# Electronic Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2011 data_global _journal_name_full Chem.Commun. _journal_coden_cambridge 0182 _journal_year ? _journal_volume ? _journal_page_first ? _publ_contact_author_email chemjspark@mail.utexas.edu _publ_contact_author_name 'Jung Su Park' loop_ _publ_author_name 'Chang-Hee Lee' J.Sessler 'Dongho Kim' P.Panda 'Se-Young Kee' 'Jong Min Lim' 'Soo-Jin Kim' 'Jaeduk Yoo' 'Jung-Su Park' data_Naphtharubyrin _database_code_depnum_ccdc_archive 'CCDC 812383' #TrackingRef 'Naphtharubyrin.CIF' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C64 H20 N6 F20 1+, Cl 1-, 2 C5 H12, 2 C H2 Cl2' _chemical_formula_sum 'C76 H48 Cl5 F20 N6' _chemical_formula_weight 1602.45 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Tetragonal _symmetry_space_group_name_H-M 'P -4 21 m' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'y, -x, -z' '-x, -y, z' '-y, x, -z' 'x+1/2, -y+1/2, -z' '-y+1/2, -x+1/2, z' '-x+1/2, y+1/2, -z' 'y+1/2, x+1/2, z' _cell_length_a 21.411(2) _cell_length_b 21.411(2) _cell_length_c 7.5217(8) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 3448.2(7) _cell_formula_units_Z 2 _cell_measurement_temperature 233(2) _cell_measurement_reflns_used 3369 _cell_measurement_theta_min 2.0 _cell_measurement_theta_max 27.5 _exptl_crystal_description block _exptl_crystal_colour 'light brown' _exptl_crystal_size_max 0.25 _exptl_crystal_size_mid 0.07 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.543 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1622 _exptl_absorpt_coefficient_mu 0.316 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.782 _exptl_absorpt_correction_T_max 1.00 _exptl_absorpt_process_details ; Abscor. T. Higashi (2001). The Rigaku Corporation, Tokyo, Japan. ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 233(2) _diffrn_radiation_wavelength 0.71075 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Rigaku SCX-Mini with Mercury CCD' _diffrn_measurement_method \w-scans _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 19139 _diffrn_reflns_av_R_equivalents 0.0938 _diffrn_reflns_av_sigmaI/netI 0.0469 _diffrn_reflns_limit_h_min -24 _diffrn_reflns_limit_h_max 25 _diffrn_reflns_limit_k_min -25 _diffrn_reflns_limit_k_max 25 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 3.01 _diffrn_reflns_theta_max 25.00 _reflns_number_total 1742 _reflns_number_gt 1195 _reflns_threshold_expression >2sigma(I) _publ_section_references ; Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G.,Spagna R. Sir97. (1999) J. Appl. Cryst. 