Supporting Information

Ultrathin Au-Ag bimetallic nanowires with Coulomb blockade effects
Xun Hong,1 Dingsheng Wang,1 Rong Yu,2 Hui Yan,3 Yi Sun,3 Lin He,3 Zhiqian Niu,1 Qing Peng 1 and Yadong Li1*

1Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
2Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
3Department of Physics, Beijing Normal University, Beijing, 100875, P. R. China
*E-mail: ydli@mail.tsinghua.edu.cn

Experimental Details

Synthesis: All the reagents used in this work, including HAuCl₄•4H₂O, AgNO₃, octadecylamine (ODA), ethanol and cyclohexane, were of analytical grade obtained from the Beijing Chemical Factory of China and were used without further purification. In a typical synthesis of Au-Ag bimetallic nanowires, 0.02 g HAuCl₄•4H₂O and 0.02 g AgNO₃ were added into 10 ml ODA at 90 °C. After 1 min of magnetically stirring, the solution was kept at 90 °C for 4 h without stirring. The products were collected and then washed with ethanol for several times.

Characterization: The size and the morphology of as-synthesized samples were determined by using Hitachi model H-800 transmission electron microscope and JEOL-2010F high-resolution transmission electron microscope. The energy dispersive spectroscopy was recorded to determine the composition of the products. High-resolution transmission electron microscopy observations were performed by using a FEI Titan 80–300 transmission electron microscope equipped with a spherical aberration (Cs) corrector for the objective lens.

STM measurements: the nanowires were dispersed on a highly ordered pyrolytic graphite (HOPG) substrate. The scanning tunneling microscope (STM) system was an ultrahigh vacuum four-probe SPM from UNISOKU. The STM tips used were chemical corrosion from a wire of Pt (80%) Ir (20%) alloys. All the STM and scanning tunneling spectroscopy (STS) measurements were performed at the liquid-nitrogen temperature. The images were taken in a constant-current scanning mode with tunneling currents of 0.2 - 0.8 nA and bias voltages range from 120 to 170 mV. Lateral dimensions observed in the STM images were calibrated with HOPG standard.

Supplementary Figures

Figure S1. EDS analysis of the Au/Ag bimetallic nanowires. The Cu signal was from the copper grid.
Figure S2. Typical TEM images of products obtained from the same synthesis but at different temperatures. (a) 80 °C, (b) 100 °C, (c) 120 °C.

Figure S3. Typical TEM images of products obtained from the same synthesis but at different reactant concentrations. (a) 0.02 g HAuCl₄·4H₂O, (b) 0.02 g HAuCl₄·4H₂O and 0.005 g AgNO₃, (c) 0.02 g HAuCl₄·4H₂O and 0.2 g AgNO₃.

Figure S4. Constant-current scanning mode STM image of Au-Ag nanowires on HOPG substrate. $V_{Bias} = -1.50$ V and $I = 0.485$ nA.