Size-controlled long-circulating PICsome as ruler to measure critical cut-off disposition size into normal and tumor tissues

Yasutaka Anraku,a Akihiro Kishimura,*a Atsushi Kobayashi,a Makoto Oba,b and Kazunori Kataoka*,a,b,c,d

†Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan

aCenter for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan

bDepartment of Clinical Vascular Regeneration, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan

cCenter for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan

dCREST, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075 Japan

AUTHOR EMAIL ADDRESS: kishimura@bmw.t.u-tokyo.ac.jp; kataoka@bmw.t.u-tokyo.ac.jp
Experimental Section

Materials

Block-anionomer, PEG-β-poly(α,β-aspartic acid) (PEG-P(Asp); M_n of PEG = 2,000, DP of P(Asp) = 75) and homo-cationomer, poly([5-aminopentyl]-α,β-aspartamide) (Homo-P(Asp-AP); DP of P(Asp-AP) = 82) were prepared as previously reported [1, 2]. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) was purchased from Wako Pure Chemical Industries (Osaka, Japan). Cy5 mono-reactive dye pack was purchased from GE Healthcare (Tokyo, Japan). Preparation of Cy5-labeled PEG-P(Asp) (PEG-P(Asp)-Cy5) are shown in the Supporting Information. Murine colon 26 (C-26) adenocarcinoma cells were kindly supplied by the National Cancer Center (Tokyo, Japan). C-26 adenocarcinoma cells were maintained in RPMI 1640 medium (Sigma Chemical) containing 10% fetal bovine serum in a humidified atmosphere containing 5% CO$_2$ at 37 °C. BALB/c nude mice (female; 3 weeks old) were purchased from Charles River Japan (Kanagawa, Japan). All animal experiments were carried out in accordance with the guidelines for animal experiments at the University of Tokyo.

Preparation of Nano-PICsomes and PIC micelles [2]

PEG-P(Asp), PEG-P(Asp)-Cy5 and Homo-P(Asp-AP) solutions were prepared separately in 10 mM phosphate buffer (PB, pH 7.4). These solutions were filtered through a 0.22-μm membrane filter to remove dust. The PEG-P(Asp) solution was mixed with the PEG-P(Asp)-Cy5 solution with the mixing ratio of 4/1. Resulted polyanion mixture was blended with the Homo-P(Asp-AP) solution in an equal unit ratio of –COO$^{-}$ and NH$_3^+$, followed by vortex mixing to form the Cy5-Nano-PICsomes. PIC micelles were prepared using the same procedure as with the Nano-PICsomes, but PEG-P(Asp-AP) solutions was used instead of Homo-P(Asp-AP). Various sizes of Nano-PICsomes (102, 158, 197, 256, 298 nm) were prepared by using different polymer concentrations (total...
polymer concentration = 1.0, 2.0, 3.0, 4.0 and 5.5 mg/mL) according to the previous report [2].

Preparation of cross-linked Nano-PICsomes [2]

EDC (10 mg) was dissolved in 10 mM PB solution (1 mL). Then, Nano-PICsome solution (960 μL) was added to the EDC solution (670 μL, 10 eqv. per –COOH group in PEG-P(Asp)). After 12 h, the mixed solution was purified using a polyethersulfone ultrafiltration membrane (MWCO; 300,000).

Dynamic light scattering (DLS) measurements

The size of the PIC micelle and PICsomes was evaluated by DLS measurements at 25 °C using a Zetasizer Nano-ZS instrument (Malvern Instruments, Malvern, UK) equipped with a He-Ne ion laser (λ 633 nm). A scattering angle of 173° was used in all measurements. In these measurements, the autocorrelation function, g(τ), was analyzed using the cumulant method [3,4], where

\[
g(\tau) = \exp[-\bar{\Gamma} \tau + (\mu_2/2) \tau^2 - (\mu_3/3!) \tau^3 + \ldots]
\]

yields an average characteristic line width, \(\bar{\Gamma} \). The z-averaged diffusion coefficient was obtained from the \(\bar{\Gamma} \) based on the following equations:

\[
\bar{\Gamma} = Dq^2 \quad (2)
\]

\[
q = (4\pi n/\lambda) \sin(\theta/2) \quad (3)
\]

where \(q \) is the magnitude of the scattering vector, \(n \) is the refractive index of the solvent, and \(\theta \) is the detection angle. The polydispersity index (PDI = \(\mu_2/\bar{\Gamma}^2 \)) was derived from Equation 1.
Preparation of mice bearing murine colon 26 (C-26) adenocarcinoma s.c. tumor

Each mouse (BALB/c nude, female; 4 weeks old; n = 3) was subcutaneously inoculated with 100 µL of a suspension of C-26 adenocarcinoma cells (1 x 10^6 cells/mL). Tumors were allowed to grow for 14 days.

