Supporting Information

Preferential carbene insertion into Ge−H vs other heavier group 14 hydrides via samarium carbenoids

Hitoshi Kondo, Yoshinori Yamanoi,* and Hiroshi Nishihara*

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Table of contents

1. Materials S2

2. Spectroscopic data for products S2

3. References S3

4. Copies of 1H NMR spectra S5

5. Copies of 13C NMR spectra S17
1. Materials

Unless stated otherwise, all reagents and chemicals were obtained from commercial sources and used without further purification. THF and THP were distilled from benzophenone and sodium prior to use.

(3-Cyanophenyl)diphenylgermane, and (4-aminophenyl)diphenylgermane were prepared according to palladium-catalyzed single arylation of diphenylgermane with aryl iodide. [(Dimethylsilyl)methyl]dimethylgermane was prepared according to the literature. Material identity and purity was confirmed by 1H & 13C NMR, EI-MS and elemental analysis or HRMS.

(4-Aminophenyl)diphenylgermane: To a solution of Pd(P(tBu)3)2 (0.48 g, 0.93 mmol) in THF (20 mL) were added 4-iodoaniline (4.56 g, 20.8 mmol), diisopropylethylamine (5.0 mL, 28.3 mmol), and diphenylgermane (12.0 mL, 64.0 mmol). After stirring for 9 d at room temperature, the reaction mixture was quenched with water, extracted three times with CH2Cl2, and dried over Na2SO4. The solvent was evaporated under reduced pressure, and column chromatography produced (4-aminophenyl)diphenylgermane (2.73 g, 41%) as colorless oil.

1H NMR (500 MHz, CDCl3) δ 7.53-7.51 (m, 4H), 7.39-7.33 (m, 6H), 7.29 (d, 2H, J = 8.6 Hz), 6.69 (d, 2H, J = 8.3 Hz), 5.63 (s, 1H), 3.71 (brs, 2H); 13C NMR (CDCl3, 125 MHz) δ 147.3 (Cq), 136.3 (CH), 136.2 (Cq), 135.1 (CH), 128.9 (CH), 128.2 (CH), 122.9 (Cq), 115.1 (CH); EI-MS m/z 321 (M+).

2. Spectroscopic data for products

Methyltriphenylgermane (2): Colorless solid. 1H NMR (400 MHz, CDCl3) δ 7.50-7.45 (m, 6H), 7.38-7.32 (m, 9H), 0.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 138.0 (Cq), 134.5 (CH), 128.8 (CH), 128.2 (CH), -4.2 (CH3); EI-MS m/z 320 (M+).

Dideuteriummethyltriphenylgermane (4): Colorless needles. Mp: 69.2-69.8 °C. 1H NMR (500 MHz, CDCl3) δ 7.50-7.46 (m, 6H), 7.36-7.31 (m, 9H), 0.86 (quin, 1H, J = 1.7 Hz); 13C NMR (125 MHz, CDCl3) δ 137.9 (Cq), 134.5 (CH), 128.9 (CH), 128.2 (CH), -4.7 (quin, CD2, J = 19 Hz); EI-MS m/z 322 (M+); FAB-HRMS Calcd for C19H16D2Ge: 322.0746. Found: 322.0739 (M+).

Tributylmethylgermane (5): Colorless oil. 1H NMR (400 MHz, CDCl3) δ 1.28-1.22 (m, 12H), 0.84-0.79 (m, 9H), 0.64-0.59 (m, 6H), -0.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 27.5 (CH2), 26.5 (CH2), 13.9 (CH2), 13.8 (CH3), -6.2 (CH3); EI-MS m/z 260 (M+); FAB-HRMS Calcd for C13H30Ge: 260.1562. Found: 260.1539 (M+).

Ethyltriphenylgermane (6): Colorless powder. 1H NMR (400 MHz, CDCl3) δ 1.28-1.22 (m, 12H), 1.54 (q, 2H, J = 8.0 Hz), 1.19 (t, 3H, J = 8.0 Hz); 13C NMR (100 MHz, CDCl3) δ 137.1 (Cq), 135.0 (CH), 128.8 (CH), 128.1 (CH), 9.1 (CH3), 6.3 (CH2); EI-MS m/z 334 (M+).

Triethyl(4-phenylbutyl)germane (7): Colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.30-7.25 (m,
2H), 7.19-7.15 (m, 3H), 2.61 (t, 2H, J = 7.7 Hz), 1.63 (quin, 2H, J = 7.7 Hz), 1.45-1.37 (m, 2H), 1.00 (t, 9H, J = 7.7 Hz), 0.77-0.67 (m, 8H); 13C NMR (100 MHz, CDCl$_3$) δ 142.9 (C$_q$), 128.3 (CH), 138.2 (CH), 125.5 (CH), 35.6 (CH$_2$), 35.4 (CH$_2$), 24.9 (CH$_3$), 11.2 (CH$_3$), 9.0 (CH$_3$), 3.9 (CH$_2$); EI-MS m/z 294 (M$^+$); FAB-HRMS Calcd for C$_{16}$H$_{28}$Ge: 294.1406. Found: 294.1380 (M$^+$).

