Supporting Information

for

PdCl₂-Catalyzed Efficient Allylation and Benzylation of Heteroarenes under Ligand, Base/Acid, and Additive-Free Conditions

Feng-Quan Yuan,a,b Lian-Xun Gao,a Fu-She Han*a,c

a Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; b Graduate School of Chinese Academy of Sciences, Beijing 100864, China; c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

Table of Contents:

Experiment Part – General Information ...S2

Preparation and characterization of compound 2, 4, and 6.........................S2-S4

Coupling reaction and product characterization.................................S4-S15

References...S15

Spectra of compound 2, 4, and 6...S16-S18

Spectra of coupling products...S19-S43
Experimental Section

General Information
All solvents were purified and dried according to standard methods prior to use. Reagents and catalysts were purchased from J&K Chemical Ltd or Alfa Aesar, and were used without further purification. Unless otherwise noted, the 1H-NMR spectra were recorded at 400 or 600 MHz in CDCl$_3$ and the 13C-NMR spectra were recorded at 100 or 150 MHz in CDCl$_3$ with TMS as internal standard. All shifts are given in ppm. All coupling constants (J values) were reported in Hertz (Hz). Column chromatography was performed on silica gel 100 mesh. Melting points are uncorrected and were obtained on a Laboratory Devices Mel-Temp II instrument.

General procedure for the preparation of allylic acetate 2:

Acetophenone (1.2 mL, 10.4 mmol) and benzaldehyde (0.95 mL, 9.4 mmol) were added to a solution of 10% NaOH (8 mL) and methanol (3 mL) at 5 to 10°C and stirred for additional 4 h at 25°C. The precipitate thus formed was collected by filtration and washed with water. The crude product was further purified by flash column chromatography on silica gel with ethyl acetate and petroleum as eluent (v/v =1:5) to give chalcone A as a light yellow solid (1.6 g, 82%). 1H-NMR (600 MHz, CDCl$_3$) δ 8.02 (d, J = 7.4 Hz, 2H), 7.82 (d, J = 15.7 Hz, 1H), 7.65 (dd, J = 6.4, 2.8 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.55 – 7.46 (m, 3H), 7.42 (dd, J = 4.9, 1.7 Hz, 3H).

Synthesis of (E)-chalcone (A)1a

[Diagram of reaction]

This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011
Spectral data match those previously reported.1b

Synthesis of (E)-1, 3-diphenylprop-2-en-1-ol (B)2a

To a 5 mL THF solution of A (100mg, 0.48mmol) was added LAH (91 mg, 2.4 mmol) under stirring at -10 °C. LAH was added at such a rate that the solution temperature did not rise above -7 °C. The reaction mixture was then stirred until the starting material had disappeared as monitored by TLC. Water was then added dropwise to quench the reaction. THF was removed under reduced pressure, and the residue was extracted with dichloromethane (3 × 20 mL). The combined organic layers was dried over MgSO\textsubscript{4}, filtered, concentrated, and purified by column chromatography on silica gel with ethyl acetate and petroleum (v/v = 1:5) as eluent to give B as a white solid (90 mg, 90%). 1H-NMR (400 MHz, CDCl\textsubscript{3}) δ 7.42 (d, \(J = 7.5 \) Hz, 2H), 7.36 (t, \(J = 7.8 \) Hz, 4H), 7.33 – 7.26 (m, 3H), 7.22 (dd, \(J = 8.5, 5.8 \) Hz, 1H), 6.67 (d, \(J = 15.9 \) Hz, 1H), 6.37 (dd, \(J = 15.9, 6.5 \) Hz, 1H), 5.37 (d, \(J = 6.5 \) Hz, 1H), 2.12 (brs, 1H). Spectral data match those previously reported.2b

