Preparation of Secondary Amine from Nitroarenes and Alcohols

Chun-Chin Lee and Shiuh-Tzung Liu*

Department of Chemistry, National Taiwan University, Taipei, Taiwan, 106, ROC

Supporting information.

Experimental section.
Nuclear magnetic resonance spectra were recorded in CDCl₃ on a Bruker AVANCE 400 spectrometer. Ruthenium complexes 1 ~ 3 were prepared accordingly to the method reported previously. Other chemicals and solvents were of analytical grade and were used without further purification.

Complex 1~ 3. Ruthenium complexes 1 and 2 were prepared by mixing amino-phosphine P~N with a stoichiometric quantity of [RuCl₂(dmso)₄] and [RuCl₂(CO)₃(THF)] in THF to yield the corresponding complexes [(P~N)RuCl₂(dmso)₂] (1) and [(P~N)RuCl₂(CO)₂] (2), whereas [(P~N)Ru(dmso)(ACN)Cl₂] (3) was obtained by treatment of 1 with acetonitrile under refluxing conditions.

Complex 1: ¹H NMR (400 MHz, CDCl₃): δ 7.88 (dd, 2H, J_H-H = 8.0 Hz, J_H-H = 12.0 Hz, Ar-H), 7.77 (dd, 2H, J_H-H = 8.0 Hz, J_H-H = 12.0 Hz, Ar-H), 7.66 (dd, 1H, J_H-H = 4.0 Hz, J_H-H = 8.0 Hz, Ar-H), 7.58~7.23 (m, 9H, Ar-H), 6.35 (d, 1H, J_H-H = 12 Hz, NH-), 5.64 (d, 1H, J_H-H = 12 Hz, NH-), 3.45 (s, 3H, DMSO), 3.40 (s, 3H, DMSO), 3.01 (s, 3H, DMSO), 2.11 (s, 3H, DMSO). ³¹P NMR (161 MHz, CDCl₃): δ 54.2.

Complex 2: ¹H NMR (400 MHz, d₆-dmso): δ 8.11 (d, 1H, J_H-P = 12 Hz, NH-), 7.88 (dd, 2H, J = 8.0 Hz, J = 12.0 Hz, Ar-H), 7.76 (m, 1H, Ar-H), 7.69~7.47 (m, 9H, Ar-H), 7.30 (m, 2H, Ar-H), 6.70 (d, 1H, J_H-P = 12 Hz, NH-); ³¹P NMR (161 MHz, d₆-dmso): δ 54.

Complex 3: ¹H NMR (400 MHz, CDCl₃): δ 7.90 (m, 2H, Ar-H), 7.75 (m, 1H Ar-H), 7.59 (m, 2H), 7.28~7.47 (m, 9H, Ar-H), 5.94 (d, 1H, J_H-H = 14 Hz, -NH), 4.71 (d, 1H, J_H-H = 14 Hz, -NH), 3.37 (s, 3H, dmso), 2.99 (s, 3H, dmso), 1.66 (s, 3H, CH₂CN). ³¹P NMR (161 MHz, CDCl₃): δ 63.0.

General procedure for catalysis.
A mixture of nitrobenzene (0.3 mmol), catalysts (1 mole % based on nitrobenzene), tBuOK in benzyl alcohol was placed in flask under the atmospheric pressure of H₂ and was heated by an oil bath at 110 ~150 °C for 24 h. After the completion of the reaction, brine (3 mL) and CH₂Cl₂(5 mL) were added. The organic layer was separated and the aqueous layer was
extracted with CH₂Cl₂. The combined organic extracts were dried over magnesium sulfate and concentrated. Products were characterized by NMR spectroscopy and the data were consistent with those reported. Product yields were obtained by the ¹H nmr integration compared to the internal standard. Some compounds were purified by chromatography and characterized by nmr spectroscopy.

General procedure for preparation of tertiary amines.

A mixture of secondary amine (0.3 mmol), catalysts 2 (3 x 10⁻³ mmol) and sodium tetrakis(3,5-trifluoromethylphenyl)borate (6 x 10⁻³ mmol) in alcohol (1.8 mmol) was placed in flask under the atmospheric pressure of H₂ and was heated by an oil bath at 150 °C for 24 h. The workup procedure and characterization were similar to those for the preparation of secondary amines.

Tribenzylamine¹

¹H NMR (400 MHz, CDCl₃) δ 7.49-7.11 (m, 15H), 3.47 (s, 6H).

Trihexylamine²

¹H NMR (400 MHz, CDCl₃) δ 2.41 (t, 6H, J_H-H = 7.1 Hz), 1.53–1.25 (m, 24H), 0.91 (t, 9H, J = 7.1 Hz).

Tris(4-methylbenzyl)amine³

¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, 6H, J_H-H = 7.8 Hz), 7.13 (d, 6H, J_H-H = 8.3 Hz), 3.46 (s, 6H), 2.34 (s, 9H).

