Supporting information

Lewis Acid – Catalyzed Formal [3+2] Cycloadditions of N-Tosylaziridines with Electron-rich Alkenes via Selective Carbon-Carbon Bond Cleavage

Lei Li,¹ Xingxing Wu¹ and Junliang Zhang*¹,²

¹Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062
Fax:(+86)-021-6223-5039; e-mail: jzhang@chem.ecnu.edu.cn
General information.

Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. 1H NMR spectra, 13C NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d$_3$. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration).

All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. ClCH$_2$CH$_2$Cl (DCE) and CH$_2$Cl$_2$ (DCM) were freshly distilled from CaH$_2$; toluene was freshly distilled from sodium metal prior to use. All olefin were freshly distilled prior to use.

Table 1. Optimization of the reaction conditions.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mg(OTf)$_2$</td>
<td>DCM</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Yb(OTf)$_3$</td>
<td>DCM</td>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>Sc(OTf)$_3$</td>
<td>DCM</td>
<td>1</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>Sn(OTf)$_2$</td>
<td>DCM</td>
<td>3</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Fe(OTf)$_3$</td>
<td>DCM</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Ni(ClO$_4$)$_2$·6H_2O</td>
<td>DCM</td>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>In(OTf)$_3$</td>
<td>DCM</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>Y(OTf)$_3$</td>
<td>DCM</td>
<td>1</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>Y(OTf)$_3$</td>
<td>DCE</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>10</td>
<td>Y(OTf)$_3$</td>
<td>toluene</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>11c</td>
<td>ZnCl$_2$</td>
<td>DCM</td>
<td>3</td>
<td>47</td>
</tr>
</tbody>
</table>

a All reactions were performed with 0.4 mmol of 1a, 3,4-dihydro-2H-pyran (2 eq.) and 5 mol % of catalyst, 4 Å molecular sieves (200 mg) in 4 mL of solvent at rt.b Isolated yield and d.r.$^{>20}:1$ c 10 mol% of catalyst.
Synthesis of aziridine:

1. (4aR*,5R*,7aS*)-dimethyl 5-phenyl-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2a).

![Chemical Structure](Image)

The reaction of aziridine 1a (155.7 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % of Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 153.6 mg of 2a in 81% yield, white solid. m.p. 186-188 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, J = 8.0 Hz, 2 H), 7.02-7.12 (m, 3 H), 6.96 (d, J = 8.0 Hz, 2 H), 6.87 (d, J = 6.8 Hz, 2 H), 5.38 (d, J = 8.8 Hz, 1 H), 3.97-4.06 (m, 1 H), 3.95 (s, 6 H), 3.83 (d, J = 11.6 Hz, 1 H), 3.29 (t, J = 12.0 Hz, 1 H), 2.72-2.83 (m, 1 H), 2.27 (s, 3 H), 1.75 (d, J = 12.4 Hz, 1 H), 1.52-1.68 (m, 1 H), 1.44 (d, J = 13.6 Hz, 1 H), 0.53-0.68 (m, 1 H), ¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 166.9, 142.9, 137.1, 136.9, 128.3, 128.1, 127.9, 127.0, 126.5, 83.9, 75.3, 69.1, 64.9, 53.5, 43.2, 25.0, 24.6, 21.3 ppm. IR (neat) v/cm⁻¹ : 3028, 2953, 2923, 2855, 1756, 1731, 1599, 1456, 1436, 1344, 1236, 1057, 959, 913. MS (EI, 70 eV) m/z (%): 473 [M⁺] (0.02), 91 (100); HRMS calcd for C₂₄H₂₇NO₇S: 473.1508, found: 473.1509.

2. (4aR*,5R*,7aS*)-dimethyl 5-(4-chlorophenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2b).
The reaction of aziridine 1b (169.6 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % of Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford 2b (167.9 mg) in 82% yield, white solid. m.p. 199-201 °C; \(^1\)H NMR (400 MHz, CDCl₃): \(\delta = 7.39\) (d, \(J = 8.0\) Hz, 2 H); 6.96 (d, \(J = 8.0\) Hz, 2 H), 6.93 (d, \(J = 8.0\) Hz, 2 H), 6.77 (d, \(J = 8.0\) Hz, 2 H), 5.23 (d, \(J = 8.8\) Hz, 1 H), 3.94 (dd, \(J = 11.6, 4.0\) Hz, 1 H), 3.88 (s, 3 H), 3.86 (s, 3 H), 3.70 (d, \(J = 11.6\) Hz, 1 H), 3.20 (t, \(J = 12.0\) Hz, 1 H), 2.66 (dd, \(J = 20.4, 9.2\) Hz, 6 H), 2.23 (s, 3 H), 1.64 (d, \(J = 12.4\) Hz, 1 H), 1.43-1.58 (m, 1 H), 1.37 (d, \(J = 13.2\) Hz, 1 H), 0.47-0.60 (m, 1 H); \(^13\)C NMR (100 MHz, CDCl₃): \(\delta = 168.9, 166.6, 143.3, 136.9, 135.5, 132.8, 128.4, 128.1, 127.99, 127.95, 83.8, 75.2, 69.0, 64.0, 53.5, 53.4, 43.0, 25.0, 24.5, 21.2\) ppm; IR (neat) \(\nu/\text{cm}^{-1}: 3040, 2957, 2861, 1757, 1738, 1491, 1435, 1293, 1164, 1040, 958.\) MS (EI, 70 eV) m/z (%): 507 [M⁺] (0.03), 91 (100); HRMS calcd for C₂₄H₂₆ClNO₇S: 507.1119, found: 507.1122.