Synthesis of (E)-1, 3-diphenylallyl acetate (2)3

DMAP (5.8 mg, 0.048 mmol) was added to a 3 mL DCM solution of B (100 mg, 0.48 mmol), Et\textsubscript{3}N (1 mL, 1.2 mmol), and acetic anhydride (1 mL, 1.2 mmol). The reaction mixture was stirred at room temperature until B had disappeared as monitored by TLC. Ethyl acetate (30 mL) was added and the mixture was washed with water (3 × 30 mL). The organic layer was dried over MgSO\textsubscript{4}, filtered, concentrated, and purified by column chromatography on silica gel with ethyl acetate and petroleum (v/v = 1:5) as eluent to give 2 as colourless oil (110 mg, 91%). 1H-NMR (600 MHz, CDCl\textsubscript{3}) δ 7.45 – 7.34 (m, 6H), 7.31 (dd, \(J = 15.6, 7.8 \) Hz, 3H), 7.28 – 7.22 (m, 1H), 6.63 (d, \(J = 15.8 \) Hz, 1H), 6.44 (d, \(J = 6.9 \) Hz, 1H), 6.35 (dd, \(J = 15.8, 6.8 \) Hz, 1H), 2.14 (s, 3H). Spectral data match those previously reported.3

Following the similar procedures, allylic acetates 4 and 6 were also synthesized in high yield and purity.

Spectra data of Benzhydryl acetate (4):
Colorless oil: 1H-NMR (400 MHz, CDCl$_3$) δ 7.34 (d, $J = 4.2$ Hz, 7H), 7.32 – 7.26 (m, 3H) 6.88 (s, 1H), 2.16 (s, 3H). Spectral data match those previously reported.5

Spectra data of (E)-4-Phenylbut-3-en-2-yl acetate (6):

Colorless oil: 1H-NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.36 (m, 2H), 7.32 (dd, $J = 10.0$, 4.8 Hz, 2H), 7.24 (dd, $J = 6.0$, 3.5 Hz, 1H), 6.60 (d, $J = 16.0$ Hz, 1H), 6.19 (dd, $J = 6.7$ Hz, 1H), 5.59 – 5.44 (m, 1H), 2.07 (s, 3H), 1.41 (d, $J = 6.5$ Hz, 3H). Spectral data match those previously reported.3

General procedure for the coupling of heteroarenes and allylic acetates (taking the reaction of 2 and furan 1a as a representative example):

A solution of allylic acetate 2 (100 mg, 0.4 mmol), PdCl$_2$ (1.4 mg, 2 mol %), and furan 1a (0.13 mL, 1.98 mmol) in DCM (1.5 mL) was stirred in a sealed tube under reflux for 2 h. After completion of the reaction (monitored by TLC), the mixture was concentrated to a small volume, and was isolated by column chromatography on silica gel with dichloromethane and petroleum (v/v = 1:5) as eluent to give C-2 allylated product 3a as a single isomer (74 mg, 72%).

Note: 1.0 equivalent of heteroarenes were used except for the volatile furan, 2-methylfuran, pyrrole, and thiophene.

(E)-2-(1,3-Diphenylallyl)furan (3a):

1H-NMR (400 MHz, CDCl$_3$): δ 7.37 (d, $J = 7.0$ Hz, 3H), 7.32 (d, $J = 7.3$ Hz, 2H),
7.30–7.24 (m, 5H), 7.24–7.18 (m, 1H), 6.57 (dd, \(J = 15.8, 7.4 \text{ Hz}, 1\text{H} \)), 6.40 (d, \(J = 15.8 \text{ Hz}, 1\text{H} \)), 6.33 (dd, \(J = 3.0, 1.9 \text{ Hz}, 1\text{H} \)), 6.10 (d, \(J = 3.0 \text{ Hz}, 1\text{H} \)), 4.90 (d, \(J = 7.4 \text{ Hz}, 1\text{H} \)). \(^{13}\text{C-NMR} (150 \text{ MHz, CDCl}_3): \delta 156.10, 141.82, 141.12, 137.01, 131.59, 129.74, 128.56, 128.47, 128.21, 127.43, 126.86, 126.36, 110.13, 106.74, 48.33.

