Wavelength-Controlled Supramolecular Photocyclodimerization of Anthracenearboxylate Mediated by γ-Cyclodextrins

Qian Wang, a,b Cheng Yang,* a Chengfeng Ke, a,b Gaku Fukuhara, a Tadashi Mori, a Yu Liu*, b and Yoshihisa Inoue* a

a Department of Applied Chemistry, Osaka University, Yamada-oka, Suita 565-0871, Japan. Fax: 81-6-687-97923; Tel: 81-6-687-97920
E-mails: c.yang@chem.eng.osaka-u.ac.jp; inoue@chem.eng.osaka-u.ac.jp

b Department of Chemistry and State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 30071, China.
E-mail: yuliu@nankai.edu.cn

Table of Contents

Experimental .. S2
Materials .. S2
Instruments .. S2
Photolyses ... S2
Synthesis of 6 .. S2

Figure S1. 1H NMR spectra of 6... S3

Figure S2. 13C NMR spectra of 6 ... S4

Figure S3. HR FAB mass spectra of 6 .. S5

Figure S4. UV-vis spectral titration of AC with 6 in pH 9 phosphate buffer solution at 25 °C. S6

Figure S5. Circular dichroism spectral titration of AC with 6 in pH 9 phosphate buffer at 25 °C S6

Figure S6. The changes of enantiomeric excess (ee) and excitational excess (xx) of 2 and 3 as a function of
genewavelength with 6 .. S7

Table S1. Product distribution, ee and xx values in photocyclodimerization of 2-AC with native and modified
genew-CDs at various wavelengths. .. S8
Experimental

Materials. 2-Anthracenecarboxylic acid was purchased from Tokyo Chemical Industry, and γ-cyclodextrin and other chemicals from Wako Pure Chemicals Industries. These were used as received. Host 5 was synthesized as reported previously.1

Instruments. UV-vis and circular dichroism spectra were recorded on JASCO V-560 spectrophotometer and JASCO J-810 spectropolarimeter, respectively. FAB mass spectra were measured on a JEOL JMS-DX303 mass spectrometer. 1H and 13C NMR spectra were recorded on JEOL GSX-400 and Bruker DRX-600 spectrometer, respectively.

Photolyses. Sample solutions in quartz cells were deoxygenated with N2 bubbling, and then irradiated at different wavelengths using a xenon lamp equipped with appropriate band-pass filters of fwhm = 10 nm. The irradiated samples were analyzed by chiral HPLC as reported previously.2

Synthesis of 6. 6-TsO-γ-CD (300 mg) was dissolved in 1,6-diaminohexane (5 mL) under Ar atmosphere. After heating the mixture at 80 °C for 12 h, the resulting solution was added dropwise to acetone (100 mL) to give a white precipitate. The precipitate was collected by centrifugation, washed three times with 30 mL acetone, and then dissolved in water and freeze-dried to give 6-(6-aminohexyl)amino-6-deoxy-γ-CD in 83 % yield as a white powder. The white powder (200 mg) was dissolved in 20 mL DMF, to which was added iodomethane (2 mL) under N2. After stirred for 15 h at 60 °C, the solution was cooled down to room temperature and added dropwise with stirring to acetone (300 mL) to give a precipitate. The precipitate was collected by filtration, washed three times with acetone, and then dissolved in water and freeze-dried to give 6 in 75 % yield as a white solid.

1H NMR (400 MHz, D2O): δ 5.06-4.93 (m, 8H), 3.87-3.56 (m, 32H), 3.53-3.37 (m, 16H), 3.33-3.22 (m, 4H), 3.05 (s, 3H), 3.04 (s, 3H), 3.01 (s, 9H), 1.72 (m, 4H), 1.33 (m, 4H). 13C NMR (150 MHz, D2O): δ 101.72, 101.65, 101.32, 99.45, 81.92, 81.04, 80.57, 80.41, 80.24, 80.16, 79.94, 77.96, 77.56, 73.08, 72.95, 72.87, 72.75, 72.64, 72.50, 72.36, 72.29, 72.25, 72.18, 72.01, 71.98, 71.91, 71.76, 71.71, 71.63, 71.49, 71.43, 71.35, 66.66, 66.27, 65.87, 64.50, 60.74, 60.27, 60.05, 59.95, 52.85, 52.08, 51.95, 25.15, 25.08, 22.20, 22.10. HR FAB-MS: calcd. for [6 - I]+ (C59H106IN2O39) 1593.54; found, 1593.54.