3. (4aR*, 5R*, 7aS*)-dimethyl 5-(4-bromophenyl)-6-tosylhexahydro pyrano[3, 2-c]pyrrole-7,7(7aH)-dicarboxylate (2c).

The reaction of aziridine 1c (187.2 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % of
Y(OTf)$_3$ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford 2c (172.2 mg) in 82% yield, white solid. m.p. 205-207 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 7.47 (d, $J = 7.6$ Hz, 2 H); 7.19 (d, $J = 7.6$ Hz, 1 H), 7.00 (d, $J = 7.6$ Hz, 2 H), 6.78 (d, $J = 7.6$ Hz, 2 H), 5.28 (d, $J = 8.8$ Hz, 1 H), 4.03 (dd, $J = 11.2$, 4.4 Hz, 1 H), 3.96 (s, 3 H), 3.94 (s, 3 H), 3.78 (d, $J = 11.2$ Hz, 1 H); 3.28 (t, $J = 12$, 1 H), 2.73 (dd, $J = 21.2$, 10.8 Hz, 1 H), 2.32 (s, 3 H), 1.72(d, $J = 12.4$ Hz, 1H), 1.53-1.68 (m, 1 H), 1.46 (d, $J = 13.6$ Hz, 1 H), 0.56-0.69 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ = 168.9, 166.6, 142.3, 136.8, 136.0, 130.9, 128.4, 128.3, 128.0, 120.8, 83.8, 75.2, 69.0, 64.0, 53.6 53.4, 43.0; 25.0; 24.5, 21.3 ppm; IR (neat) ν/cm$^{-1}$ 2990, 2955, 2867, 2840, 1758, 1738, 1597, 1431, 1291, 1162, 1045, 955. MS (EI, 70 eV) m/z (%): 551 [M$^+$] (0.02), 91 (100); HRMS calcd for C$_{24}$H$_{26}$BrNO$_7$S: 551.0613, found: 551.0616.

4. (4aR*, 5R*, 7aS*)-dimethyl 5-(4-nitrophenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2d).

The reaction of aziridine 1d (173.6 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)$_3$ (10.7 mg, 0.02 mmol, 5 mol%) in DCM (4 mL) was carried out at r.t. for 2.5 h to afford 2d (154.2 mg) in 82% yield, pale yellow solid. m.p. 227-229 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 7.94 (d, $J = 7.6$ Hz, 2 H), 7.51 (d, $J = 7.6$ Hz, 2 H), 7.13 (d, $J = 7.6$ Hz, 2 H), 7.10 (d, $J = 7.6$ Hz, 2 H), 5.41 (d, $J = 9.2$ Hz, 1 H), 4.00-4.10 (m, 1 H), 4.00 (s, 3 H), 3.95 (s, 3 H), 3.75 (d, $J = 11.2$ Hz, 1 H), 3.27 (t, $J = 12.0$ Hz, 1 H), 2.83
(dd, \(J = 21.6, 11.2 \) Hz, 1 H), 2.28 (s, 3 H), 1.78 (d, \(J = 12.4 \) Hz, 1 H), 1.56 - 1.69 (m, 1 H), 1.48 (d, \(J = 13.2 \) Hz, 1 H), 0.49-0.61 (m, 1 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 168.9, 166.4, 146.8, 144.7, 143.8, 136.5, 128.6, 128.1, 127.5, 123.0, 83.7, 75.3, 69.0, 63.9, 53.7, 53.5, 43.1, 25.0, 24.5, 21.2 \) ppm. IR (neat) \(\nu/cm^{-1} \) 2987, 2973, 2901; 1756, 1737, 1600, 1435, 1294, 1234, 1085, 1067, 958. MS (EI, 70 eV) m/z (%): 518 [M\(^+\)] (0.14), 91(100); HRMS calcd for C\(_{24}\)H\(_{26}\)N\(_2\)O\(_9\)S: 518.1359, found: 518.1360.