\((E)-2-(1,3\text{-Diphenylallyl})-5\text{-methylfuran (3b):}\)

\(^{1}\text{H-NMR} (400 \text{ MHz, CDCl}_3): \delta 7.39–7.34 (m, 2H), 7.32 (d, \(J = 7.4 \text{ Hz}, 2\text{H} \)), 7.30–7.26 (m, 2H), 7.26–7.18 (m, 4H), 6.56 (dd, \(J = 15.8, 7.4 \text{ Hz}, 1\text{H} \)), 6.39 (d, \(J = 15.8 \text{ Hz}, 1\text{H} \)), 5.95 (d, \(J = 3.0 \text{ Hz}, 1\text{H} \)), 5.90 (d, \(J = 3.0 \text{ Hz}, 1\text{H} \)), 4.84 (d, \(J = 7.4 \text{ Hz}, 1\text{H} \)), 2.26 (s, 3H). \(^{13}\text{C-NMR} (100 \text{ MHz, CDCl}_3): \delta 154.23, 151.41, 141.43, 137.16, 131.35, 130.14, 128.50, 128.47, 128.25, 127.35, 126.74, 126.36, 107.43, 105.97, 48.40, 13.59. Spectral data match those previously reported.\(^6\)

\((E)-2-(1,3\text{-Diphenylallyl})\text{benzofuran (3c):}\)

\(^{1}\text{H-NMR} (400 \text{ MHz, CDCl}_3): \delta 7.50 (dd, \(J = 6.9, 1.7 \text{ Hz}, 1\text{H} \)), 7.43–7.38 (m, 3H), 7.36–7.31 (m, 4H), 7.31–7.27 (m, 2H), 7.26–7.16 (m, 4H), 6.65 (dd, \(J = 15.8, 7.4 \text{ Hz}, 1\text{H} \)), 6.48 (d, \(J = 14.3 \text{ Hz}, 2\text{H} \)), 5.03 (d, \(J = 7.4 \text{ Hz}, 1\text{H} \)). \(^{13}\text{C-NMR} (100 \text{ MHz, CDCl}_3): \delta 159.27, 155.03, 140.42, 136.87, 132.22, 129.01, 128.68, 128.53, 128.43, 128.36, 127.59, 127.11, 126.42, 123.64, 122.59, 120.60, 111.11, 103.96, 48.70. Spectral data match those previously reported.\(^6\)

\((E)-2-(1,3\text{-Diphenylallyl})\text{-1H-pyrrole (3d):}\)
1H-NMR (400 MHz, CDCl3): δ 7.87 (br s, 1H), 7.37 (d, J = 7.4 Hz, 2H), 7.35–7.31 (m, 2H), 7.29 (d, J = 7.3 Hz, 4H), 7.25–7.18 (m, 2H), 6.72 (s, 1H), 6.59 (dd, J = 15.8, 7.6 Hz, 1H), 6.43 (d, J = 15.8 Hz, 1H), 6.17 (d, J = 2.6 Hz, 1H), 5.97 (s, 1H), 4.87 (d, J = 7.6 Hz, 1H). 13C-NMR (100 MHz, CDCl3): δ 142.11, 137.01, 133.00, 131.24, 131.10, 128.68, 128.51, 128.39, 127.43, 126.88, 126.34, 117.19, 108.40, 106.73, 48.07. Spectral data match those previously reported.6

(E)-3-(1, 3-Diphenylallyl)-1H-indole (3e):

1H-NMR (400 MHz, CDCl3): δ 7.99 (br s, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.35 (dd, J = 13.8, 6.1 Hz, 5H), 7.32–7.27 (m, 3H), 7.25–7.13 (m, 4H), 7.02 (t, J = 7.4 Hz, 1H), 6.91 (d, J = 1.5 Hz, 1H), 6.73 (dd, J = 15.8, 7.4 Hz, 1H), 6.44 (d, J = 15.8 Hz, 1H), 5.12 (d, J = 7.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3): δ 143.35, 137.46, 136.61, 132.51, 130.53, 128.45, 128.40, 127.13, 126.77, 126.35, 126.29, 122.57, 122.06, 119.84, 119.40, 118.63, 111.07, 46.15. Spectral data match those previously reported.7

(E)-3-(1, 3-Diphenylallyl)-1-methyl-1H-indole (3f):