Figure S1. 1H NMR spectrum of 6 in D$_2$O.
Figure S2. 13C NMR spectrum of 6 in D$_2$O.
Figure S3. HR FAB-MS spectrum of 6.
Figure S4. UV-vis spectra of 0.20 mM AC in a pH 9 phosphate buffer solution upon addition of 0, 0.040, 0.080, 0.119, 0.197, 0.275, 0.388, 0.573 and 0.753 mM 6 at 25 °C measured in a 0.1 cm-path length cell.

Figure S5. Circular dichroism spectra of 0.20 mM AC upon addition of 0, 0.040, 0.080, 0.119, 0.197, 0.275, 0.388, 0.573, 0.753 and 1.095 mM 6 in a pH 9 phosphate buffer solution at 25 °C measured in a quartz cell of 0.1 cm light-pass length. Inset: a plot of Δθ at 276 nm as a function of 6/AC ratio.
Figure S6. Enantiomeric excess (ee) (blue) and excitational excess (xx) (black) of (a) 2 and (b) 3 as a function of wavelength in photocyclodimerization of AC with 6 in aqueous phosphate buffer solution (pH 9) at 0.5 °C.
Table S1. Product distribution, enantiomeric excess (ee) and excitational excess (xx) in photocyclodimerization of 2-AC with native and modified γ-CDs at various wavelengths

<table>
<thead>
<tr>
<th>Host Solvent</th>
<th>Temp/°C</th>
<th>λ/ nm</th>
<th>Relative yield/%</th>
<th>ee/ %</th>
<th>xx/ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-CD</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc</td>
<td>254</td>
<td>33.3</td>
<td>52.7</td>
<td>7.4</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>45.5</td>
<td>38.8</td>
<td>8.8</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>47.7</td>
<td>35.9</td>
<td>10.1</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>47.7</td>
<td>35.3</td>
<td>10.2</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>54.5</td>
<td>33.3</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>43.6</td>
<td>43.0</td>
<td>7.8</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>41.2</td>
<td>46.2</td>
<td>7.1</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>41.2</td>
<td>47.0</td>
<td>7.0</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>40.0</td>
<td>47.6</td>
<td>7.1</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>39.7</td>
<td>49.7</td>
<td>7.2</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>430</td>
<td>34.3</td>
<td>56.2</td>
<td>7.0</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>30.7</td>
<td>60.9</td>
<td>6.6</td>
<td>1.8</td>
</tr>
<tr>
<td>BM1</td>
<td>-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>46.3</td>
<td>33.3</td>
<td>12.2</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>52.4</td>
<td>32.1</td>
<td>7.9</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>39.6</td>
<td>44.8</td>
<td>8.9</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>38.9</td>
<td>45.4</td>
<td>9.2</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>29.3</td>
<td>59.4</td>
<td>8.8</td>
<td>2.5</td>
</tr>
<tr>
<td>BM2</td>
<td>-70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>31.5</td>
<td>13.3</td>
<td>19.7</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>34.0</td>
<td>12.7</td>
<td>15.3</td>
<td>38.0</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>29.7</td>
<td>19.7</td>
<td>19.3</td>
<td>31.3</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>29.6</td>
<td>19.2</td>
<td>20.3</td>
<td>30.9</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>29.9</td>
<td>20.6</td>
<td>19.7</td>
<td>29.8</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>30.7</td>
<td>29.3</td>
<td>25.8</td>
<td>14.2</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc</td>
<td>254</td>
<td>31.6</td>
<td>49.8</td>
<td>9.8</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>44.0</td>
<td>36.7</td>
<td>11.0</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>46.7</td>
<td>32.6</td>
<td>12.1</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>51.7</td>
<td>31.7</td>
<td>8.8</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>41.3</td>
<td>43.5</td>
<td>8.7</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>330</td>
<td>40.6</td>
<td>43.9</td>
<td>9.1</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>40.6</td>
<td>44.2</td>
<td>8.8</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>38.6</td>
<td>45.2</td>
<td>9.5</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>39.5</td>
<td>45.1</td>
<td>9.0</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>39.0</td>
<td>46.7</td>
<td>10.0</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>430</td>
<td>34.3</td>
<td>52.6</td>
<td>9.7</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>30.2</td>
<td>58.7</td>
<td>8.6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

a Irradiated at different wavelengths by using a xenon lamp fitted with appropriate band-pass filters of fwhm = 10 nm. Relative yield and % ee were determined by the peak area on the HPLC chromatogram. The positive/negative signs of ee correspond to the dominant formation of the first/second-eluted enantiomer, respectively. Xx values were calculated supposing the precursor complexes have the same extinction coefficient at the pseudo-isosbestic point (380 nm). c Solvent B: aqueous phosphate buffer (pH 9). cBM1: a 1:1 (v/v) mixture of phosphate buffer (pH 5) and methanol. cBM2: a 5:2 (v/v) mixture of phosphate buffer (pH 5) and methanol.