5. (4aR*, 5R*, 7aS*)-dimethyl 5-p-tolyl-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2e).

$$\text{Me}$$

$$\text{Ts}$$

$$\text{CO}_2\text{Me}$$

$$\text{CO}_2\text{Me}$$

$$\text{2e}$$

The reaction of aziridine 1e (161.2 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 \(\mu \)L, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % of Y(OTf)\(_3\) (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 2e (162.0 mg) in 83% yield, white solid. m.p.133-135 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.46 \) (d, \(J = 7.6 \) Hz, 2 H), 6.97 (d, \(J = 7.6 \) Hz, 2 H), 6.88 (d, \(J = 7.6 \) Hz, 2 H), 6.76 (d, \(J = 7.6 \) Hz, 2 H), 5.32 (d, \(J = 8.4 \) Hz, 1 H), 3.98-4.04 (m, 1 H), 3.94 (s, 6 H), 3.84 (d, \(J = 11.6 \) Hz, 1 H), 3.28 (t, \(J = 12.0 \) Hz, 1 H), 2.68-2.78 (m, 1 H), 2.28 (s, 3 H), 2.24 (s, 3 H), 1.72(d, \(J = 13.2 \) Hz, 1 H), 1.52-1.67 (m, 1 H), 1.43(d, \(J = 14.0 \) Hz, 1 H), 0.57-0.69 (m, 1 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 169.0, 167.0, 142.9, 137.3, 136.7, 133.9, 128.6, 128.3, 128.2, 126.6, 84.0, 75.3, 69.1, 64.8, 53.5, 43.2, 25.1, 24.7, 21.3, 20.9 \) ppm. IR (neat) \(\nu/cm^{-1} \) 2955, 2925, 2861, 1757, 1739, 1598, 1515, 1435, 1234, 1163, 1151, 1039, 957. MS (EI, 70
eV) m/z (%): 487 [M⁺] (0.08), 91 (100); HRMS calcd for C_{24}H_{29}NO_{7}S: 487.1665, found: 487.1664.

6. (4aR*, 5R*, 7aS*)-dimethyl 5-(4-isopropylphenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2f).

![Structure of 2f](image)

The reaction of aziridine 1f (172.8 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃(10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 2f (165.1 mg) in 80% yield, white solid. m.p.161-163 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (d, J = 7.6 Hz, 2 H), 6.91 (t, J = 8.4 Hz, 4 H), 6.76 (d, J = 7.6 Hz, 2 H), 5.34 (d, J = 8.8 Hz, 1 H), 4.01- 4.08 (m, 1 H), 3.95 (s, 6 H), 3.86 (d, J = 11.6 Hz, 1 H), 3.31 (t, J = 12.4 Hz, 1 H), 2.68-2.82 (m, 2 H), 2.25 (s, 3 H), 1.73 (d, J = 12.4 Hz, 1 H), 1.52-1.65 (m, 1 H), 1.44 (d, J = 13.6 Hz, 1 H), 1.16 (d, J = 6.8 Hz, 6 H), 0.62-0.72(m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.0, 167.0, 147.7, 142.6, 137.3, 134.2, 128.2, 128.1, 126.7, 125.9, 84.1, 75.3, 69.2, 64.8, 53.5, 43.3, 33.6, 25.0, 24.7, 24.0, 23.8, 21.3 ppm; IR (neat) ν/cm⁻¹ 2987, 2925, 2868, 1758, 1598, 1435, 1295, 1196, 1038, 940; MS (EI, 70 eV) m/z (%): 515 [M⁺] (0.43), 91 (100), HRMS calcd for C_{27}H_{33}NO_{7}S: 515.1978, found: 515.1976.

7. (4aR*, 5R*, 7aS*)-dimethyl 5-(2-bromophenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2g).
The reaction of aziridine 1g (187.2 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 10 mol % Y(OTf)₃ (21.4 mg, 0.04 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 2g (150.4 mg) in 68% yield, white solid. m.p. 188-190 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.33-7.42 (m, 3 H), 6.82-6.91 (m, 4 H), 6.74-6.82 (m, 1 H), 5.75 (d, J = 8.8 Hz, 1 H), 3.92-3.95 (m, 1 H), 3.91 (s, 3 H), 3.86 (s, 3 H), 3.78 (d, J = 11.6 Hz, 1 H), 3.22 (t, J = 12.0 Hz, 1 H), 2.63-2.76 (m, 1 H), 2.18 (s, 3 H), 1.99 (d, J = 12.8 Hz, 1 H), 1.43-1.59 (m, 1 H), 1.34 (d, J = 13.6 Hz, 1 H), 0.51-0.65 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.0, 166.6, 143.1, 136.6, 136.2, 132.5, 128.8, 128.44, 128.39, 128.0, 127.1, 122.5, 83.8, 75.3, 69.2, 63.7, 53.6, 53.4, 43.3, 24.4, 24.3, 21.2 ppm; IR (neat) ν/cm⁻¹. 2952, 2873, 2852, 1766, 1738, 1664, 1597, 1339, 1265, 1089, 988, 932; MS (EI, 70 eV) m/z (%): 551 [M⁺] (0.02), 91 (100); HRMS calcd for C₂₄H₂₆BrNO₇S: 551.0613, found: 551.0611.

8. (4aR*, 5R*, 7aS*)-dimethyl 5-m-tolyl-6-tosylhexahydropyrano-[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2h).