1H-NMR (400 MHz, CDCl3): δ 7.42 (d, J = 7.9 Hz, 1H), 7.35 (dd, J = 14.3, 6.1 Hz, 3H), 7.32–7.27 (m, 3H), 7.27–7.16 (m, 6H), 7.01 (t, J = 7.5 Hz, 1H), 6.75 (s, 1H), 6.73 (dd, J = 15.8, 7.2 Hz 2H), 6.44 (d, J = 15.8 Hz, 1H), 5.11 (d, J = 7.2 Hz, 1H),
3.74 (s, 3H). 13C-NMR (100 MHz, CDCl$_3$): δ 143.54, 137.52, 137.40, 132.70, 130.41, 128.45, 128.39, 127.34, 127.20, 127.10, 126.30, 121.61, 119.93, 118.86, 117.08, 109.15, 46.15, 32.66. Spectral data match those previously reported.7

(E)-1-Butyl-3-(1, 3-diphenylallyl)-1H-indole (3g):

![Chemical Structure](image)

1H-NMR (600 MHz, CDCl$_3$): δ 7.38 (dd, $J = 16.5, 7.7$ Hz, 3H), 7.35 – 7.26 (m, 7H), 7.20 (ddd, $J = 21.7, 14.7, 7.3$ Hz, 3H), 6.99 (t, $J = 7.4$ Hz, 1H), 6.80 (s, 1H), 6.72 (dd, $J = 15.8, 7.4$ Hz, 1H), 6.43 (d, $J = 15.8$ Hz, 1H), 5.11 (d, $J = 7.4$ Hz, 1H), 4.06 (t, $J = 7.2$ Hz, 2H), 1.89–1.73 (m, 2H), 1.41–1.26 (m, 2H), 0.93 (t, $J = 7.4$ Hz, 3H).

13C-NMR (150 MHz, CDCl$_3$): δ 143.57, 137.55, 136.69, 132.81, 130.35, 128.47, 128.44, 128.35, 127.27, 127.08, 126.29, 121.40, 119.99, 118.72, 116.87, 109.35, 46.21, 46.05, 32.35, 20.21, 13.70.

(E)-Tert-butyl 3-(1, 3-diphenylallyl)-1H-indole-1-carboxylate (3h):

![Chemical Structure](image)

1H-NMR (400 MHz, CDCl$_3$): δ 8.10 (d, $J = 6.6$ Hz, 1H), 7.36 (t, $J = 5.1$ Hz, 3H), 7.34–7.30 (m, 4H), 7.30–7.25 (m, 4H), 7.21 (dd, $J = 13.1, 5.5$ Hz, 2H), 7.12 (t, $J = 7.5$ Hz, 1H), 6.68 (dd, $J = 15.8, 7.4$ Hz, 1H), 6.43 (d, $J = 15.8$ Hz, 1H), 5.03 (d, $J = 7.4$ Hz, 1H), 1.66 (s, 9H). 13C-NMR (100 MHz, CDCl$_3$): δ 149.83, 142.05, 137.16, 135.77, 131.26, 131.16, 129.84, 128.53, 128.45, 128.37, 127.31, 126.66, 126.33, 124.30, 123.74, 122.99, 122.39, 120.06, 115.21, 83.59, 45.90, 28.15.
(E)-2-(1, 3-Diphenylallyl)thiophene (3i):

\[
\begin{align*}
\text{S} & \quad \text{S} \\
\text{\includegraphics[width=0.2\textwidth]{structure1.png}} & \quad \text{\includegraphics[width=0.2\textwidth]{structure2.png}}
\end{align*}
\]

\({^1}H\)-NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.40 (t, \(J = 6.1\) Hz, 2H), 7.35 (dd, \(J = 8.9, 7.1\) Hz, 4H), 7.32–7.25 (m, 4H), 7.24 (d, \(J = 5.1\) Hz, 1H), 6.99 (dd, \(J = 5.1, 3.5\) Hz, 1H), 6.85 (d, \(J = 3.5\) Hz, 1H), 6.68 (dd, \(J = 15.8, 7.6\) Hz, 1H), 6.48 (d, \(J = 15.8\) Hz, 1H), 5.10 (d, \(J = 7.6\) Hz, 1H). \(^{13}\)C-NMR (150 MHz, CDCl\(_3\)): \(\delta\) 147.60, 143.15, 136.99, 131.93, 131.27, 128.59, 128.52, 128.47, 126.88, 126.74, 126.41, 125.07, 124.34, 49.72.