32, 115-119. Farrugia, L. J. (1999) J. Appl. Cryst., 32, 837-838. An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-ray Diffraction Data. Flack H D (1983), Acta Cryst. A39, 876-881. Hooft, R. W. W., Straver, L. H. and Spek, A. L. (2008). J. Appl. Cryst., 41, 96-103. Determination of absolute structure using Bayesian statistics on Bijvoet differences. Sheldrick, G. M. (2008). SHELXL-97. Acat Cryst., A64, 112-122. Spek, A. L. (1998) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands. ; _publ_section_acknowledgements ; The data were collected using instrumentation purchased with funds provided by the National Science Foundation Grant No. 0741973. ; _computing_data_collection 'CrystalClear (Rigaku Inc., 2008)' _computing_cell_refinement 'CrystalClear (Rigaku Inc., 2008)' _computing_data_reduction 'CrystalClear (Rigaku Inc., 2008)' _computing_structure_solution ; SIR97 - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G.,Spagna R. ; _computing_structure_refinement 'XL SHELXTL/PC, Siemens Analytical' _computing_molecular_graphics 'XP SHELXTL/PC, Siemens Analytical' _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The macrocycle resided around Wyckoff site c with mm symmetry so that 1/4 of the macrocycle constituted the asymmetric unit. A molecule of dichloromethane was disordered near this same symmetry. Initially, the solvent molecule was modeled so that one Cl atom and the C atom sat on the mirror plane of symmetry at x, 1/2+x, z. While that model generally satisfied the Cl atom positions, it was clear that the C atom was poorly resolved. A more comprehensive model was proposed whereby two different orientations of the dichloromethane molecule was refined. The site occupancy factor for one orientation was assigned the variable x, comprising atoms Cl2, Cl3 and C1aa, while the variable (1-x) was assigned to the site occupancy factors for the alternate component of the disordered solvent comprised of the atoms, Cl1b, Cl2b and C1b. The geometry of the two components were restrained to be equivalent throughout the refinement procedure. A common isotropic displacement parameter was refined for the Cl atoms and the C atoms of the solvent while refining the variable x. In this way the site occupancy factor for the major component of the disorder composed of atoms, Cl1b, Cl2b and C1b refined to 62(2)%. No H atoms for the disordered dichloromethane molecules were included in the final refinement model. The crystal appeared to be a racemic twin. The Flack x parameter refined to 0.43(17). The Hooft y-parameter refined to 0.47(8). The Friedel pairs of reflections were merged before refinement. