Supplementary Information

Fluorinated Paramagnetic Chelates as Potential Agents for Multichromic 19F Magnetic Resonance Spectroscopy and Imaging

Zhong-Xing Jiang, Yue Feng and Yihua Bruce Yu

aDepartment of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, United States
bFischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
Fax: +01 410-706-5017; Tel: +01 410-706-7514; E-mail: byu@rx.umaryland.edu

1. General information S2
2. Synthesis of fluorinated chelates S2
3. General information of NMR experiments S8
4. Effects of pH, temperature, BSA and sera on metal chelates (Tables S1 & S2) S9
5. 1H NMR, 13C NMR, 19F NMR, MS spectra & HPLC chromatograms of reaction intermediates and fluorinated chelates S11
General information

Commercially available reagents and solvents were used without further purification. 1H NMR, 19F NMR and 13C NMR spectra were recorded on a Varian 500 MHz NMR spectrometer. 1H NMR spectra were referenced to tetramethylsilane (δ, 0.00 ppm) using CDCl$_3$ as solvent. 13C NMR spectra were referenced to solvent carbon (77.23 ppm for CDCl$_3$). 19F NMR spectra were referenced to 2% perfluorobenzene (s, -164.9 ppm) in CDCl$_3$ or 5% trifluoroacetic acid (s, -76.55 ppm) in D$_2$O. PBS or human sera were used as NMR solvents. A capillary filled with 2% perfluorobenzene in CDCl$_3$ or 5% of trifluoroacetic acid in D$_2$O was inserted into the NMR tube as the internal 19F chemical shift standard. Before each NMR measurement, the sample was bubbled with a stream of nitrogen or oxygen gas for 10 minutes on an ice bath. High resolution mass spectra (HRMS) were recorded on a Micromass GCT (GC-EI/CI Time of Flight Mass Spectrometer) with Electron Ionization (EI) resource. HPLC purification and analysis was performed on Aglient 1100 chromatograph systems using FlouroFlash® columns. Water and methanol were used as eluents; the flow rate for analytical and preparative runs was 1 and 5 mL/min respectively. The free fluorinated chelator is denoted as FC and fluorinated metal chelates are denoted as FC-M$^{x+}$, with $x+$ representing the valence of the metal ion, such as FC-Tb$^{3+}$.
Synthesis of fluorinated chelates

Compound 1 is from Sigma-Aldrich; compound 5 is from Macrocyclics. They were used without further purification. The synthesis route is depicted in the following scheme. From tetryaethylene glycol 1, its two hydroxyl groups were sequentially transformed into an azido group and a perfluoro-tert-butoxyl group, respectively, to give fluorinated azide 3. After reduction of the azido group in 3, amine 4 was then coupled with DOTA-tri-tert-Butyl-ester 5 yielded 6. Finally, the fluorinated chelator FC was prepared on a 5-gram scale after removal of its three tert-butoyl groups in 6.

Compound 2 To a stirred solution of tetryaethylene glycol 1 (45.6 mL, 264.0 mmol) in dichloromethane (DCM, 500 mL) was added 4-N,N-dimethylaminopyridine (5.0 g, 4.1 mmol) and triethylamine (44.5 mL, 317.0 mmol). After cooling to 0°C, methanesulfonyl chloride (16.5 mL, 211.2 mmol) was added dropwise to the solution and the resulting mixture was stirred for an additional hour at room temperature. The reaction mixture was washed with 2N HCl (100 mL, twice), brine (100 mL, twice), dried over anhydrous sodium sulfate and concentrated under vacuum to yield 2.

The resulting white solid was dissolved in THF (100 mL) and cooled to 0°C under nitrogen atmosphere. Phosphorus trichloride (48.0 mL, 0.30 mol) was added dropwise and the solution was allowed to stir at room temperature for 1 hour. After filtration, the filtrate was concentrated under vacuum to yield 3.