(E)-2-(1, 3-Diphenylallyl)-5-methylthiophene (3j):

\[
\begin{align*}
\text{S} & \quad \text{S} \\
\text{\includegraphics[width=0.2\textwidth]{structure3.png}} & \quad \text{\includegraphics[width=0.2\textwidth]{structure4.png}}
\end{align*}
\]

\({^1}H\)-NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.37 (t, \(J = 6.5\) Hz, 2H), 7.31 (dd, \(J = 10.7, 4.8\) Hz, 5H), 7.28–7.24 (m, 2H), 7.24–7.18 (m, 1H), 6.65–6.56 (m, 3H), 6.44 (d, \(J = 15.8\) Hz, 1H), 4.98 (d, \(J = 7.6\) Hz, 1H), 2.42 (s, 3H). \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)) \(\delta\) 145.11, 143.24, 138.85, 137.07, 132.03, 131.09, 128.53, 128.49, 128.19, 127.39, 126.80, 126.39, 124.80, 124.70, 49.86, 15.30.

(E)-2-(1,3-Diphenylallyl)benzo[b]thiophene(3k)
3k: 1H NMR (400 MHz, CDCl$_3$): δ 7.85 (d, J = 7.5 Hz, 1H), 7.63 (d, J = 7.5 Hz, 1H), 7.37–7.23 (m, 12H), 7.13 (s, 1H), 6.72 (dd, J = 15.8, 7.4 Hz, 1H), 6.36 (d, J = 15.8 Hz, 1H), 5.21 (d, J = 7.4 Hz, 1H).

2-Benzhydrylfuran (5a):

![2-Benzhydrylfuran (5a)](image)

1H-NMR (400 MHz, CDCl$_3$): δ 7.38 (d, J = 1.0, 1H), 7.30 (t, J = 8.0, 4H), 7.25–7.23 (m, 2H), 7.17 (d, J = 8.0, 4H), 6.31 (dd, J = 3.2, 2.0 Hz, 1H), 5.91 (d, J = 3.2 Hz, 1H), 5.45 (s, 1H). 13C-NMR (100 MHz, CDCl$_3$): δ 156.69, 141.90, 141.78, 128.73, 128.42, 126.72, 110.06, 108.28, 50.87.

2-Benzhydryl-5-methylfuran (5b):

![2-Benzhydryl-5-methylfuran (5b)](image)

1H-NMR (400 MHz, CDCl$_3$): δ 7.32–7.26 (m, 4H), 7.24–7.19 (m, 2H), 7.17 (m, 4H), 5.88 (d, J = 3.0 Hz, 1H), 5.75 (d, J = 3.0 Hz, 1H), 5.39 (s, 1H), 2.25 (s, 3H). 13C-NMR (100 MHz, CDCl$_3$): δ 154.81, 151.48, 142.07, 128.77, 128.35, 126.59, 109.06, 105.91, 50.95, 13.62. Spectral data match those previously reported.6

2-Benzhydrylbenzofuran (5c):

![2-Benzhydrylbenzofuran (5c)](image)

1H-NMR (400 MHz, CDCl$_3$): δ 7.46 (dd, J = 7.7, 0.8 Hz, 1H), 7.41 (d, J = 8.1 Hz,
1H), 7.36–7.27 (m, 4H), 7.27–7.21 (m, 7H), 7.21–7.15 (m, 1H), 6.27 (s, 1H), 5.58 (s, 1H). 13C-NMR (100 MHz, CDCl$_3$): δ 159.89, 155.10, 141.00, 128.88, 128.55, 126.97, 123.72, 122.60, 120.62, 111.14, 105.63, 51.32. Spectral data match those previously reported.6

3-Benzhydryl-1H-indole (5d):

