Supporting Information

Synthetic Protocol for Diarylenes through Suzuki–Miyaura Coupling

Satoru Hiroto, Katsuya Suzuki, Hiroki Kamiya and Hiroshi Shinokubo*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya University,
464-8603, Nagoya, Japan
E-mail: hshino@apchem.nagoya-u.ac.jp

Table of Contents

- Instrumentation and Materials .. S2
- General Procedures and Compound Data S2
- Spectral Data for the New Compounds S9
Experimental Section

Instrumental and Materials

1H NMR (300 MHz) 13C NMR (126 MHz) and 19F NMR (282 MHz) spectra were taken on Varian Mercury and INOVA spectrometer, and chemical shifts were reported as the delta scale in ppm relative to CHCl$_3$ and DMSO as internal reference for 1H NMR ($\delta = 7.260$ ppm for CHCl$_3$, 2.500 ppm for DMSO) and 13C NMR ($\delta = 77.0$ ppm for CHCl$_3$) and hexafluorobenzene as external reference for 19F NMR ($\delta = -162.9$ ppm). UV/vis absorption and steady-state fluorescence spectra were recorded on a Shimadzu UV-2550 spectrometer and a Shimadzu RF-5300PC spectrometer, respectively. High resolution ESI-TOF mass spectra were taken on a Bruker microTOF. Preparative separations were performed by silica gel gravity column chromatography (Wako gel C-200). X-ray data were taken on a Bruker SMART APEX X-Ray diffractometer equipped with a large area CCD detector. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. 3-Thienylboronic acid (1a)1, 2,5-dimethyl-3-thienylboronic acid (1e)2, and 2,5-dimethyl-3-thienylboronic acid pinacol ester (1f)3 were synthesized according to the reported literatures.

2-methyl-3-thienylboronic acid (1b)4

A solution of 3-bromo-2-methylthiophene (5.19 g, 29.3 mmol) and triisopropylborate (13.5 mL, 58.5 mmol) in dry THF (110 mL) in three-necked round bottomed flask with a dropping funnel, a three-way stopcock and a rubber septum was cooled to −78 °C under nitrogen atmosphere. n-Butyllithium (36.6 mL, 58.5 mmol, 1.6 M in hexane) was added dropwise over 20 min via the dropping funnel. After the addition was completed, the mixture was gradually warmed to −20 °C with stirring for additional 1 h. The reaction mixture was
warmed to r.t., and then the reaction was quenched with 1N aqueous HCl. The resulting solution was extracted with ethyl acetate twice, washed with water, dried over anhydrous Na₂SO₄, and then evaporated. Recrystallization with acetonitrile afforded 2-methyl-3-thienylboronic acid (2.70 g, 65%) as white microcrystals. \(^1\)H NMR (DMSO-\(d_6\)): \(\delta\) 7.23 (d, \(J = 5.0\) Hz, 1H), 7.14 (d, \(J = 5.0\) Hz, 1H) and 2.59 (s, 3H) ppm; \(^{13}\)C NMR (DMSO-\(d_6\)): \(\delta\) = 148.5, 133.5, 132.8 121.3, and 15.5 ppm; HR-MS (ESI-MS): \(m/z = 140.0221\), calcd for \((\text{C}_5\text{H}_7\text{O}_2\text{BS})^-\) = 140.0223 (\([\text{M} - \text{H}]^-\)).

5-(methoxycarbonyl)-2-methyl-3-thienylboronic acid pinacol ester (1g).\(^5\)

A Schlenk tube containing 3-bromo-2-methoxycarbonyl-5-methylthiophene (1.59 g, 6.76 mmol), bis(pinacolate)diboron (2.57 g, 10.1 mmol), X-Phos (32.2 mg, 67.6 \(\mu\)mol), \(\text{Pd}_2\text{dba}_3\cdot\text{CHCl}_3\) (34.9 mg, 33.8 \(\mu\)mol) and KOAc (1.32 mmol) was flushed with nitrogen, and then the mixture was dissolved in dry dioxane (6 mL). The reaction mixture was refluxed for 24 h. The resulting solution was filtered through short pad of Celite, and then the filtrate was concentrated in vacuo. Purification by silica-gel column chromatography with ethyl acetate/hexane afforded the product (687 mg, 2.43 mmol) in 36% yield.