The reaction of aziridine 1h (161.2 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol %
Y(OTf)$_3$ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 2h (154.2 mg) in 76 % yield, white solid. m.p. 198-200 °C, 1H NMR (400 MHz, CDCl$_3$): δ = 7.45 (d, J = 7.6 Hz, 2 H), 6.97 (t, J = 8.0 Hz, 3 H), 6.89 (d, J = 7.2 Hz, 1 H), 6.67 (d, J = 7.6 Hz, 1 H), 6.62 (s, 1 H), 5.35 (d, J = 8.8 Hz, 1 H), 4.02 (dd, J = 12.0, 4.4 Hz, 1 H), 3.95 (s, 6 H), 3.82 (d, J = 11.6 Hz, 1 H), 3.30 (t, J = 12.0 Hz, 1 H), 2.75 (dd, J = 20.8, 9.6 Hz, 1 H), 2.27 (s, 3 H), 2.10 (s, 3 H), 1.75 (d, J = 12.8 Hz, 1 H), 1.53 - 1.69 (m, 1 H), 1.45 (d, J = 13.6 Hz, 1 H), 0.58- 0.71 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ = 168.9, 166.9, 142.8, 137.4, 137.2, 136.6, 128.2, 128.1, 127.8, 127.6, 127.4, 123.8, 84.0, 75.3, 69.1, 64.8, 53.4, 53.4, 43.1, 25.1, 24.7, 21.2, 21.1 ppm; IR (neat) ν/cm$^{-1}$. 2961, 2921, 2852, 1748, 1599, 1492, 1456, 1432, 1352, 1260, 1162; MS (EI, 70 eV) m/z (%): 487 [M$^+$] (0.66), 91 (100); HRMS calcd for C$_{25}$H$_{29}$NO$_7$S: 487.1665, found: 487.1663.

9. (4aR*, 5R*, 7aS*)-diethyl 5-phenyl-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (1i).

The reaction of aziridine 1i (166.8 mg, 0.4 mmol), 3,4-dihydro-$2H$-pyran (73µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)$_3$ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 2i (170.1 mg) in 82% yield, white solid. m.p. 164-166 °C, 1H NMR (400 MHz, CDCl$_3$): δ = 7.46 (d, J = 7.6 Hz, 2 H), 7.02-7.14 (m, 3 H), 6.95 (d, J = 7.6 Hz, 2 H), 6.90 (d, J = 7.2 Hz, 2 H), 5.35 (d, J = 8.8 Hz, 1 H), 4.32-4.53 (m, 4 H), 3.97- 4.06 (m, 1 H), 3.83 (d, J = 11.6 Hz, 1
H), 3.27 (t, $J = 12.0$ Hz, 1 H), 2.69-2.81 (m, 1 H), 2.26 (s, 3 H), 1.72 (t, $J = 12.8$ Hz, 1 H), 1.51-1.62 (m, 1 H), 1.32-1.48 (m, 7 H), 0.55-0.68 (m, 1 H); 13C NMR (400 MHz, CDCl$_3$): δ = 168.4, 166.3, 142.8, 137.4, 137.1, 128.3, 128.1, 127.9, 126.9, 126.7, 84.0, 75.3, 69.0, 64.9, 62.5, 62.4, 43.2, 25.2, 24.8, 21.3, 14.03, 14.00 ppm; IR (neat) ν/cm$^{-1}$ 2980, 2929, 2853, 1762, 1676, 1597, 1494, 1242, 1094, 1030. m/z (%): 501[M$^+$] (0.02), 91 (100); HRMS calcd for C$_{26}$H$_{31}$NO$_7$S: 501.1821, found: 501.1818.

10. (4aR*, 5R*, 7aS*)-diisopropyl 5-phenyl-6-tosylhexahydropyrano [3,2-c]pyrrole-7,7(7aH)-dicarboxylate (1j).

The reaction of aziridine 1j (178.4 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)$_3$ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 2j (181.1 mg) in 85% yield, white solid. m.p. 161-163$^\circ$C, 1H NMR (400 MHz, CDCl$_3$): δ = 7.52 (d, $J = 7.6$ Hz, 2 H), 7.00-7.12 (m, 3 H), 6.94 (d, $J = 7.6$ Hz, 2 H), 6.89 (d, $J = 6.8$ Hz, 2 H), 5.22-5.34 (m, 3 H), 4.00 (d, $J = 7.6$ Hz, 1 H), 3.77 (d, $J = 11.6$ Hz, 1 H), 3.24 (t, $J = 12.0$ Hz, 1 H), 2.69-2.81 (m, 1 H), 2.25 (s, 3 H), 1.74 (d, $J = 12.4$ Hz, 1 H), 1.48-1.62 (m, 1 H), 1.36-1.48 (m, 10 H), 1.34 (d, $J = 6.4$ Hz, 3 H), 0.53-0.68 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ = 168.0, 165.7, 142.7, 137.4, 137.1, 128.3, 128.2, 127.8, 126.8, 126.6, 84.1, 75.4, 70.3, 70.1, 68.9, 64.7, 43.2, 25.2, 24.9, 21.7, 21.60, 21.58, 21.5, 21.3 ppm. IR (neat) ν/cm$^{-1}$. 2987, 2958, 2868, 1758, 1738, 1598, 1513, 1435, 1383, 1346,
11. (4aR*, 5R*, 7aS*)-diisopropyl 5-(4-isopropylphenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2k).