Evaluation of blood circulation

200 µL of phosphate buffer saline solution of all samples were administered by injection through the tail vein of each mouse. The concentration of the injecting samples was adjusted using the fluorescent intensity. Mice were sacrificed after defined time periods (1, 3, 6, 24, 48, 96 and 240 h). Blood was collected from the postcaval vein using heparinized syringes, and C-26 tumor tissue sample was also collected. After centrifugation of the collected blood at 2000g for 5 minutes at 4 °C, fluorescence of the resulting supernatant was measured by a fluorescence detector (Ex/Em=650/670).

Evaluation of biodistribution

Sample disposition in the lung, liver, spleen, kidney and C-26 tumor tissue was estimated from the intensity of the fluorescence signal of collected tissues with an IVIS Imaging System (Xenogen, Alameda, CA, USA) comprised of a highly sensitive, cooled CCD camera mounted in a light-tight specimen box. Because the liver has a high density of blood vessels, IVIS measurement was done after flushing saline solution into the sacrificing mice to avoid the signal from blood pool. The background fluorescence in each tissue was eliminated by subtracting the fluorescence from the organs of untreated animals. All animal experiments were carried out in accordance with the
guidelines for animal experiments at the University of Tokyo.

Pharmacokinetic data analysis

The time corresponding to removal of 50% of the injected dose ($T_{50\%}$) was calculated by linear interpolation.

AUC denotes the area under a concentration curve that is obtained from the pharmacokinetic study with time points at 1, 3, 6, 24, 48, 96 and 240 h. Values were calculated on the basis of the trapezoidal rule up to 240 h after intravenous injection as well as area under the first moment curve ($AUMC$) and mean residence time (MRT). The unit for AUC is defined as average radiance per plasma (p/s/cm²/g) x h or average radiance per plasma organ x h for the blood or other tissues (tumor, kidney, liver, lung and spleen), respectively. $AUMC$ and MRT were calculated from the following equations:

$$AUMC_{0\rightarrow t} = \int_{0}^{t} t \cdot C \cdot dt = \sum_{i=0}^{n} \left(C_i \cdot \frac{t_i + t_{i+1}}{2} \right) \cdot (t_{i+1} - t_i)$$

$$MRT_{0\rightarrow t} = \frac{AUMC_{0\rightarrow t}}{AUC_{0\rightarrow t}}$$

In the case of PIC micelles and Nano-PICosomes with the diameter of 298 nm, data points at 240 h post injections were not exploited for calculation due to less reliability of values.
Size distribution determined by DLS

Table S1. Various sizes of PIC-nanoparticles injected into mouse

<table>
<thead>
<tr>
<th>Combination of Polymers</th>
<th>Concentration (mg/mL)</th>
<th>Size (nm)*</th>
<th>Polydispersity Index*</th>
<th>d_w/d_n**</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG-P(Asp)/PEG-P(Asp-AP)</td>
<td>1</td>
<td>38.0</td>
<td>0.023</td>
<td>1.092</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>158</td>
<td>0.035</td>
<td>1.104</td>
</tr>
<tr>
<td>PEG-P(Asp)/Homo-P(Asp-AP)</td>
<td>3</td>
<td>197</td>
<td>0.038</td>
<td>1.108</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>256</td>
<td>0.054</td>
<td>1.091</td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>298</td>
<td>0.065</td>
<td>1.115</td>
</tr>
</tbody>
</table>

* Size and polydispersity index taken after cross-linking and removal of EDC.

** Using the histogram method, the polydispersity (d_w/d_n) defined as the ratio of the weight-averaged diameter and the number-averaged diameter was also determined.