3-bromo-4-cyano-1-methylthiophene. (5)

To a solution of 3-bromo-5-formyl-2-methylthiophene (328 mg, 1.60 mmol) in pyridine (10 mL) was added \(\text{NH}_2\text{OH}\cdot\text{HCl}\) (133 mg, 1.92 mmol). The reaction mixture was then stirred at room temperature for 1 h. Acetic anhydride (227 \(\mu\)L, 2.40 mmol) was then added and the resulting solution was refluxed for 2 h. The reaction was quenched with water, and the mixture was extracted with \(\text{CH}_2\text{Cl}_2\). The organic layer was washed with water and brine, and then dried over Na₂SO₄. The solvent was removed under reduced pressure, and then the residue was
separated by column chromatography on silica-gel (ethyl acetate/hexane) to provide the product (1.35 g, 6.68 mmol) in 84% yield. 1H NMR (CDCl$_3$): δ 7.44 (s, 1H), and 2.46 (s, 3H) ppm; 13C NMR (CDCl$_3$): δ = 143.1, 140.0, 113.7, 110.7, 107.7, and 15.6 ppm; HR-MS (ESI-MS): m/z = 223.9150, calcd for (C$_6$H$_4$NSBr)$^+ = 223.9140$ ($[M + Na]^+$).

(4-cyano-1-methylthienyl)-3-boronic acid pinacol ester (1h).

A Schlenk tube containing 3-bromo-2-cyano-5-methylthiophene 5 (590 mg, 2.92 mmol), bis(pinacolate)diboron (889 mg, 3.50 mmol), bis(diphenylphosphino)ferrocene (16.2 mg, 29.2 µmol), Pd$_2$dba$_3$•CHCl$_3$ (15.1 mg, 14.6 µmol) and KOAc (5.84 mmol) was flushed with nitrogen, and then the mixture was dissolved in dry dioxane (3 mL). The reaction mixture was refluxed for 24 h. The resulting solution was filtered through short pad of Celite, and then the filtrate was concentrated in vacuo. Purification by silica-gel column chromatography with ethyl acetate/hexane afforded the product (465 mg, 1.87 mmol) in 64% yield. 1H NMR (CDCl$_3$): δ 7.74 (s, 1H), 2.70 (s, 3H), and 1.32 (s, 12H) ppm; 13C NMR (CDCl$_3$): δ = 159.6, 144.4, 114.5, 106.1, 83.9, 24.8, 16.0 ppm; HR-MS (ESI-MS): m/z = 271.0923, calcd for (C$_{12}$H$_{16}$NO$_2$BS)$^+ = 271.0923$ ($[M + Na]^+$).

(5-formyl-2-methylthienyl)-3-boronic acid pinacol ester (1i)

A Schlenk tube containing 3-bromo-2-formyl-5-methylthiophene (900 mg, 4.39 mmol), bis(pinacolate)diboron (1.34 g, 5.27 mmol), PdCl$_2$dpdf (160 mg, 0.24 mmol), and KOAc (862 mg, 8.78 mmol) was flushed with nitrogen, and then the mixture was dissolved in dry dioxane (4 mL). The reaction mixture was refluxed for 48 h, The resulting solution was filtered through short pad of Celite, then the filtrate was concentrated in
vacuo. Purification by silica-gel column chromatography with ethyl acetate/hexane furnished the product (378 mg, 1.50 mmol) in 34% yield. 1H NMR (CDCl$_3$): δ 9.80 (s, 1H), 7.91 (s, 1H), 2.74 (s, 3H), and 1.30 (s, 12H) ppm; 13C NMR (CDCl$_3$): δ = 182.9, 163.2, 153.6, 144.4, 83.8, 24.9, 16.9 ppm; HR-MS (ESI-MS): m/z = 274.0925, calcd for (C$_{12}$H$_{17}$O$_3$BS)$^+$ = 274.0920 ([M + Na]$^+$).

