Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor

Shunichi Fukuzumi,*a,b Kenji Saito,a Kei Ohkubo,a Tony Khoury,c Yukiyasu Kashiwagi,a Mark A. Absalom,c Suresh Gadde,d Francis D'Souza,ad Yasuyuki Araki,e Osamu Itoe and Maxwell J. Crossley*ec

a Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan. Fax: +81-6-6879-7370; Tel: +81-6-6879-7368; E-mail: fukuzumi@chem.eng.osaka-u.ac.jp

b Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea.

c School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia. E-mail: m.crossley@chem.usyd.edu.au.

d Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA. E-mail: Francis.DSouza@wichita.edu

e Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan.
Fig. S1 (a) Change in the absorption of D(ZnP)$_{16}$ (2.9 × 10$^{-6}$ M based on the number of porphyrin unit) in the presence of various concentrations of C$_{60}$py (0 to 9.6 × 10$^{-5}$ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ vs. $[C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (A - A_0)/(A_\infty - A_0)$; A is the absorption of D(ZnP)$_{16}$ at 435 nm in the presence of C$_{60}$py, A_0 and A_∞ are the initial and final intensities at the same wavelength in the absence and presence of C$_{60}$py, respectively. (b) Change in the absorbance at 430 nm of D(ZnP)$_{16}$ (2.9 × 10$^{-6}$ M) in the presence of various concentrations of C$_{60}$py (0 to 9.6 × 10$^{-5}$ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ vs $[C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (I - I_0)/(I_\infty - I_0)$; I is the absorbance at 430 nm in the presence of C$_{60}$py, I_0 and I_∞ are the initial and final absorbances in the absence and presence of C$_{60}$py, respectively.
Fig. S2 (a) Change in the absorption of D(ZnP)$_8$ (2.9 × 10$^{-6}$ M based on the number of porphyrin unit) in the presence of various concentrations of C$_{60}$py (0 to 9.6 × 10$^{-5}$ M) in deaerated PhCN at 298 K. Inset: Plot of ($\alpha^{-1} - 1$)$^{-1}$ vs [C$_{60}$py]$_0$ – α[ZnP]$_0$. α = ($A - A_0$)/(A$_\infty$ – A$_0$); A is the absorption of D(ZnP)$_{16}$ at 430 nm in the presence of C$_{60}$py, A$_0$ and A$_\infty$ are the initial and final intensities at the same wavelength in the absence and presence of C$_{60}$py, respectively. (b) Change in the absorbance at 430 nm of D(ZnP)$_8$ (2.9 × 10$^{-6}$ M) in the presence of various concentrations of C$_{60}$py (0 to 9.6 × 10$^{-5}$ M) in deaerated PhCN at 298 K. Inset: Plot of ($\alpha^{-1} - 1$)$^{-1}$ vs [C$_{60}$py]$_0$ – α[ZnP]$_0$. α = ($I - I_0$)/(I$_\infty$ – I$_0$); I is the absorbance at 430 nm in the presence of C$_{60}$py, I$_0$ and I$_\infty$ are the initial and final absorbances in the absence and presence of C$_{60}$py, respectively.
Fig. S3 (a) Change in the absorption of D(ZnP)$_4$ (2.9 × 10$^{-6}$ M based on the number of porphyrin unit) in the presence of various concentrations of C$_{60}$py (0 to 9.6 × 10$^{-5}$ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ vs $[\text{C}_{60}\text{py}]_0 - \alpha[\text{ZnP}]_0$. $\alpha = (A - A_0)/(A_\infty - A_0)$; A is the absorption of D(ZnP)$_{16}$ at 430 nm in the presence of C$_{60}$py, A_0 and A_∞ are the initial and final intensities at the same wavelength in the absence and presence of C$_{60}$py, respectively. (b) Change in the absorbance at 430 nm of D(ZnP)$_4$ (2.9 × 10$^{-6}$ M) in the presence of various concentrations of C$_{60}$py (0 to 9.6 × 10$^{-5}$ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ vs $[\text{C}_{60}\text{py}]_0 - \alpha[\text{ZnP}]_0$. $\alpha = (I - I_0)/(I_\infty - I_0)$; I is the absorbance at 430 nm in the presence of C$_{60}$py, I_0 and I_∞ are the initial and final absorbances in the absence and presence of C$_{60}$py, respectively.
Fig. S4 (a) Fluorescence spectra of D(ZnP)$_8$ (2.9 × 10$^{-6}$ M based on the number of porphyrin unit) in the presence of various concentrations of C$_{60}$py (0 to 1.5 × 10$^{-4}$ M) in deaerated PhCN at 298 K. (b) Change in the fluorescence intensity of D(ZnP)$_8$ (2.9 × 10$^{-6}$ M based on the number of porphyrin unit) in the presence of various concentrations of C$_{60}$py (0 to 1.5 × 10$^{-4}$ M) in deaerated PhCN at 298 K. Inset: Plot of ($\alpha^{-1} - 1$)$^{-1}$ versus [C$_{60}$py]$_0$ - α[ZnP]$_0$. $\alpha = (I - I_0)/(I_\infty - I_0)$; I is the fluorescence intensity of D(ZnP)$_8$ at 609 nm in the presence of C$_{60}$py, I_0 and I_∞ are the initial and final intensities at the same wavelength in the absence and presence of C$_{60}$py, respectively.
Fig. S5 (a) Fluorescence spectra of D(ZnP)$_4$ (2.9 × 10$^{-6}$ M based on the number of porphyrin unit) in the presence of various concentrations of C$_{60}$py (0 to 1.5 × 10$^{-4}$ M) in deaerated PhCN at 298 K. (b) Change in the fluorescence intensity of D(ZnP)$_4$ (2.9 × 10$^{-6}$ M based on the number of porphyrin unit) in the presence of various concentrations of C$_{60}$py (0 to 1.5 × 10$^{-4}$ M) in deaerated PhCN at 298 K. Inset: Plot of ($\alpha^{-1} - 1$)$^{-1}$ versus $[\text{C}_{60}\text{py}]_0 - \alpha[\text{ZnP}]_0$. $\alpha = (I - I_0)/(I_{\infty} - I_0)$; I is the fluorescence intensity of D(ZnP)$_4$ at 609 nm in the presence of C$_{60}$py, I_0 and I_{∞} are the initial and final intensities at the same wavelength in the absence and presence of C$_{60}$py, respectively.
Fig. S6 (a) Transient absorption spectra of D(ZnP)$_8$–C$_{60}$py in deaerated PhCN taken at 1.0 (black), 10 (red) and 350 ps (blue) after femtosecond laser excitation at 438 nm. (b) Decay time profile at 460 nm due to 1ZnP*. Gray line is drawn on the basis of the two-exponential curve fitting with $k = 1.7 \times 10^{10}$ and 1.0×10^8 s$^{-1}$.

