil cell (DAC). The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio and, in consequence, in a low-bond precision. The number of reflections depends on the crystal system and a single-crystal orientation in a DAC. ; _vrf_PLAT860_1122TCE_065GPa ; PROBLEM: Note: Number of Least-Squares Restraints ....... 2 RESPONSE: The geometrical restraints were used for the hydrogen-atom refinement. ; #############################################################################