Scheme

```
HO(CH2CH2O)4H  a. MsCl, DMAP
                Et3N, CH2Cl2, 0°C
b. NaN3, DMF, 80°C  N3(CH2CH2O)4H  a. MsCl, DMAP
                Et3N, CH2Cl2, 0°C
b. (CF3)3CONa, DMF, 120°C
N3(CH2CH2O)4C(CF3)3  Ph3P, H2O
                          THF, rt.
                          H2N(CH2CH2O)4C(CF3)3  HBTU, HOBt
                          DIPEA, DMF, rt.
                          tBuO2C
                          CO2H
                          CO2tBu
                          tBuO2C
                          tBuO2C
                          CONH
                          O
                          O
                          O
                          OC(CF3)3
                          TFA, anisole, CH2Cl2, rt.
                          FC
```

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011
vacuum. The resulting residue was dissolved in dimethylformamide (DMF, 150 mL) and sodium azide (15.5 g, 238.5 mmol) was added. The resulting mixture was stirred at 80°C overnight. After removal of solvent under vacuum, the residue was purified by flash chromatography on silica gel to give the azide \(\text{2} \) (45.1 g, yield 78%) as clear oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 3.36-3.38 (m, 2H), 3.57-3.59 (m, 2H), 3.6-3.7 (m, 12H).

Compound 3 At 0°C, methanesulfonyl chloride (12.4 mL, 159.5 mmol) was added dropwise to a stirred solution of compound \(\text{2} \) (29.1 g, 109.7 mmol), 4-\(N,N \)-dimethylaminopyridine (1.3 g, 10.7 mmol) and triethylamine (37.3 mL, 265.5 mmol) in dichloromethane (DCM, 400 mL). Afterwards, the mixture was stirred for one hour at room temperature. The reaction mixture was washed with 2N HCl (100 mL, twice), brine (100 mL, twice), dried and concentrated under vacuum. The residue was dissolved in DMF (300 mL); and sodium perfluoro-\(\text{tert} \)-butoxide (60.1 g, 167.9 mmol) was added in one portion. The mixture was stirred at 120°C overnight. After cooled to room temperature, the reaction mixture was diluted with brine (1,200 mL) and extracted with ethyl acetate (300 mL, five times). The combined organic layers were dried over anhydrous sodium sulfate, concentrated, purified by flash chromatography on silica gel to give compound \(\text{3} \) (30.9 g, yield 63%) as clear oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 3.39 (t, \(J = 4.5 \) Hz, 2H), 3.65-3.69 (m, 10H), 3.74 (t, \(J = 4.5 \) Hz, 2H), 4.16 (t, \(J = 4.5 \) Hz, 2H); \(^{19}\)F NMR (470 MHz, CDCl\(_3\)) \(\delta \) -73.45 (s); \(^{13}\)C NMR (125.7 MHz, CDCl\(_3\)) \(\delta \) 50.9, 69.5, 69.6, 70.2, 70.9, 71.3, 79.8-80.3 (m), 120.5 (q, \(J = 291.5 \) Hz); MS (ESI) \(m/z \) 460.2 ((M+Na)\(^+\)); HRMS (ESI) calcd for C\(_{12}\)H\(_{16}\)F\(_9\)N\(_3\)NaO\(_4\), 460.08948; found, 460.08975.