![Diagram of 2k]

The reaction of aziridine 1k (195.2 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 2k (184.9 mg) in 81% yield, colorless oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (d, J = 8.0 Hz, 2 H), 6.90 (d, J = 8.0 Hz, 2 H), 6.87 (d, J = 8.0 Hz, 2 H), 6.78 (d, J = 8.0 Hz, 2 H), 5.20-5.32 (m, 3 H), 4.00 (d, J = 8.0 Hz, 1 H), 3.82 (d, J = 11.6 Hz, 1 H), 3.26 (t, J = 12.0 Hz, 1 H), 2.64-2.82 (m, 2 H), 2.23 (s, 3 H), 1.71 (d, J = 12.4 Hz, 1 H), 1.48-1.61 (m, 1 H), 1.29-1.48 (m, 13 H), 1.15 (d, J = 6.8 Hz, 6 H), 0.60-0.72 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.9, 165.6, 147.3, 142.2, 137.4, 134.2, 128.0, 126.6, 125.6, 84.2, 77.2, 75.2, 70.1, 69.9, 68.8, 64.5, 43.2, 33.4, 25.0, 24.8, 23.9, 23.7, 21.6, 21.5, 21.5, 21.4, 21.1 ppm. IR (neat) ν/cm⁻¹: 2982, 2959, 2940, 2868, 1745, 1598, 1514, 1467, 1453, 1374, 1336, 1270, 1237, 1165, 1115, 1031; MS (EI, 70 eV) m/z (%): 571 [M⁺] (0.05), 43(100), HRMS calcd for C₃₂H₄₁NO₇S: 571.2604, found: 571.2606.

12. dimethyl 6-(4-nitrophenylsulfonyl)-5-p-tolylhexahydropyrano[2,3-c]pyrrole-7,7(7aH)-dicarboxylate (2l).
The reaction of aziridine 1l (172.6 mg, 0.4 mmol), 3,4-dihydro-2\(H\)-pyran (73 \(\mu\)L, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol \% Y(OTf)\(_3\) (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford 2l (167 mg) in 80\% yield, colorless oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.39\) (d, \(J = 8.0\) Hz, 2 H), 6.89 (d, \(J = 8.0\) Hz, 2 H), 6.80 (d, \(J = 7.2\) Hz, 2 H), 6.72 (d, \(J = 7.2\) Hz, 2 H), 5.21 (d, \(J = 8.4\) Hz, 1 H), 4.23-4.44 (m, 4 H), 3.94 (d, \(J = 10.0\) Hz, 1 H), 3.76 (d, \(J = 11.2\) Hz, 1 H), 3.20 (t, \(J = 12.0\) Hz, 1 H), 2.57-2.69 (m, 1 H), 2.20 (s, 3 H), 2.17 (s, 3 H), 1.64 (d, \(J = 12.8\) Hz, 1 H), 1.40-1.58 (m, 1 H), 1.23-1.40 (m, 7 H), 0.48-0.62 (m, 1 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 168.3, 166.3, 142.6, 137.3, 136.5, 133.9, 128.4; 128.2, 128.0, 126.5, 84.0; 75.2, 68.9, 64.7, 62.4, 62.3, 43.1, 25.1, 24.7, 21.2, 20.8, 13.94, 13.90\) IR (neat) \(\nu/cm^{-1}\) 2988, 2950, 2871, 1745, 1599, 1514, 1440, 1344, 1287, 1272, 1221, 1163, 1113, 1084, 1037. MS (EI) m/z (%): 442 [M\(^+\)-CO\(_2\)Et] (1.94), 91 (100), HRMS calcd for C\(_{24}\)H\(_{28}\)NO\(_5\)S[M\(^+\)-CO\(_2\)Et]: 442.1688, found: 442.1687.

The synthesis of enantioenriched 2l of: 5 mol \% Y(OTf)\(_3\) (10.7 mg, 0.02 mmol) and 5 mol \% the Pybox 8 (2,6-bis[(3aR, 8aS)-(+)-8H-indeno[1,2-d]oxazolin-2-yl]pyridine) (7.9 mg ,0.02 mmol) stirred at r.t. for 2 h in DCM (1 mL). This catalyst solution was transferred to the mixture of aziridine 1l (172.6 mg, 0.4 mmol), 3,4-dihydro-2\(H\)-pyran (73 \(\mu\)L, 0.8 mmol), 150 mg of activated 4Å M.S. in DCM (4 mL). The reaction mixture was stirred at r.t. for 3 hs. After the routine workup, the reaction afforded 2l (156.5 mg) in 75 \% yield with 59\% ee. Enantiomeric excess
was determined by HPLC with a Chiralpak OD-H column (hexane: 2-propanol = 80:10, 0.8 mL/min, 220 nm); minor enantiomer tr = 8.1 min, major enantiomer tr = 16.4 min.