![3-Benzhydryl-1H-indole (5d)]

1H-NMR (400 MHz, CDCl$_3$): δ 7.94 (br s, 1H), 7.35 (d, $J = 8.0$ Hz, 1H), 7.30–7.18 (m, 11H), 7.15 (d, $J = 8.0$ Hz, 1H), 6.99 (t, $J = 7.6$ Hz, 1H), 6.56 (s, 1H), 5.67 (s, 1H). 13C-NMR (100 MHz, CDCl$_3$): δ 143.91, 136.62, 128.97, 128.24, 126.93, 126.19, 124.03, 122.04, 119.86, 119.34, 111.02, 48.77. Spectral data match those previously reported.8

3-Benzhydryl-1-methyl-1H-indole (5e):

![3-Benzhydryl-1-methyl-1H-indole (5e)]

1H-NMR (400 MHz, CDCl$_3$): δ 7.30–7.17 (m, 13H), 6.99 (t, $J = 7.6$ Hz, 1H), 6.41 (s, 1H), 5.66 (s, 1H), 3.70 (s, 3H). 13C-NMR (100 MHz, CDCl$_3$): δ 144.09, 137.42, 128.98, 128.69, 128.23, 127.35, 126.14, 121.60, 119.96, 118.80, 118.25, 109.08, 48.77, 32.61. Spectral data match those previously reported.8

3-Benzhydryl-1-butyl-1H-indole (5f):

![3-Benzhydryl-1-butyl-1H-indole (5f)]
1H-NMR (400 MHz, CDCl3): δ 7.31–7.26 (m, 3H), 7.26–7.14 (m, 10H), 6.96 (t, J = 7.4 Hz, 1H), 6.45 (s, 1H), 5.66 (s, 1H), 4.02 (t, J = 7.2 Hz, 2H), 1.77–1.73 (m, 2H), 1.33–1.28 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). 13C-NMR (100 MHz, CDCl3): δ 144.16, 136.72, 129.00, 128.22, 127.71, 126.11, 121.41, 120.04, 118.68, 118.13, 109.30, 48.80, 46.03, 32.33, 20.16, 13.68.

1-(3-benzhydryl-1H-indol-1-yl)ethanone (5h):

1H-NMR (400 MHz, CDCl3): δ 8.41 (d, J = 7.6 Hz, 1H), 7.34–7.27 (m, 5H), 7.25–7.22 (m, 6H), 7.16–7.13 (m, 2H), 6.75 (s, 1H), 5.30 (s, 1H), 2.49 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ 168.44, 142.29, 136.36, 130.04, 128.88, 128.54,
126.72, 126.22, 125.27, 124.54, 123.44, 120.07, 116.58, 48.58, 23.95.

2-Benzhydrylthiophene (5i):

![Chemical Structure](image)

1H-NMR (400 MHz, CDCl$_3$): δ 7.32–7.28 (m, 5H), 7.25–7.20 (m, 6H), 6.93 (dd, $J = 5.2$, 3.6 Hz 1H), 6.69 (d, $J = 3.6$ Hz 1H), 5.68 (s, 1H). 13C-NMR (100 MHz, CDCl$_3$): δ 147.89, 143.78, 128.96, 128.82, 128.37, 126.69, 126.54, 126.41, 126.34, 124.50, 52.11.

2-Benzhydryl-5-methylthiophene (5j):

![Chemical Structure](image)

1H-NMR (400 MHz, CDCl$_3$): δ 7.31–7.28 (m, 4H), 7.24–7.21 (m, 4H), 6.57 (d, $J = 4.0$ Hz 1H), 6.46 (d, $J = 4.0$ Hz 1H), 5.58 (s, 1H), 2.41 (s, 3H). 13C-NMR (100 MHz, CDCl$_3$): δ 145.40, 143.84, 138.98, 128.97, 128.81, 128.32, 126.60, 126.10, 124.52, 52.26, 15.30.