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0636P)^2^+0.6758P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack ? _refine_ls_number_reflns 1742 _refine_ls_number_parameters 281 _refine_ls_number_restraints 81 _refine_ls_R_factor_all 0.0877 _refine_ls_R_factor_gt 0.0526 _refine_ls_wR_factor_ref 0.1409 _refine_ls_wR_factor_gt 0.1248 _refine_ls_goodness_of_fit_ref 1.182 _refine_ls_restrained_S_all 1.184 _refine_ls_shift/su_max 0.012 _refine_ls_shift/su_mean 0.001 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.8595(2) 0.5945(2) 0.7589(9) 0.0454(15) Uani 1 1 d . . . C2 C 0.7956(2) 0.6125(2) 0.7423(9) 0.0444(14) Uani 1 1 d . . . C3 C 0.7606(2) 0.5591(2) 0.7509(8) 0.0429(14) Uani 1 1 d . . . H3 H 0.7163 0.5570 0.7457 0.051 Uiso 1 1 calc R . . C4 C 0.8013(2) 0.5075(2) 0.7689(9) 0.0458(14) Uani 1 1 d . . . C5 C 0.7761(2) 0.6772(2) 0.7229(9) 0.0439(14) Uani 1 1 d . . . C6 C 0.7141(2) 0.6941(2) 0.7039(10) 0.0557(17) Uani 1 1 d . . . H6 H 0.6824 0.6630 0.7045 0.067 Uiso 1 1 calc R . . C7 C 0.6983(2) 0.7569(2) 0.6840(10) 0.065(2) Uani 1 1 d . . . H7 H 0.6558 0.7685 0.6702 0.078 Uiso 1 1 calc R . . C8 C 0.7817(2) 0.4447(2) 0.7837(9) 0.0466(15) Uani 1 1 d . . . C9 C 0.7119(2) 0.4367(2) 0.7856(10) 0.0453(14) Uani 1 1 d . . . C10 C 0.6774(3) 0.4356(3) 0.6270(10) 0.0512(16) Uani 1 1 d . . . C11 C 0.6146(3) 0.4243(3) 0.6282(10) 0.0596(19) Uani 1 1 d . . . C12 C 0.5840(3) 0.4144(3) 0.7831(12) 0.0639(18) Uani 1 1 d . . . C13 C 0.6161(3) 0.4154(3) 0.9407(10) 0.0515(17) Uani 1 1 d . . . C14 C 0.6787(3) 0.4265(2) 0.9389(10) 0.0470(16) Uani 1 1 d . . . C15 C 0.8150(2) 0.3888(2) 0.7935(9) 0.0430(14) Uani 1 1 d . . . C16 C 0.7845(2) 0.3291(2) 0.8036(9) 0.0538(17) Uani 1 1 d . . . H16 H 0.7407 0.3222 0.8093 0.065 Uiso 1 1 calc R . . N1 N 0.86152(17) 0.53045(17) 0.7735(7) 0.0460(12) Uani 1 1 d . . . H1 H 0.8956 0.5078 0.7841 0.055 Uiso 1 1 calc R . . N2 N 0.87921(18) 0.37921(18) 0.7871(11) 0.0509(18) Uani 1 2 d S . . F1 F 0.70625(17) 0.44438(18) 0.4721(5) 0.0712(11) Uani 1 1 d . . . F2 F 0.58309(18) 0.4222(2) 0.4732(7) 0.0953(14) Uani 1 1 d . . . F3 F 0.52218(14) 0.40320(19) 0.7814(7) 0.0993(15) Uani 1 1 d . . . F4 F 0.58554(17) 0.40298(18) 1.0928(6) 0.0771(12) Uani 1 1 d . . . F5 F 0.70881(16) 0.42707(16) 1.0957(6) 0.0642(10) Uani 1 1 d . . . Cl1 Cl 1.0000 0.5000 0.8913(6) 0.0780(11) Uani 1 4 d S . . C1A C 0.5953(4) 0.2601(4) 0.7651(15) 0.109(3) Uani 1 1 d . . . H1A1 H 0.6063 0.2789 0.6505 0.164 Uiso 1 1 calc R . . H1A2 H 0.6197 0.2799 0.8598 0.164 Uiso 1 1 calc R . . H1A3 H 0.5507 0.2665 0.7880 0.164 Uiso 1 1 calc R . . C2A C 0.6091(3) 0.1919(3) 0.7607(13) 0.089(2) Uani 1 1 d . . . H2A1 H 0.5919 0.1739 0.6499 0.106 Uiso 1 1 calc R . . H2A2 H 0.5879 0.1714 0.8622 0.106 Uiso 1 1 calc R . . C3A C 0.6780(3) 0.1780(3) 0.7698(17) 0.077(3) Uani 1 2 d S . . H3A1 H 0.6994 0.1994 0.6702 0.093 Uiso 1 2 calc SR . . H3A2 H 0.6951 0.1951 0.8822 0.093 Uiso 1 2 calc SR . . Cl2 Cl 0.8494(6) 0.4441(10) 0.288(4) 0.064(5) Uani 0.19 1 d PDU A 1 Cl3 Cl 0.9704(3) 0.4704(3) 0.4388(14) 0.120(3) Uani 0.38 2 d SPDU . 