Note: Slow decay component is due to the intersystem crossing of free ZnP.
Materials and methods

Zinc(II) porphyrin dendrimers and fulleropyrrolidine bearing a pyridine were prepared according to the literature.S1,S2 Absorption spectra were measured on a Shimadzu UV-3100PC spectrometer at 298 K. Corrected fluorescence spectra were taken using a SHIMADZU spectrofluorophotometer (RF-5300PC). Nanosecond transient absorption measurements were also carried out using SHG (532 nm) of a Nd:YAG laser (Spectra-Physics, Quanta-Ray GCR-130, fwhm 6 ns) as an excitation source. For transient absorption spectra in the near-IR region (600-1600 nm), monitoring light from a pulsed Xe lamp was detected with a Ge-avalanche photodiode (Hamamatsu Photonics, B2834). All the samples (10^{-4}~10^{-5} M) in a quartz cell (1 x 1 cm) were deaerated by bubbling argon through the solution for 15 min. The quantum yields were measured using the comparative method.7 ESR spectra were recorded on a JEOL X-band spectrometer (JES-RE1XE) with a quartz ESR tube (4.5 mm i.d.). ESR spectra in frozen PhCN were measured under photoirradiation with a high-pressure mercury lamp (USH–1005D) through a water filter focusing at the sample cell in the ESR cavity at 173 K. The g values were calibrated using an Mn$^{2+}$ marker.