Compound 4 Triphenyl phosphine (19.9 g, 76.0 mmol) was added in portions to a stirred solution of compound \(\text{3} \) (30.3 g, 69.3 mmol) in tetrahydrofuran (THF, 250 mL) at 0°C and the resulting mixture was stirred at room temperature for 10 hours. Then, water (3.7 mL, 207.5 mmol) was added and the mixture was stirred overnight. The reaction mixture was concentrated and purified by flash chromatography on silica gel to give compound \(\text{4} \) (27.4 g, yield 96%) as clear oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 2.83-2.92 (m, 2H), 3.50-3.55 (m, 2H), 3.62-3.75 (m, 10H), 4.10-4.20 (m, 2H); \(^{19}\)F NMR (470 MHz, CDCl\(_3\)) \(\delta \) -73.53 (s); \(^{13}\)C NMR (125.7 MHz, CDCl\(_3\)) \(\delta \) 41.9, 69.5, 69.6, 70.5, 70.8, 71.3, 73.4, 79.6-80.5 (m), 120.5 (q, \(J = 292.9 \) Hz); MS (ESI) \(m/z \) 412.3 ((M+H)\(^+\)); HRMS (ESI) calcd for C\(_{12}\)H\(_{19}\)F\(_9\)NO\(_4\), 412.11704; found, 412.11245.
Compound 6 At room temperature, HBTU (11.4 g, 30.0 mmol) and HOBt (2.0 g, 15.0 mmol) were added sequentially to a stirred solution of DOTA-tri-tert-Butyl-ester (5.73 g, 10.0 mmol) in DMF (25 mL) and the resulting mixture was stirred for 30 min. Then compound 4 (4.94 g, 12.0 mmol) was added in one portion followed by N,N-Diisopropylethylamine (DIPEA, 10.9 mL, 60.0 mmol). The reaction mixture was stirred overnight, diluted with water (100 mL), extracted with ethyl acetate (50 mL, 5 times). The combined organic layers were dried, concentrated under vacuum, purified by flash chromatography on silica gel to give compound 6 (8.8 g, yield 91%) as a clear oil. 1H NMR (500 MHz, CDCl$_3$) δ 1.45-1.46 (m, 27H), 2.07-3.18 (m, 22H), 3.39-3.42 (m, 2H), 3.52-3.55 (m, 2H), 1.59-1.61 (m, 2H), 3.63-3.69 (m, 6H), 3.73 (t, J = 4.5 Hz, 2H), 4.16 (t, J = 4.5 Hz, 2H); 19F NMR (470 MHz, CDCl$_3$) δ -73.52 (s); 13C NMR (125.7 MHz, CDCl$_3$) δ 28.5, 28.54, 39.0, 40.2, 53.7, 56.85, 56.9, 57.3, 70.6, 70.8, 71.2, 71.3, 71.6, 71.64, 71.9, 80.5-81.8 (m), 82.8, 82.84, 121.9 (q, J = 290.9 Hz), 167.5, 173.6, 174.2, 174.5; MS (ESI) m/z 988.4 ((M+Na)$^+$); HRMS (ESI) calcd for C$_{40}$H$_{69}$F$_9$N$_5$O$_{11}$, 966.48499; found, 966.48755.

Compound FC To a stirred solution of compound 6 (6.4 g, 6.6 mmol) was added anisole (3.6 mL, 33.2 mmol), trifluoroacetic acid (20 mL, 260.0 mmol) and water (1.2 mL, 66.2 mmol) at room temperature. Afterwards, the mixture was stirred for additional 2 hours, concentrated under vacuum. The residue was purified by preparative HPLC on FluoroFlash$^\text{®}$ column to give chelator FC (3.4 g, yield 64%) as a white solid. 1H NMR (500 MHz, D$_2$O) δ 2.70-3.60 (m, 20H), 3.69-3.84 (m, 14H), 3.83-4.37 (m, 6H); 19F NMR (470 MHz, D$_2$O) δ -72.46 (s), (470 MHz, PBS, pH 7.0, N$_2$) δ -71.20 (s); 13C NMR (125.7 MHz, D$_2$O) δ 41.2, 50.9, 51.0, 53.9, 54.5, 57.7, 58.7, 59.3, 71.6, 71.7, 72.0, 72.3, 72.4, 72.9, 81.7-82.7 (m), 122.9 (q, J = 293.0 Hz), 172.8, 174.5, 180.6; MS (ESI) m/z 798.3 ((M+H)$^+$); HRMS (ESI) calcd for C$_{28}$H$_{45}$F$_9$N$_5$O$_{11}$, 798.29719; found, 798.29652.

General procedure for chelation of chelator FC with metal ions (Gd$^{3+}$ as an examples) Chelator FC (500 mg, 0.63 mmol) was dissolved in water (10 mL). After adjusting to pH 7.0 by addition of sodium hydroxide solution (1 mmol/mL), gadolinium chloride hexahydrate (467 mg, 1.26 mmol) was added and the resulting mixture was stirred for 2 hours at 80°C. During this time, sodium hydroxide solution (1 mmol/mL) was added to maintain pH 7.0. If needed, the pH was adjusted to 10 to remove excess ions. The reaction mixture was centrifuged and the aqueous layer was subjected to HPLC purification to give the pure chelate FC-Gd$^{3+}$.

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011
Compound FC-Tb$^{3+}$ HPLC $T_R = 10.85$ min; 19F NMR (470 MHz, PBS, pH 7, N_2) δ -63.32 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -63.30 (s); MS (ESI) m/z 954.2 ((M+H)$^+$).

Compound FC-Ho$^{3+}$ HPLC $T_R = 10.89$ min; 19F NMR (470 MHz, PBS, pH 7, N_2) δ -63.51 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -63.46 (s); MS (ESI) m/z 960.2 ((M+H)$^+$).