1 C1AA C 0.9186(7) 0.4186(7) 0.360(5) 0.107(4) Uani 0.38 2 d SPDU A 1 Cl1B Cl 0.8544(6) 0.4474(9) 0.2246(19) 0.085(4) Uani 0.31 1 d PDU B 2 Cl2B Cl 0.9528(7) 0.3611(7) 0.340(2) 0.102(4) Uani 0.31 1 d PDU B 2 C1B C 0.9283(6) 0.4283(6) 0.253(3) 0.101(4) Uani 0.62 2 d SPDU B 2 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.034(3) 0.031(3) 0.072(5) -0.001(3) -0.002(3) 0.0007(17) C2 0.034(3) 0.034(3) 0.066(4) -0.002(3) -0.004(3) -0.001(2) C3 0.033(3) 0.034(3) 0.062(4) 0.004(3) 0.001(3) -0.0059(19) C4 0.029(3) 0.036(3) 0.071(4) 0.003(3) -0.003(3) -0.0061(19) C5 0.037(3) 0.035(3) 0.060(4) 0.001(3) -0.001(3) 0.0033(19) C6 0.033(3) 0.045(3) 0.090(5) 0.008(3) -0.004(3) 0.003(2) C7 0.036(3) 0.052(3) 0.109(6) 0.001(4) 0.000(3) 0.009(2) C8 0.030(3) 0.036(3) 0.074(5) 0.000(3) 0.001(3) -0.006(2) C9 0.032(3) 0.028(3) 0.076(5) -0.003(3) 0.000(3) 0.0003(19) C10 0.040(4) 0.048(4) 0.066(5) 0.006(3) 0.006(3) -0.006(3) C11 0.041(4) 0.060(4) 0.077(6) 0.001(4) -0.016(4) -0.011(3) C12 0.026(3) 0.072(4) 0.094(6) 0.004(4) 0.009(4) -0.010(3) C13 0.041(4) 0.046(3) 0.068(5) 0.003(3) 0.013(4) -0.002(3) C14 0.032(3) 0.043(3) 0.066(5) 0.001(3) 0.001(3) 0.000(2) C15 0.031(3) 0.031(3) 0.067(4) -0.002(3) 0.002(3) -0.0037(18) C16 0.030(3) 0.041(3) 0.090(5) 0.003(3) 0.003(3) -0.007(2) N1 0.031(2) 0.031(2) 0.077(4) 0.002(2) 0.001(2) 0.0027(15) N2 0.037(2) 0.037(2) 0.079(5) 0.001(3) 0.001(3) -0.001(2) F1 0.058(2) 0.085(3) 0.070(3) 0.007(2) 0.004(2) -0.0120(18) F2 0.060(3) 0.133(4) 0.093(4) 0.015(3) -0.025(3) -0.021(2) F3 0.0349(19) 0.127(3) 0.136(4) 0.018(3) -0.001(2) -0.0244(19) F4 0.060(2) 0.078(3) 0.094(3) 0.003(2) 0.030(2) -0.0126(18) F5 0.055(2) 0.072(2) 0.066(3) -0.001(2) -0.005(2) -0.0091(17) Cl1 0.0677(14) 0.0677(14) 0.098(3) 0.000 0.000 0.0291(17) C1A 0.121(7) 0.092(6) 0.114(8) 0.002(6) 0.009(7) 0.021(5) C2A 0.082(5) 0.102(6) 0.082(7) 0.011(5) 0.005(5) -0.005(4) C3A 0.073(4) 0.073(4) 0.086(9) 0.007(4) 0.007(4) -0.006(5) Cl2 0.049(6) 0.053(6) 0.090(12) 0.014(9) -0.011(8) -0.008(5) Cl3 0.124(3) 0.124(3) 0.111(6) -0.013(3) -0.013(3) -0.027(4) C1AA 0.104(4) 0.104(4) 0.112(7) -0.002(4) -0.002(4) -0.001(5) Cl1B 0.083(5) 0.084(5) 0.089(7) 0.016(6) -0.006(5) 0.003(4) Cl2B 0.093(5) 0.096(6) 0.115(7) 0.002(5) -0.014(5) 0.017(4) C1B 0.099(4) 0.099(4) 0.105(7) 0.004(4) 0.004(4) 0.006(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N1 1.377(6) . ? C1 C1 1.392(9) 6_665 ? C1 C2 1.428(6) . ? C2 C3 1.369(6) . ? C2 C5 1.454(6) . ? C3 C4 1.413(6) . ? C3 