2-Benzhydrylbenzo[b]thiophene (5k):

![Chemical Structure](image)

1H-NMR (400 MHz, CDCl$_3$): δ 7.85–7.83 (d, $J = 8.0$ Hz 1H), 7.47 (d, $J = 8.0$ Hz 1H) 7.31–7.21 (m, 8H), 7.18 (d, $J = 7.0$ Hz 4H), 6.72 (s, 1H), 5.75 (s, 1H). 13C-NMR (100
(E)-2-Methyl-5-(4-phenylbut-3-en-2-yl)furan (7a) and
(E)-2-Methyl-5-(1-phenylbut-2-enyl)furan (8a)

7a (major): 1H-NMR (400 MHz, CDCl$_3$): δ 7.36 (d, $J = 7.3$ Hz, 2H), 7.29 (t, $J = 7.0$ Hz, 2H), 7.20 (d, $J = 4.0$ Hz, 1H), 6.44 (d, $J = 15.8$ Hz, 1H), 6.28 (dd, $J = 15.8, 7.3$ Hz, 1H), 5.91 (s, 1H), 5.87 (s, 1H), 3.69 – 3.54 (m, 1H), 2.26 (s, 3H), 1.42 (d, $J = 6.9$ Hz, 3H). 8a (minor): 1H-NMR (400 MHz, CDCl$_3$): δ 7.36 (d, $J = 7.3$ Hz, 2H), 7.29 (t, $J = 7.0$ Hz, 2H), 7.20 (d, $J = 4.0$ Hz, 1H), 5.91 (s, 1H), 5.87 (s, 1H), 5.79 (dd, $J = 14.8, 7.3$ Hz, 1H), 5.49 (td, $J = 12.5, 5.7$ Hz, 1H), 4.61 (d, $J = 7.1$ Hz, 1H), 2.23 (s, 3H), 1.71 (d, $J = 6.0$ Hz, 3H). Spectral data match those previously reported.6

(E)-2-(4-Phenylbut-3-en-2-yl)benzofuran(7b) and
(E)-2-(1-Phenylbut-2-enyl)benzofuran(8b)

7b (major): 1H-NMR (400 MHz, CDCl$_3$): δ 7.56–7.17 (m, 9H), 6.56 (d, $J = 15.9$ Hz, 1H), 6.49 (s, 1H), 6.40 (dd, $J = 15.9, 7.3$ Hz, 1H), 3.94–3.76 (m, 1H), 1.58 (d, $J = 7.0$ Hz, 3H). 8b (minor): 1H-NMR (400 MHz, CDCl$_3$): δ 7.56–7.17 (m, 9H), 6.46 (s, 1H),
5.95 (dd, $J = 15.3, 7.5$ Hz, 1H), 5.61 (m, 1H), 4.84 (d, $J = 7.4$ Hz, 1H), 1.78 (d, $J = 6.6$ Hz, 3H). Spectral data match those previously reported.\(^6\)

\((E)-(2\text{-Methyl-5-(4-phenylbut-3-en-2-yl)-1H-pyrrole (7c) and (E)-2-Methyl-5-(1-phenylbut-2-enyl)-1H-pyrrole (8c)\)}

\[
\begin{align*}
7c \text{ (major)}: \\
1^H-NMR (600 MHz, CDCl}_3): & \delta 7.99 \text{ (br s, 1H)}, 7.37 \text{ (d, } J = 7.6 \text{ Hz, 1H), 7.33–7.27 \text{ (m, 2H), 7.26–7.17 \text{ (m, 2H), 6.71 \text{ (s, 1H), 6.47 \text{ (d, } J = 15.8 \text{ Hz, 1H), 6.27 \text{ (dd, } J = 15.8, 7.9 \text{ Hz, 1H), 6.18 \text{ (dd, } J = 5.7, 2.8 \text{ Hz, 1H), 6.02 \text{ (s, 1H), 3.68–3.63 \text{ (m, 1H), 1.47 \text{ (d, } J = 6.9 \text{ Hz, 3H). } 8c \text{ (minor): } & \delta 1^H-NMR(600 MHz, CDCl}_3) 7.81 \text{ (br s, 1H), 7.37 \text{ (d, } J = 7.6 \text{ Hz, 1H), 7.33–7.27 \text{ (m, 2H), 7.26–7.17 \text{ (m, 2H), 6.68 \text{ (s, 1H), 6.15 \text{ (dd, } J = 5.6, 2.8 \text{ Hz, 1H), 5.89 \text{ (s, 1H), 5.85 \text{ (dd, } J = 15.1, 7.9 \text{ Hz, 1H), 5.54–5.50 \text{ (m, 1H), 4.64 \text{ (d, } J = 7.7 \text{ Hz, 1H), 1.72 \text{ (d, } J = 6.4 \text{ Hz, 3H). Spectral data match those previously reported.}\(^6\)