Compound FC-Dy$^{3+}$ HPLC $T_R = 10.84$ min; 19F NMR (470 MHz, PBS, pH 7, N_2) δ -63.55 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -63.45 (s); MS (ESI) m/z 959.2 ((M+H)$^+$).

Compound FC-Er$^{3+}$ HPLC $T_R = 10.85$ min; 19F NMR (470 MHz, PBS, pH 7, N_2) δ -65.41 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -65.39 (s); MS (ESI) m/z 962.2 ((M+H)$^+$).

Compound FC-Gd$^{3+}$ HPLC $T_R = 10.88$ min; 19F NMR (470 MHz, PBS, pH 7, N_2) δ -66.61 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -66.61 (s); MS (ESI) m/z 953.2 ((M+H)$^+$), HRMS (ESI) calcd for C$_{28}$H$_{42}$F$_9$GdN$_5$O$_{11}$, 953.19946 found 953.20167.

Compound FC-Fe$^{3+}$ HPLC $T_R = 11.20$ min; 19F NMR (470 MHz, PBS, pH 7.0, N_2) δ -68.71 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -68.88 (s); MS (ESI) m/z 851.1 ((M+H)$^+$).

Compound FC-Yb$^{3+}$ HPLC $T_R = 10.85$ min; 19F NMR (470 MHz, PBS, pH 7.0, N_2) δ -70.21 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -70.16 (s); MS (ESI) m/z 969.2 ((M+H)$^+$).

Compound FC-Ni$^{3+}$ HPLC $T_R = 10.57$ min; 19F NMR (470 MHz, PBS, pH 7.0, N_2) δ -70.25 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -70.22 (s); MS (ESI) m/z 854.2 ((M+H)$^+$).

Compound FC-Nd$^{3+}$ HPLC $T_R = 10.86$ min; 19F NMR (470 MHz, PBS, pH 7.0, N_2) δ -70.30 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -70.26 (s); MS (ESI) m/z 937.2 ((M+H)$^+$).

Compound FC-Pr$^{3+}$ HPLC $T_R = 10.89$ min; 19F NMR (470 MHz, PBS, pH 7.0, N_2) δ -70.33 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -70.29 (s); MS (ESI) m/z 936.1 ((M+H)$^+$).

Compound FC-Eu$^{3+}$ HPLC $T_R = 10.87$ min; 19F NMR (470 MHz, PBS, pH 7.0, N_2) δ -70.47 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -70.43 (s); MS (ESI) m/z 948.2 ((M+H)$^+$).

Compound FC-Cu$^{2+}$ HPLC $T_R = 10.67$ min; 19F NMR (470 MHz, PBS, pH 7.0, N_2) δ -70.74 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -70.70 (s); MS (ESI) m/z 859.1 ((M+H)$^+$).
Compound FC-Ce$^{3+}$ HPLC $T_R = 10.89$ min; 19F NMR (470 MHz, PBS, pH 7.0, N$_2$) δ -70.77 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -70.72 (s); MS (ESI) m/z 935.2 ((M+H)$^+$).

Compound FC-Sm$^{3+}$ HPLC $T_R = 10.87$ min; 19F NMR (470 MHz, PBS, pH 7.0, N$_2$) δ -70.97 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -70.94 (s); MS (ESI) m/z 947.2 ((M+H)$^+$).

Compound FC-Cd$^{2+}$ HPLC $T_R = 10.66$ min; 19F NMR (470 MHz, PBS, pH 7.0, N$_2$) δ -71.12 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -71.08 (s); MS (ESI) m/z 910.3 ((M+H)$^+$).

Compound FC-Ca$^{2+}$ HPLC $T_R = 10.67$ min; 19F NMR (470 MHz, PBS, pH 7.0, N$_2$) δ -71.12 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -71.08 (s); MS (ESI) m/z 836.4 ((M+H)$^+$).

Compound FC-La$^{3+}$ HPLC $T_R = 10.91$ min; 19F NMR (470 MHz, PBS, pH 7.0, N$_2$) δ -71.13 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -71.09 (s); MS (ESI) m/z 934.2 ((M+H)$^+$).

Compound FC-Pb$^{2+}$ HPLC $T_R = 10.45$ min; 19F NMR (470 MHz, PBS, pH 7.0, N$_2$) δ -71.13 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -70.09 (s); MS (ESI) m/z 1004.3 ((M+H)$^+$).