N-Benzylaniline⁴

¹H NMR (400 MHz, CDCl₃): δ 7.35-7.21 (m, 5H), 7.14 (t, 2H, J_H-H = 7.3 Hz), 6.71 (t, 1H, J_H-H = 7.3 Hz), 6.59 (d, 2H, J = 7.5 Hz), 4.27 (s, 2H), 3.93 (br , 1H).

N-benzyl-4-bromoaniline⁵

¹H NMR (400 MHz, CDCl₃) δ 7.37-7.25 (m, 5H), 7.24 (d, 2H), J_H-H = 9.3 Hz), 6.46 (d, 2H, J_H-H = 9.3 Hz), 4.33 (s, 2H), 4.03 (br s, 1H).

N-Benzyl-4-chloroaniline⁶

¹H NMR (400 MHz, CDCl₃): δ 7.13 (d, 2H, J_H-H = 7.2 Hz), 7.08-7.03 (m, 5H), 6.36 (d, 2H, J_H-H = 7.2 Hz), 4.32 (s, 2H), 4.03 (br s, 1H).

N-Benzylidene-4-fluoroaniline⁷

¹H NMR (400 MHz, CDCl₃): δ 8.47 (s, 1H), 7.91 (m, 2H), 7.41 (m, 3H), 7.20 (m, 2H), 7.10 (m, 2H).
\(N\)-Benzylidene-4-methoxyaniline\(^7\)
\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.45 (s, 1H), 8.00 (m, 2H), 7.43 (m, 3H), 7.22 (m, 2H), 6.91 (m, 2H), 3.79 (s, 3H).

\(N\)-Benzyl-4-methoxyaniline\(^8\)
\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.37-7.31 (m, 5H), 7.25 (tt, 1H, \(J_{H-H} = 6.9, 2.1\) Hz), 6.75 (dt, 2H, \(J_{H-H} = 9.0, 2.9\) Hz), 6.57 (dt, 2H, \(J_{H-H} = 9.0, 2.9\) Hz), 4.25 (s, 1H), 3.72 (s, 3H).

\(N\)-benzyl-3-bromoaniline\(^6\)
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.13 (dd, 2H, \(J_{H-H} = 7.4, 7.2\) Hz), 7.03-7.05 (m, 3H), 6.94 (dd, 1H, \(J_{H-H} = 7.7, 8.0\) Hz), 6.75 (d, 1H, \(J_{H-H} = 7.7\) Hz), 6.62 (s, 1H), 6.35 (d, 1H, \(J_{H-H} = 7.7\) Hz), 4.33 (s, 2H), 4.02 (br s, 1H).

\(N\)-benzyl-2-bromoaniline\(^9\)
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.44 (dd, 1H, \(J_{H-H} = 1.4\) Hz, \(J_{H-H} = 8.0\) Hz), 7.35-7.23 (m, 5H), 7.15-7.10 (m, 1H), 6.60-6.55 (m, 2H), 4.74 (br s, 1H), 4.40 (d, 2H, \(J_{H-H} = 5.4\) Hz).

\(N\)-benzyl-3,5-dimethylaniline\(^8\)
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.35-7.26 (m, 5H), 6.37 (s, 1H), 6.33 (s, 2H), 4.34 (s, 2H), 2.25 (s, 6H), 1.62 (br s, 1H).

\(N\)-(4-Chlorobenzyl)aniline\(^10\)
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.28-7.12 (m, 6H), 6.71 (t, 1H, \(J_{H-H} = 7.7\) Hz), 6.57 (d, 2H, \(J_{H-H} = 7.7\) Hz), 4.28 (s, 2H), 4.02 (br s, 1H).

\(N\)-(4-Methylbenzyl)aniline\(^11\)
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.21 (d, 2H, \(J_{H-H} = 7.8\) Hz), 7.15-7.06 (m, 4H), 6.67 (t, 1H, \(J_{H-H} = 7.3\) Hz), 6.56 (d, 2H, \(J_{H-H} = 7.4\) Hz), 4.23 (s, 2H), 3.81 (br s, 1H), 2.32 (s, 3H).

\(N\)-(4-Methoxybenzyl)aniline\(^10\)
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.25 (d, 2H, \(J_{H-H} = 8.8\) Hz), 7.13 (t, 2H, \(J_{H-H} = 7.6\) Hz), 6.86 (d, 2H, \(J_{H-H} = 8.7\) Hz), 6.67 (t, 1H, \(J_{H-H} = 7.7\) Hz), 6.57 (d, 2H, \(J_{H-H} = 7.7\) Hz), 4.24 (s, 2H), 3.95 (br s, 1H), 3.81 (s, 3H).