2,2-Dimethylpropyltriphenylgermane (8): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.56-7.52 (m, 6H), 7.36-7.32 (m, 9H), 1.79 (s, 2H), 0.94 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 138.6 (C$_q$), 135.1 (CH), 128.6 (CH), 128.0 (CH), 32.9 (CH$_3$), 31.5 (C$_q$), 31.1 (CH); EI-MS m/z 376; FAB-HRMS Calcd for C$_{23}$H$_{26}$Ge: 376.1251. Found: 376.1260 (M$^+$).

Methyl(4-aminophenyl)diphenylgermane (9): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.49-7.46 (m, 4H), 7.37-7.33 (m, 6H), 7.25 (d, 2H, J = 8.4 Hz), 6.68 (d, 2H, J = 8.4 Hz), 3.68 (s, 2H), 0.85 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 147.1 (C$_q$), 138.7 (C$_q$), 135.6 (CH), 134.5 (CH), 128.7 (CH), 128.0 (CH), 125.5 (C$_q$), 115.0 (CH), -4.0 (CH$_3$); EI-MS m/z 335 (M$^+$); FAB-HRMS Calcd for C$_{18}$H$_{17}$GeN: 335.0733. Found: 335.0765 (M$^+$).

Methyl(3-cyanophenyl)diphenylgermane (10): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.74 (s, 1H), 7.67 (d, J = 8.0 Hz), 7.64 (d, 1H, J = 7.6 Hz), 7.47-7.36 (m, 11H), 0.94 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 140.6 (C$_q$), 138.6 (CH), 137.8 (CH), 136.3 (CN), 134.3 (CH), 129.4 (CH), 128.6 (CH), 128.4 (CH), 119.0 (C$_q$), 112.4 (C$_q$), -4.4 (CH$_3$). EI-MS m/z 345. EI-MS m/z 345 (M$^+$).

Dimethyldiphenylgermane (11): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.49-7.45 (m, 4H), 7.34-7.30 (m, 6H), 0.63 (s, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 140.2 (C$_q$), 133.6 (CH), 128.6 (CH), 128.1 (CH), -3.1 (CH$_3$); EI-MS m/z 258 (M$^+$).

Butyltriethylgermane (12): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 1.35-1.30 (m, 4H), 1.01 (t, 9H, J = 6.4 Hz), 0.89 (t, 3H, J = 5.7 Hz), 0.73-0.67 (m, 8H); 13C NMR (100 MHz, CDCl$_3$) δ 27.4 (CH$_2$), 26.6 (CH$_3$), 13.8 (CH$_3$), 11.1 (CH$_2$), 8.9 (CH$_3$), 3.8 (CH$_2$); EI-MS m/z 218 (M$^+$).

Dimethyl(4-phenylbutyl)germyl dimethylsilyl methane (13): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.29-7.25 (m, 2H), 7.19-7.15 (m, 3H), 3.89 (septet, 1H, J = 3.6 Hz), 2.61 (t, 2H, J = 8.0 Hz), 1.63 (quin, 2H, J = 7.7 Hz), 1.45-1.37 (m, 2H), 0.78-0.73 (m, 2H), 0.13 (s, 6H), 0.08 (d, 6H, J = 3.6 Hz), -0.18 (d, 2H, J = -4.1 Hz); 13C NMR (100 MHz, CDCl$_3$) δ 142.9 (C$_q$), 128.4 (CH), 128.2 (CH), 125.5 (CH), 35.6 (CH$_2$), 35.1 (CH$_2$), 24.7 (CH$_3$), 17.4 (CH$_2$), -1.3 (CH$_3$), -1.5 (CH$_3$), -1.8 (CH$_3$); EI-MS m/z 310 (M$^+$); FAB-HRMS Calcd for C$_{15}$H$_{26}$GeSi: 310.1175. Found: 310.1145 (M$^+$).

3. References

(5) This compound is commercially available.

4. Copies of 1H NMR spectra
1H NMR, CDCl$_3$, 400 MHz

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011
5. Copies of 13C NMR spectra
13C NMR, CDCl$_3$, 125 MHz

(4)
13C NMR, CDCl$_3$, 100 MHz

- n-Bu
- n-Bu-Ge-Me
- n-Bu

(5)
13C NMR, CDCl$_3$, 100 MHz
13C NMR, CDCl₃, 100 MHz

H₃C – H₃C
H – Si – Ge – CH₂CH₂CH₂CH₂Ph
H₃C – CH₃

(13)