H3 0.9500 . ? C4 N1 1.379(6) . ? C4 C8 1.414(6) . ? C5 C6 1.383(7) . ? C5 C5 1.416(9) 6_665 ? C6 C7 1.395(7) . ? C6 H6 0.9500 . ? C7 C7 1.355(11) 6_665 ? C7 H7 0.9500 . ? C8 C15 1.394(6) . ? C8 C9 1.504(7) . ? C9 C14 1.371(8) . ? C9 C10 1.403(9) . ? C10 F1 1.332(7) . ? C10 C11 1.367(8) . ? C11 C12 1.353(9) . ? C11 F2 1.347(8) . ? C12 F3 1.346(6) . ? C12 C13 1.370(10) . ? C13 F4 1.344(7) . ? C13 C14 1.362(8) . ? C14 F5 1.344(7) . ? C15 N2 1.392(5) . ? C15 C16 1.439(6) . ? C16 C16 1.350(10) 8_545 ? C16 H16 0.9500 . ? N1 H1 0.8800 . ? N2 C15 1.392(5) 8_545 ? C1A C2A 1.491(9) . ? C1A H1A1 0.9800 . ? C1A H1A2 0.9800 . ? C1A H1A3 0.9800 . ? C2A C3A 1.508(8) . ? C2A H2A1 0.9900 . ? C2A H2A2 0.9900 . ? C3A C2A 1.508(8) 8_545 ? C3A H3A1 0.9900 . ? C3A H3A2 0.9900 . ? Cl2 C1AA 1.670(12) . ? Cl3 C1AA 1.674(19) . ? Cl3 Cl3 1.794(17) 3_765 ? C1AA Cl2 1.670(12) 8_545 ? Cl1B Cl2B 0.884(18) 8_545 ? Cl1B C1B 1.648(12) . ? Cl2B Cl1B 0.884(18) 8_545 ? Cl2B C1B 1.665(18) . ? C1B Cl1B 1.648(12) 8_545 ? C1B Cl2B 1.665(18) 8_545 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 C1 C1 133.0(2) . 6_665 ? N1 C1 C2 107.8(4) . . ? C1 C1 C2 119.2(2) 6_665 . ? C3 C2 C1 107.1(4) . . ? C3 C2 C5 130.1(4) . . ? C1 C2 C5 122.8(4) . . ? C2 C3 C4 108.7(4) . . ? C2 C3 H3 125.7 . . ? C4 C3 H3 125.7 . . ? N1 C4 C8 128.0(4) . . ? N1 C4 C3 107.5(4) . . ? C8 C4 C3 124.5(4) . . ? C6 C5 C5 119.6(3) . 6_665 ? C6 C5 C2 122.4(4) . . ? C5 C5 C2 118.1(3) 6_665 . ? C5 C6 C7 119.7(5) . . ? C5 C6 H6 120.2 . . ? C7 C6 H6 120.2 . . ? C7 C7 C6 120.7(3) 6_665 . ? C7 C7 H7 119.6 6_665 . ? C6 C7 H7 119.6 . . ? C15 C8 C4 131.9(4) . . ? C15 C8 C9 114.2(4) . . ? C4 C8 C9 113.9(4) . . ? C14 C9 C10 116.1(5) . . ? C14 C9 C8 122.7(6) . . ? C10 C9 C8 121.1(6) . . ? F1 C10 C11 119.1(7) . . ? F1 C10 C9 119.8(5) . . ? C11 C10 C9 121.0(6) . . ? C12 C11 F2 119.9(6) . . ? C12 C11 C10 120.6(7) . . ? F2 C11 C10 119.5(7) . . ? F3 C12 C11 119.7(7) . . ? F3 C12 C13 120.3(7) . . ? C11 C12 C13 120.0(5) . . ? F4 C13 C14 121.5(6) . . ? F4 C13 C12 119.3(5) . . ? C14 C13 C12 119.2(6) . . ? F5 C14 C13 117.7(6) . . ? F5 C14 C9 119.2(5) . . ? C13 C14 C9 123.1(6) . . ? N2 C15 C8 129.1(4) . . ? N2 C15 C16 108.6(4) . . ? C8 C15 C16 122.2(4) . . ? C16 C16 C15 108.0(3) 8_545 . ? C16 C16 H16 126.0 8_545 . ? C15 C16 H16 126.0 . . ? C1 N1 C4 108.9(4) . . ? C1 N1 H1 125.6 . . ? C4 N1 H1 125.6 . . ? C15 N2 C15 107.0(5) 8_545 . ? C2A C1A H1A1 109.5 . . ? C2A C1A H1A2 109.5 . . ? H1A1 C1A H1A2 109.5 . . ? C2A C1A H1A3 109.5 . . ? H1A1 C1A H1A3 109.5 . . ? H1A2 C1A H1A3 109.5 . . ? C1A C2A C3A 112.7(6) . . ? C1A C2A H2A1 109.0 . . ? C3A C2A H2A1 109.0 . . ? C1A C2A H2A2 109.0 . . ? C3A C2A H2A2 109.0 . . ? H2A1 C2A H2A2 107.8 . . ? C2A C3A C2A 112.6(8) 8_545 . ? C2A C3A H3A1 109.1 8_545 . ? C2A C3A H3A1 109.1 . . ? C2A C3A H3A2 109.1 8_545 . ? C2A C3A H3A2 109.1 . . ? H3A1 C3A H3A2 107.8 . . ? Cl3 C1AA Cl2 119.1(9) . 