13. (3S*,5R*)-dimethyl 3-methoxy-3-methyl-5-phenyl-1-tosylpyrroli- dine-2,2-dicarboxylate (3a).

![Chemical Structure Image]

The reaction of aziridine 1a (155.7 mg, 0.4 mmol), 2-methoxyprop-1-ene (77 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford 3a (129.4 mg) in 70% yield, white solid. m.p. 147-149 °C.

1H NMR (400 MHz, CDCl₃): δ = 7.28 (d, $J = 7.6$ Hz, 2 H), 7.13 (d, $J = 7.2$ Hz, 2 H), 6.90-7.02 (m, 3 H), 6.86 (d, $J = 7.6$ Hz, 2 H), 5.48 (d, $J = 10.0$ Hz, 1 H), 3.85 (s, 3 H), 3.78 (s, 3 H), 2.68 (dd, $J = 14.0, 10.0$ Hz , 1 H), 2.57 (s, 3 H), 2.20 (s, 3 H), 2.15 (d, $J = 14.0$ Hz, 1 H), 1.28 (s, 3 H);

13C NMR (100 MHz, CDCl₃): δ = 168.7, 166.6, 142.7, 141.1, 137.5, 128.5, 128.0, 127.6, 127.4, 126.4, 88.8, 85.3, 63.6, 53.2, 52.5, 49.1, 40.4, 21.3, 17.4 ppm.; IR (neat) ν/cm⁻¹ 2987, 2957, 2927, 2827, 1751, 1730, 1492, 1414, 1334, 1154, 948. MS (EI, 70 eV) m/z (%): 462 [M⁺] (0.04), 91 (100), HRMS calcd for C$_{23}$H$_{27}$NO$_7$S: 461.1508, found: 461.1510.

The enantioenriched 3a was obtained in 60% yield with 57% ee. Enantiomeric excess was determined by HPLC with a Chiralpak ODH column (hexane: 2-propanol = 85:15, 0.8 mL/min, 220 nm); major enantiomer tr = 11.0 min, minor enantiomer tr = 13.9 min.
14. (3S*, 5R*)-dimethyl 3-methoxy-3-methyl-5-p-tolyl-1-tosylpyrrolidine-2,2-dicarboxylate (3b).

![3b](image)

The reaction of aziridine 1e (161.2 mg, 0.4 mmol), 2-methoxyprop-1-ene (77 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford 3b (131.4 mg) in 69% yield, white solid. m.p. 129-131 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.26 (d, J = 7.6 Hz, 2 H), 6.95 (d, J = 7.6 Hz, 2 H), 6.86 (d, J = 7.6 Hz, 2 H), 6.77 (d, J = 7.6 Hz, 2 H), 5.43 (d, J = 13.6 Hz, 1 H), 3.84 (s, 3 H), 3.77 (s, 3 H), 2.65 (dd, J = 13.6, 10.4 Hz, 1 H), 2.62 (s, 3 H), 2.21 (s, 3 H), 2.17 (s, 3 H), 2.13 (d, J = 13.6 Hz, 1 H), 1.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.8, 166.6, 142.5, 138.2, 137.6, 136.0, 128.5, 128.3, 127.9, 127.4, 88.7, 85.2, 63.5, 53.2, 52.4, 49.2, 40.4, 21.3, 20.9, 17.5 ppm; IR (neat) v/cm⁻¹ 2995, 2952, 2932, 2827, 1753, 1752, 1596, 1515, 1435, 1337, 1274, 1252, 1153, 1101, 1037; MS (EI, 70 eV) m/z (%): 475 [M⁺] (0.06), 91 (100); HRMS calcd for C₂₄H₂₉NO₇S: 475.1665, found: 475.1667.

15. (3S*, 5R*)-dimethyl 5-(4-bromophenyl)-3-methoxy-3-methyl-1-tosylpyrrolidine-2,2-dicarboxylate (3c).