\(N\)-(4-methoxybenzylidene)aniline\(^7\)
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.36 (s, 1H), 7.83 (d, 2H, \(J_{H-H} = 8.1\) Hz), 7.33 (m, 2H), 7.17 (m, 3H), 6.92 (d, 2H, \(J_{H-H} = 7.9\) Hz), 3.83 (s, 3H).
N-(naphthalen-2-ylmethyl)aniline12
1H NMR (400 MHz, CDCl$_3$) δ 7.71 (m, 4H), 7.37 (m, 3H), 7.09 (m, 2H), 6.62 (d, 1H, $J_{H-H} = 9.2$ Hz), 6.57 (d, 2H, $J_{H-H} = 10.2$ Hz), 4.40 (s, 2H), 4.22 (s, 1H).

N-Phenylfurfurylamine1
1H NMR (400 MHz, CDCl$_3$) δ 7.34 (d, 1H, $J_{H-H} = 1.0$ Hz), 7.19 (t, 2H, $J_{H-H} = 7.2$ Hz), 6.72 (t, 1H, $J_{H-H} = 7.2$ Hz), 6.67 (d, 2H, $J_{H-H} = 7.2$ Hz), 6.32 (m, 1H), 6.23 (m, 1H), 4.30 (s, 2H), 3.99 (br s, 1H).

N-Hexylaniline13
1H NMR (400 MHz, CDCl$_3$) δ 7.18 (dd, 2H, $J_{H-H} = 7.2, 8.6$ Hz), 6.69 (tt, 1H, $J_{H-H} = 0.9, 7.2$ Hz), 6.60 (dd, 2H, $J_{H-H} = 0.9, 8.6$ Hz), 3.59 (br s, 1 H), 3.11 (t, 2H, $J_{H-H} = 7.2$ Hz), 1.61 (quintet, 2H, $J_{H-H} = 7.2$ Hz), 1.44-1.27 (m, 6 H), 0.90 (t, 3H, $J_{H-H} = 7.2$ Hz).

N,N-Dibenzyl-1-hexanamine14
1H NMR (400 MHz, CDCl$_3$) δ 7.35-7.21 (m, 10H), 3.54 (s, 4H), 2.42 (t, 2H, $J_{H-H} = 7.3$ Hz), 1.62-1.23 (m, 8H), 0.84 (t, 3H, $J_{H-H} = 7.1$ Hz).

N,N-Dibenzyl-1-(4-chlorophenyl)methanamine15
1H NMR (400 MHz, CDCl$_3$) δ 7.37-7.21 (m, 14H), 3.54 (s, 4H), 3.47 (s, 2H).

N,N-Dibenzyl-1-(p-tolyl)methanamine15
1H NMR (400 MHz, CDCl$_3$) δ 7.38-7.35 (m, 4H), 7.28-7.13 (m, 8H), 7.08 (d, $J_{H-H} = 7.6$ Hz, 2H), 3.46 (s, 4H), 3.44 (s, 2H), 2.25 (s, 3H).

N,N-Dibenzyl-1-(naphthalene-2-yl)methanamine15
1H NMR (400 MHz, CDCl$_3$) δ 7.76-7.46 (m, 5H), 7.43-7.35 (m, 6H), 7.23-7.14 (m, 6H), 3.64 (s, 2H), 3.54 (s, 4H),

(E)-N,N-Dibenzyl-3-phenylprop-2-en-1-amine16
1H NMR (400 MHz, CDCl$_3$) δ 7.42-7.37 (m, 4H), 7.34-7.25 (m, 8H), 7.23-7.17 (m, 3H), 6.54 (d, 1H, $J_{H-H} = 15.5$ Hz), 6.29 (dt, 1H, $J_{H-H} = 15.5, 6.7$ Hz), 3.62 (s, 4H), 3.21 (d, 2H, $J_{H-H} = 6.4$ Hz).

N,N-Dibenzyl-3-phenylpropan-1-amine15
1H NMR (400 MHz, CDCl$_3$) δ 7.38-7.19 (m, 12H), 7.13-7.09 (m, 3H), 3.54 (s, 2H), 2.54 (t, 2H, $J_{H-H} = 8.1$ Hz), 2.46 (t, 2H, $J_{H-H} = 7.1$ Hz), 1.87-1.72 (m, 2H).
1-Benzylpiperidine15
1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 7.32-7.23 (m, 5H), 3.46 (s, 2H), 2.35 (t, 4H, \(J_{H-H} = 5.2 \) Hz), 1.62-1.52 (m, 4H), 1.45-1.43 (m, 2H).

1-Benzylmorpholine15
1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 7.35-7.26 (m, 5H), 3.75 (t, 4H, \(J_{H-H} = 4.7 \) Hz), 3.52 (s, 2H), 2.42 (t, 4H, \(J_{H-H} = 4.7 \) Hz).

\(N,N \)-dibenzyl-4-methylaniline17
1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 7.40-7.23 (m, 10H), 6.96 (d, 2H, \(J_{H-H} = 8.6 \) Hz), 6.64 (d, 2H, \(J_{H-H} = 8.6 \) Hz), 4.60 (s, 4H), 2.21 (s, 3H).

References.