Compound FC-Y$^{3+}$ HPLC $T_R = 10.55$ min; 19F NMR (470 MHz, PBS, pH 7.0, N$_2$) δ -71.13 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -71.09 (s); MS (ESI) m/z 884.2 ((M+H)$^+$).

Compound FC-Hg$^{2+}$ HPLC $T_R = 10.59$ min; 19F NMR (470 MHz, PBS, pH 7.0, N$_2$) δ -71.15 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -71.10 (s); MS (ESI) m/z 998.2 ((M+H)$^+$).

Compound FC-Bi$^{3+}$ HPLC $T_R = 10.65$ min; 19F NMR (470 MHz, PBS, pH 7.0, N$_2$) δ -71.17 (s); (470 MHz, PBS, pH 7.0, O$_2$) δ -71.06 (s); MS (ESI) m/z 1004.2 ((M+H)$^+$).

* All the HPLC retention times were collected using a FluoroFlash® column (4.6 mm × 150 mm) with water and MeOH as eluents, 1 mL/min, from 100% water to 100% methanol in 15 min then 100% methanol for 5 min.
General Information of NMR experiments:

All the NMR experiments were conducted on Varian INOVA 500 spectrometer equipped with a $^{1}\text{H}/^{19}\text{F}^{13}\text{C}/^{15}\text{N}$ 5mm Triple resonance PFG probe.

Calibrated 90° pulse was used as the transmitter pulse. The relaxation delay varied according to the different samples, but larger than $5 \times T_1$. Inversion-Recovery\(^1\) and CPMG (Carr-Purcell-Meiboom-Gill)\(^2\) sequences were used to measure the relaxation times T_1 and T_2, respectively. The parameters of T_1 and T_2 measurements are optimized according to the different relaxation time of these samples. All the ^{19}F chemical shifts were referenced to TFA (a capillary filled with 5% of trifluoroacetic acid in D$_2$O was inserted into the NMR tube) at δ -76.55 ppm.

Table S1. Effects of pH and temperature on the 19F chemical shift (δ) and relaxation times (T_1 & T_2) of fluorinated chelates. All measurements were conducted in PBS saturated with N2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Chelates</th>
<th>pH6</th>
<th>pH8</th>
<th>pH7</th>
<th>10°C</th>
<th>35°C</th>
<th>45°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ (ppm)</td>
<td>FC-Tb$^{3+}$</td>
<td>-63.075</td>
<td>-63.105</td>
<td>-63.315</td>
<td>-62.755</td>
<td>-63.690</td>
<td>-64.113</td>
</tr>
<tr>
<td></td>
<td>FC-Y$^{3+}$</td>
<td>-71.126</td>
<td>-71.126</td>
<td>-71.134</td>
<td>-71.114</td>
<td>-71.150</td>
<td>-71.175</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>-71.201</td>
<td>-71.201</td>
<td>-71.203</td>
<td>-71.134</td>
<td>-71.287</td>
<td>-71.325</td>
</tr>
<tr>
<td>T_1 (ms)</td>
<td>FC-Tb$^{3+}$</td>
<td>73.24</td>
<td>71.67</td>
<td>72.56</td>
<td>65.92</td>
<td>75.81</td>
<td>81.25</td>
</tr>
<tr>
<td></td>
<td>FC-Gd$^{3+}$</td>
<td>3.917</td>
<td>4.076</td>
<td>4.235</td>
<td>4.119</td>
<td>4.06</td>
<td>3.973</td>
</tr>
<tr>
<td></td>
<td>FC-Y$^{3+}$</td>
<td>1431</td>
<td>1498</td>
<td>1514</td>
<td>1052</td>
<td>1753</td>
<td>2133</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>1431</td>
<td>1440</td>
<td>1330</td>
<td>982.3</td>
<td>1315</td>
<td>1380</td>
</tr>
<tr>
<td>T_2 (ms)</td>
<td>FC-Tb$^{3+}$</td>
<td>46.58</td>
<td>46.81</td>
<td>41.74</td>
<td>37.0</td>
<td>42.9</td>
<td>46.0</td>
</tr>
<tr>
<td></td>
<td>FC-Gd$^{3+}$</td>
<td>1.071</td>
<td>1.07</td>
<td>1.661</td>
<td>1.41</td>
<td>1.28</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>FC-Y$^{3+}$</td>
<td>1234</td>
<td>1196</td>
<td>783</td>
<td>720.2</td>
<td>1531</td>
<td>1511</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>789.9</td>
<td>825.6</td>
<td>701</td>
<td>671</td>
<td>708.3</td>
<td>618.6</td>
</tr>
</tbody>
</table>