![3c](image)

The reaction of aziridine 1c (187.3 mg, 0.4 mmol), 2-methoxyprop-1-ene (77 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg,
0.02 mmol) in DCM (4 mL) was carried out at r.t. for 3 h to afford 3c (146.8 mg) in 68% yield, white solid. m.p. 130-132 °C, 1H NMR (400 MHz, CDCl$_3$): δ = 7.43 (d, J = 7.2 Hz, 2 H), 7.13 (d, J = 7.2 Hz, 2 H), 6.99 (d, J = 8.0 Hz, 4 H), 5.48 (d, J = 10.4 Hz, 1 H), 3.92 (s, 3 H), 3.87 (s, 3 H), 2.76 (dd, J = 13.6, 10.4 Hz, 1 H), 2.65 (s, 3 H), 2.32 (s, 3 H), 2.18 (d, J = 13.6 Hz, 1 H), 1.35 (s, 3 H). 13C NMR (100MHz, CDCl$_3$): δ = 168.44, 166.49, 143.11, 140.30, 137.14, 130.49, 129.11, 128.54, 128.11, 120.19, 88.83, 85.19, 62.85, 53.23, 52.50, 49.13, 40.24, 21.30, 17.24 ppm. IR (neat) ν/cm$^{-1}$: 2961, 2923, 2852, 1752, 1731, 1596, 1488, 1459, 1435, 1412, 1333, 1196, 1153; MS (EI, 70 eV) m/z (%): 543 [M$^+$] (0.17), 91 (100); HRMS calcd for C$_{23}$H$_{26}$BrNO$_7$S: 541.0593, found: 541.0594.

16. Dimethyl 3-ethoxy-5-phenyl-1-tosylpyrrolidine-2,2-dicarboxylate (4)

![Image](image-url)

The reaction of aziridine 1a (155.7 mg, 0.4 mmol), vinyl ethyl ether (77 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)$_3$ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 4 (140.2 mg) in 80% yield, colorless oil, Major isomer: 1H NMR (400 MHz, CDCl$_3$): δ = 7.28 (d, J = 7.6 Hz, 2 H), 6.99-7.09 (m, 3 H), 6.94 (d, J = 7.2 Hz, 2 H), 6.89 (d, J = 7.6 Hz, 2 H), 5.30 (d, J = 9.6 Hz, 1 H), 4.53 (dd, J = 10.8, 6.8 Hz, 1 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 3.57-3.66 (m, 1 H), 3.32-3.42 (m, 1 H), 2.64 (q, J = 11.2 Hz, 1 H), 2.21 (s, 3 H), 2.06 (dd, J = 12.0, 6.8 Hz, 1H), 1.03 (t, J = 7.2 Hz, 3 H); 13C NMR
(100 MHz, CDCl₃): δ = 169.5, 167.0, 142.9, 141.1, 137.3, 128.4, 128.3, 127.9, 127.1, 126.3, 83.8, 76.6, 66.9, 62.1, 53.2, 52.9, 39.8, 21.3, 15.1 ppm.

Minor isomer ¹H NMR (400 MHz, CDCl₃): δ = 7.23 (d, J = 7.6 Hz, 2 H), 7.12 (d, J = 7.6 Hz, 2 H), 6.91-7.02 (m, 3 H), 6.84 (d, J = 8.0 Hz, 2 H), 5.35 (d, J = 9.2 Hz, 1 H), 4.21 (d, J = 4.8 Hz, 1 H), 3.85 (s, 3 H), 3.80 (s, 3 H), 3.25 (q, J = 6.8 Hz, 2 H), 2.80-2.89 (m, 1 H), 2.20 (s, 3 H), 2.00 (d, J = 13.6 Hz, 1 H), 0.87 (t, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 166.5, 142.6, 140.7, 137.6, 128.3, 128.1, 128.0, 127.6, 126.8, 85.0, 81.6, 65.3, 64.6, 53.4, 52.6, 39.2, 21.3, 14.8 ppm. IR (neat) ν/cm⁻¹ 2981, 2950, 2872, 1751, 1733, 1600, 1495, 1439, 1337, 1287, 1237, 1152, 1118, 104; MS (EI, 70 eV) m/z (%): 461 [M⁺] (0.01), 91 (100); HRMS calcd for C₂₃H₂₇NO₇S: 461.1508, found: 461.1507.

17. Dimethyl 3-(4-methoxyphenyl)-5-phenyl-1-tosylpyrrolidine-2,2-dicarboxylate (5).

![Chemical Structure](image)

5, (dr = 1.5:1)