\((E)-2\text{-Methyl-5-(4-phenylbut-3-en-2-yl)thiophene(7d) and (E)-2-Methyl-5-(1-phenylbut-2-enyl)thiophene (8d)\)}

\[
\begin{align*}
7d \text{ (major): } & 1^H-NMR (400 MHz, CDCl}_3): \delta 7.36 \text{ (d, } J = 7.2 \text{ Hz, 2H), 7.29 \text{ (t, } J = 6.7 \text{ Hz, 2H), 7.21 \text{ (d, } J = 6.6 \text{ Hz, 1H), 6.63 \text{ (s, 1H), 6.58 \text{ (s, 1H), 6.45 \text{ (d, } J = 15.8 \text{ Hz, 1H), 6.31 \text{ (dd, } J = 15.5, 7.2 \text{ Hz, 1H), 3.92–3.70 \text{ (m, 1H), 2.43 \text{ (s, 3H), 1.49 \text{ (d, } J = 6.4 \text{ Hz, 3H). } 8d \text{ (minor): } & 1^H-NMR (400 MHz, CDCl}_3): \delta 7.36 \text{ (d, } J = 7.2 \text{ Hz, 2H), 7.29 \text{ (t, } J = 6.7 \text{ Hz, 2H), 7.21 \text{ (d, } J = 6.6 \text{ Hz, 1H), 6.63 \text{ (s, 1H), 6.58 \text{ (s, 1H), 5.88 \text{ (dd, } J = 14.8,}
\]

7.3 Hz, 1H), 5.65–5.45 (m, 1H), 4.75 (d, J = 7.3 Hz, 1H), 2.41 (s, 3H), 1.72 (d, J = 6.1 Hz, 3H).

References:

Figure S1. \(^1\)H-NMR spectrum of compound A

Figure S2. \(^1\)H-NMR spectrum of compound B
Figure S3. 1H-NMR spectrum of compound 2

Figure S4. 1H-NMR spectra of compound 4
Figure S5. 1H-NMR spectrum of compound 6
Figure S6. 1H-(upper) and 13C-(bottom) spectra of compound 3a
Figure S7. 1H-1H COSY spectrum of compound 3a
Figure S8. 1H-(upper) and 13C-NMR (bottom) spectra of compound 3b
Figure S9. 1H-(upper) and 13C-NMR (bottom) spectra of compound 3c
Figure S10. 1H-(upper) and 13C-(bottom) spectra of compound 3d
Figure S11. 1H-1H COSY spectra of compound 3d
Figure S12. 1H-(upper) and 13C-NMR (bottom) spectra of compound 3e
Figure S13. 1H-(upper) and 13C-NMR (bottom) spectra of compound 3f
Figure S14. 1H-(upper) and 13C-NMR (bottom) spectra of compound 3g
Figure S15. 1H-(upper) and 13C-NMR (bottom) spectra of compound 3h
Figure S16. 1H-(upper) and 13C-(bottom) spectra of compound 3i
Figure S17. 1H-1H COSY spectra of compound 3i
Figure S18. 1H-(upper) and 13C-NMR (bottom) spectra of compound 3j
Figure S19. 1H-NMR spectrum of compound 3k
Figure S20. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5a
Figure S21. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5b
Figure S22. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5c
Figure S23. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5d
Figure S24. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5e
Figure S25. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5f
Figure S26. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5g
Figure S27. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5h
Figure S28. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5i
Figure S29. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5j
Figure S30. 1H-(upper) and 13C-NMR (bottom) spectra of compound 5k