Notes on experimental error estimate in relaxation time determination:
1. T_1 of FC-Y$^{3+}$ was measured 5 times at pH 6, 25°C to give the experimental error.
 1431 ± 5 ms
2. T_2 of FC-Y$^{3+}$ was measured 10 times at pH 6, 25°C to give the experimental error.
 1234 ± 34 ms
3. T_1 of FC-Gd$^{3+}$ was measured 12 times at pH 6, 25°C to give the experimental error.
 3.917 ± 0.030 ms
4. T_2 of FC-Gd$^{3+}$ was measured 12 times at pH 6, 25°C to give the experimental error.
 1.071 ± 0.030 ms
Table S2. Effects of BSA and human sera on the 19F chemical shift (δ) and relaxation times (T_1 & T_2) of fluorinated chelates. For PBS and 10% BSA in PBS measurements, the solutions were saturated with N$_2$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Chelates</th>
<th>PBS pH7 25°C</th>
<th>10% BSA in PBS</th>
<th>Human sera Under N$_2$</th>
<th>Human sera Under O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ (ppm)</td>
<td>FC-Tb$^{3+}$</td>
<td>-63.315</td>
<td>-61.446</td>
<td>-63.218</td>
<td>-63.187</td>
</tr>
<tr>
<td></td>
<td>FC-Gd$^{3+}$</td>
<td>-66.611</td>
<td>-65.808</td>
<td>-66.322</td>
<td>-63.309</td>
</tr>
<tr>
<td></td>
<td>FC-Y$^{3+}$</td>
<td>-71.134</td>
<td>-71.113</td>
<td>-71.220</td>
<td>-71.170</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>-71.203</td>
<td>-71.238</td>
<td>-71.189</td>
<td>-71.150</td>
</tr>
<tr>
<td>T_1 (ms)</td>
<td>FC-Tb$^{3+}$</td>
<td>72.56</td>
<td>70.1</td>
<td>79.62</td>
<td>75.1</td>
</tr>
<tr>
<td></td>
<td>FC-Gd$^{3+}$</td>
<td>4.235</td>
<td>4.518</td>
<td>4.27</td>
<td>4.47</td>
</tr>
<tr>
<td></td>
<td>FC-Y$^{3+}$</td>
<td>1514</td>
<td>1200</td>
<td>1211</td>
<td>796</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>1330</td>
<td>1111</td>
<td>1247</td>
<td>840</td>
</tr>
<tr>
<td>T_2 (ms)</td>
<td>FC-Tb$^{3+}$</td>
<td>41.74</td>
<td>10.6</td>
<td>11.96</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td>FC-Gd$^{3+}$</td>
<td>1.661</td>
<td>0.55</td>
<td>0.87</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>FC-Y$^{3+}$</td>
<td>783</td>
<td>139</td>
<td>213.8</td>
<td>189.4</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>701</td>
<td>100.7</td>
<td>209</td>
<td>214</td>
</tr>
</tbody>
</table>
1H NMR of compound 3
19F NMR of compound

13C NMR of compound 3
1H NMR of compound 4

19F NMR of compound 4

13C NMR of compound 4
13C NMR of compound 6

1H NMR of compound FC
19F NMR of compound FC
13C NMR of compound FC

Mass spectrum of FC

HPLC of compound FC-Tb13
19F NMR of compound FC-Tb$^{3+}$

Mass spectrum of FC-Tb$^{3+}$
HPLC of compound FC-Ho$^{3+}$

19F NMR of compound FC-Ho$^{3+}$
19F NMR of compound FC-Dy$^{3+}$

HPLC of compound FC-Er$^{3+}$
19F NMR of compound FC-Er$^{3+}$

HPLC of compound FC-Gd$^{3+}$
19F NMR of compound FC-Gd³⁺

Mass spectrum of compound FC-Gd³⁺

HPLC of compound FC-Fe³⁺
19F NMR of compound FC-Fe$^{3+}$

HPLC NMR of compound FC-Yb$^{3+}$
19F NMR of compound FC-Yb$^{3+}$

HPLC NMR of compound FC-Ni$^{2+}$
19F NMR of compound FC-Ni$^{2+}$

HPLC NMR of compound FC-Nd$^{3+}$