8_545 ? Cl3 C1AA Cl2 119.1(9) . . ? Cl2 C1AA Cl2 118(2) 8_545 . ? Cl1B C1B Cl1B 117.3(18) 8_545 . ? Cl1B C1B Cl2B 124.5(13) . . ? Cl2B C1B Cl2B 113.0(17) 8_545 . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 C3 1.2(7) . . . . ? C1 C1 C2 C3 -178.4(4) 6_665 . . . ? N1 C1 C2 C5 -179.6(6) . . . . ? C1 C1 C2 C5 0.8(8) 6_665 . . . ? C1 C2 C3 C4 -1.2(7) . . . . ? C5 C2 C3 C4 179.7(7) . . . . ? C2 C3 C4 N1 0.8(8) . . . . ? C2 C3 C4 C8 179.3(6) . . . . ? C3 C2 C5 C6 -2.1(12) . . . . ? C1 C2 C5 C6 178.9(6) . . . . ? C3 C2 C5 C5 178.2(6) . . . 6_665 ? C1 C2 C5 C5 -0.8(8) . . . 6_665 ? C5 C5 C6 C7 0.4(9) 6_665 . . . ? C2 C5 C6 C7 -179.3(7) . . . . ? C5 C6 C7 C7 -0.4(9) . . . 6_665 ? N1 C4 C8 C15 -5.4(12) . . . . ? C3 C4 C8 C15 176.4(7) . . . . ? N1 C4 C8 C9 176.0(6) . . . . ? C3 C4 C8 C9 -2.1(10) . . . . ? C15 C8 C9 C14 79.7(7) . . . . ? C4 C8 C9 C14 -101.4(6) . . . . ? C15 C8 C9 C10 -96.5(7) . . . . ? C4 C8 C9 C10 82.3(7) . . . . ? C14 C9 C10 F1 -179.2(5) . . . . ? C8 C9 C10 F1 -2.7(8) . . . . ? C14 C9 C10 C11 -0.8(8) . . . . ? C8 C9 C10 C11 175.7(5) . . . . ? F1 C10 C11 C12 179.2(6) . . . . ? C9 C10 C11 C12 0.8(9) . . . . ? F1 C10 C11 F2 0.0(9) . . . . ? C9 C10 C11 F2 -178.4(5) . . . . ? F2 C11 C12 F3 -0.7(9) . . . . ? C10 C11 C12 F3 -179.9(5) . . . . ? F2 C11 C12 C13 178.8(6) . . . . ? C10 C11 C12 C13 -0.4(9) . . . . ? F3 C12 C13 F4 2.2(9) . . . . ? C11 C12 C13 F4 -177.3(6) . . . . ? F3 C12 C13 C14 179.6(5) . . . . ? C11 C12 C13 C14 0.2(9) . . . . ? F4 C13 C14 F5 -2.6(8) . . . . ? C12 C13 C14 F5 -179.9(5) . . . . ? F4 C13 C14 C9 177.1(5) . . . . ? C12 C13 C14 C9 -0.3(9) . . . . ? C10 C9 C14 F5 -179.8(5) . . . . ? C8 C9 C14 F5 3.8(7) . . . . ? C10 C9 C14 C13 0.6(7) . . . . ? C8 C9 C14 C13 -175.9(5) . . . . ? C4 C8 C15 N2 -1.6(13) . . . . ? C9 C8 C15 N2 176.9(7) . . . . ? C4 C8 C15 C16 -178.3(7) . . . . ? C9 C8 C15 C16 0.3(10) . . . . ? N2 C15 C16 C16 0.1(6) . . . 8_545 ? C8 C15 C16 C16 177.4(5) . . . 8_545 ? C1 C1 N1 C4 178.8(3) 6_665 . . . ? C2 C1 N1 C4 -0.7(8) . . . . ? C8 C4 N1 C1 -178.5(6) . . . . ? C3 C4 N1 C1 0.0(8) . . . . ? C8 C15 N2 C15 -177.2(5) . . . 8_545 ? C16 C15 N2 C15 -0.1(10) . . . 8_545 ? C1A C2A C3A C2A -178.6(7) . . . 8_545 ? Cl3 Cl3 C1AA Cl2 79(3) 3_765 . . 8_545 ? Cl3 Cl3 C1AA Cl2 -79(3) 3_765 . . . ? _diffrn_measured_fraction_theta_max 0.974 _diffrn_reflns_theta_full 25.00 _diffrn_measured_fraction_theta_full 0.974 _refine_diff_density_max 0.318 _refine_diff_density_min -0.225 _refine_diff_density_rms 0.049