Gel Permeation Chromatogram (GPC) of Various Sized Nano-PICosomes and PIC micelles

GPC measurements were carried out in pH 7.4 10 mM PB (150 mM NaCl) using a High performance liquid chromatography (HPLC) system (JASCO, Japan) equipped with Superose$^{\text{TM}}$ 10/300 GL columns (Amersham, USA), fluorescent detectors (Ex/Em = 650/670 nm) and UV detector (absorbance at 220 nm). Columns were eluted with pH 7.4 10 mM PB (150 mM NaCl) at a flow rate of 0.5 mg/mL at a temperature of 35 °C.
Figure S2. GPC trace of various sizes of cross-linked Cy5-Nano-PICosomes (b: 102 nm, c: 158 nm, d: 197 nm, e: 256 nm, f: 298 nm) and PIC micelles (a: 38.0 nm) determined by fluorescent detector (Ex/Em = 650/670 nm) and UV detector (inset, Absorbance at 220 nm).
Table S2. Pharmacokinetic parameters of various sizes of PIC nanoparticles.

<table>
<thead>
<tr>
<th>sample</th>
<th>blood</th>
<th>tumor</th>
<th>kidney</th>
<th>liver</th>
<th>lung</th>
<th>spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC ($\times 10^9$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC-38</td>
<td>210.0</td>
<td>22.0</td>
<td>2.3</td>
<td>19.0</td>
<td>4.8</td>
<td>5.5</td>
</tr>
<tr>
<td>PIC-102</td>
<td>260.0</td>
<td>21.0</td>
<td>0.9</td>
<td>13.0</td>
<td>5.0</td>
<td>6.1</td>
</tr>
<tr>
<td>PIC-158</td>
<td>309.0</td>
<td>5.9</td>
<td>0.4</td>
<td>8.8</td>
<td>1.5</td>
<td>11.0</td>
</tr>
<tr>
<td>PIC-197</td>
<td>308.2</td>
<td>0.5</td>
<td>0.3</td>
<td>7.7</td>
<td>0.4</td>
<td>21.0</td>
</tr>
<tr>
<td>PIC-256</td>
<td>238.3</td>
<td>0.2</td>
<td>6.4</td>
<td>11.0</td>
<td>0.3</td>
<td>24.0</td>
</tr>
<tr>
<td>PIC-298</td>
<td>230.7</td>
<td>0.2</td>
<td>4.6</td>
<td>7.1</td>
<td>0.3</td>
<td>27.0</td>
</tr>
</tbody>
</table>

Table S3. Tumor selectivity of PIC nanoparticles.

<table>
<thead>
<tr>
<th>sample</th>
<th>blood</th>
<th>tumor</th>
<th>kidney</th>
<th>liver</th>
<th>lung</th>
<th>spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tumor to organ ratio* ($\frac{AUC_{tumor}}{AUC_{organ}}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC-38</td>
<td>-</td>
<td>1</td>
<td>8.0</td>
<td>1.1</td>
<td>3.8</td>
<td>3.4</td>
</tr>
<tr>
<td>PIC-102</td>
<td>-</td>
<td>1</td>
<td>25.0</td>
<td>1.8</td>
<td>4.2</td>
<td>3.4</td>
</tr>
<tr>
<td>PIC-158</td>
<td>-</td>
<td>1</td>
<td>15.0</td>
<td>0.7</td>
<td>3.9</td>
<td>0.5</td>
</tr>
<tr>
<td>PIC-197</td>
<td>-</td>
<td>1</td>
<td>1.2</td>
<td>0</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>PIC-256</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>PIC-298</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>

*Tumor selectivity of the particles was determined by calculating the relative accumulated concentrations between the tumor tissues and each organ ($\frac{AUC_{tumor}}{AUC_{organ}}$).
Detailed accumulation results for each organ

(A) (a) $[\times 10^6]$

(b) $[\times 10^8]$

(c) $[\times 10^6]$

(d) $[\times 10^8]$

(e) $[\times 10^6]$

Avg. Radiance per organ

(g/cm²/g)

Time (h)
Figure S3. Accumulation of various sizes of cross-linked Cy5-Nano-PLCosomes (B: 102 nm, C: 158 nm, D: 197 nm, E: 256 nm, F: 298 nm) and PIC micelles (A: 38.0 nm) in time as evaluated by fluorescence imaging. Open circles (a) lung, open square (b) liver, open triangle (c) spleen, diamond shape (d) kidney and closed circle (e) C-26 tumor.
References