The reaction of aziridine 1a (155.7 mg, 0.4 mmol), 1-methoxy-4-vinylbenzene (107.3 mg, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 3 h to afford 5 (146.0 mg) in 73% yield, colorless oil, minor isomer: ¹H NMR (400 MHz, CDCl₃): δ = 7.44 (d, J = 8.0 Hz, 2 H), 7.22-7.30 (m, 1 H), 6.96-7.18 (m, 8 H), 6.79 (d, J = 7.6 Hz, 2 H), 5.53 (d, J = 8.8 Hz, 1 H), 4.08 (dd, J = 14.0, 7.5 Hz, 1 H), 3.86 (s, 3 H), 3.74 (s, 3 H), 3.62 (s, 3 H), 3.22 (dd, J = 22.4, 13.2 Hz, 1 H), 2.28 (s, 3 H), 1.96 (dd, J
= 12, 6 Hz, 1 H); Major isomer: 1H NMR (400 MHz, CDCl$_3$): δ = 7.22-7.30 (m, 1 H), 6.96-7.18 (m, 8 H), 6.89 (d, J = 8.0 Hz, 2 H), 6.83 (d, J = 8.0 Hz, 2 H), 5.05 (dd, J = 10.4, 5.6 Hz, 1 H), 4.19 (dd, J = 13.2, 6.0 Hz, 1 H), 3.97 (s, 3 H), 3.76 (s, 3 H), 3.46 (s, 3 H), 2.41-2.60 (m, 3 H), 2.28 (s, 3 H); For two isomer: 13C NMR (100 MHz, CDCl$_3$): δ = 169.2, 169.0, 168.1, 167.6, 159.2, 159.1, 142.9, 142.3, 141.3, 137.9, 137.4, 137.2, 129.6, 129.0, 128.8, 128.3, 128.1, 128.04, 127.95, 127.8, 127.73, 127.65, 127.1, 126.8, 126.2, 126.0, 113.6, 113.4, 78.8, 78.3, 65.1, 63.2, 55.0, 54.9, 53.1, 52.8, 52.6, 52.6, 52.2, 51.0, 40.4, 39.0, 21.2 ppm; IR (neat) v/cm$^{-1}$ 2961, 2919, 2850, 1760, 1726, 1612, 1599, 1515, 1458, 1431, 1338, 1258, 1215, 1182, 1137, 1095, 1033; MS (EI, 70 eV) m/z (%): 523 [M$^+$] (1.07), 91 (100), HRMS calcd for C$_{28}$H$_{29}$NO$_7$S: 523.1665, found: 523.1668.

18. (4aR*,5R*,7aS*)-dimethyl 6-(4-nitrophenylsulfonyl)-5-phenyl hexa-hydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (7).

The reaction of aziridine 6 (173.6 mg, 0.4 mmol), 3,4-dihydro-2H-pyran (73 μL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)$_3$ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford 7 (176.3 mg) in 85% yield, white solid. m.p.233-235 °C, 1H NMR (400 MHz, CDCl$_3$): δ = 7.97 (d, J = 8.0 Hz, 2 H), 7.72 (d, J = 8.0 Hz, 2 H), 7.04-7.18 (m, 3 H), 6.77-6.88 (m, 2 H), 5.55 (d, J = 8.8 Hz, 1 H), 4.02-4.10 (m, 1 H), 3.97 (s, 6 H), 3.82 (d, J = 11.2 Hz, 1 H), 3.31 (t, J = 12.0 Hz, 1 H), 2.79-2.90 (m, 1 H), 1.77 (d, J = 12.4 Hz, 1 H), 1.58-1.69 (m, 1 H), 1.47 (d, J = 15.2 Hz, 1 H), 0.57-0.70 (m, 1 H); 13C NMR
(100 MHz, CDCl₃): δ = 168.9, 166.7, 149.4, 145.6, 136.3, 129.6, 128.3, 127.7, 126.7, 122.8, 83.9, 75.9, 69.3, 65.5, 53.9, 53.8, 43.4, 25.0, 24.6 ppm. IR (neat) ν/cm⁻¹ 2949, 2920, 2868, 2851, 1754, 1741, 1690, 1604, 1526, 1436, 1349, 1252, 1164, 1148, 1120, 1090, 157, 1021. MS (EI) m/z (%): 445 [M⁺- 59] (100), 445 (100).
The structure of 2a:

The structure of 3a:
Racemic 3a

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width [min]</th>
<th>Area [mAU]</th>
<th>Height [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.046 BB</td>
<td>1.41507e4</td>
<td>506.13061</td>
</tr>
<tr>
<td>2</td>
<td>13.922 BB</td>
<td>1.41526e4</td>
<td>358.62939</td>
</tr>
</tbody>
</table>

Totals:

| | 2.83033e4 | 864.76801 |

Enantioenriched 3a

<table>
<thead>
<tr>
<th>Peak RetTime Type</th>
<th>Width [min]</th>
<th>Area [mAU]</th>
<th>Height [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.817 BV</td>
<td>2435.54419</td>
<td>63.18680</td>
</tr>
<tr>
<td>2</td>
<td>15.744 VB</td>
<td>660.27539</td>
<td>12.18184</td>
</tr>
</tbody>
</table>

Totals:

| | 3103.81958 | 75.36864 |
Racemic 21

Peak RetTime Type Width Area Height Area
[min] [min] mA U 's [mA U] %

1 8.295 VB 0.3520 1.66929e4 723.96313 51.3134
2 16.257 VB 0.9612 1.58384e4 246.26886 40.6066

Totals : 3.25313e4 972.23199

Enantioenriched 21

Peak RetTime Type Width Area Height Area
[min] [min] mA U 's [mA U] %

1 8.128 BB 0.3681 1.446.96594 59.20626 20.5098
2 16.434 BB 1.0586 5608.03955 80.23457 79.4902

Totals : 7055.00549 139.44062
Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011.
6 (dr = 1.3:1)
Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2011

Chemical structure of compound 6 (dr = 1.3:1)