5-methyl-2-phenylthiazole.6

A Schlenk tube containing 2-bromo-5-methylthiazole (2.14 g, 12.0 mmol) and phenylboronic acid (1.83 g, 15.0 mmol) was flushed with nitrogen gas, and then degassed dioxane (12 mL) was added. To the solution were added a degassed aqueous solution of K$_2$CO$_3$ (5.48 g, 45.0 mmol) and Pd(PPh$_3$)$_4$ (0.693 g, 0.600 mmol). After refluxing for 36 h, the resulting solution was filtered through a short pad of Celite, and the filtrate was then evaporated. Column chromatography on silica-gel with ethyl acetate/hexane (1/10, v/v) afforded the product (1.13 g, 6.45 mmol, 54%) as pale yellow liquid.

5-methyl-2-phenyl-3-thazolyl-tetramethyl-1,3-dioxaborolane (1k).6

A two-necked flask containing 1 (0.740 g, 4.22 mmol) was flushed with nitrogen and dry THF (25 mL) was added. The mixture was cooled to -78 °C. tBuLi (1.6 M in pentane, 3.16 mL) was added dropwise, and the mixture was then stirred for 30 min. Then, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.12 mL, 5.49 mmol) was added and the mixture was allowed to warm up to room temperature over a period of 1 h. After an addition of methanol, the mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over Na$_2$SO$_4$, and then evaporated. The residue was filtered through a short pad of
silica with ethyl acetate to afford the product (408 mg, 1.34 mmol) in 32 % yield.

General Procedure for Suzuki–Miyaura cross coupling reaction of 1,2-dichlorohexafluorocyclopentene with arylboronic acids (Method A).

A Schlenk tube containing arylboronic acid (1.50 mmol, 3 equiv), Pd$_2$dba$_3$•CHCl$_3$ (2.56 mg, 2.50 µmol, 1 mol% Pd), X-Phos (4.77 mg, 10 µmol, 2 mol%) and K$_3$PO$_4$ (319 mg, 1.50 mmol, 3 equiv) was flushed with nitrogen by three times. Then 1,2-dichlorohexafluorocyclopentene (75.0 µL, 0.50 mmol) and deoxygenated dry dioxane (1.5 mL) were added. The resulting suspension was refluxed for 16 h. After the reaction was completed, the mixture was filtered through a short pad of Celite with hexane and the filtrate was evaporated to dryness. Purification by column chromatography on silica-gel with hexane as an eluent afforded the corresponding diarylethenes in high yields.

1,2-Bis(3’-thienyl)-3,3,4,4,5,5-hexafluorocyclopentene (2a)7, 1,2-bis(2’-dimethyl-3’-thienyl)-3,3,4,4,5,5-hexafluorocyclopentene (2b)8, 1,2-bis(3’-phenyl)-3,3,4,4,5,5-hexafluorocyclopentene (2c)9, 1,2-bis(3’-furanyl)-3,3,4,4,5,5-hexafluorocyclopentene (2d)7 and 1,2-bis(2’,5’-dimethyl-3’-thienyl)-3,3,4,4,5,5-hexafluorocyclopentene (2e)10 were characterized by their high resolution mass spectra and 1H and 13C NMR spectra, showing essentially the same spectra as those reported in literatures.

General Procedure for Suzuki–Miyaura cross coupling reaction of 1,2-dichlorohexafluorocyclopentene with arylboronic acids (Method B).

A Schlenk tube containing arylboronic acid (1.50 mmol), Pd$_2$dba$_3$•CHCl$_3$ (2.56 mg, 2.50 µmol, 1 mol% Pd), PCy$_3$ (2.80 mg, 0.010 mmol) and CsF (mg, 4.50 mmol) was flushed with nitrogen by three times. Then 1,2-dichlorocyclopentene (75.0 µL, 0.50 mmol) followed by the deoxygenated toluene/H$_2$O (10/1, v/v) (1.5 mL) was added. The resulting suspension was refluxed for 16 h. After the reaction was
completed, the mixture was filtered through a short pad of Celite with hexane and the filtrate was evaporated to dryness. Purification by column chromatography on silica-gel with hexane as an eluent afforded the corresponding diarylethenes in high yields. 1,2-Bis(5’-cyano-2’-methyl-3’-thienyl)-3,3,4,4,5,5-hexafluorocyclopentene (2h)\(^\text{11}\) 1,2-bis(5’-formyl-2’-methyl-3’-thienyl)-3,3,4,4,5,5-hexafluorocyclopentene (2i)\(^\text{12}\) and 1,2-bis(5-methyl-2-phenyl-3-thiazolyl)-3,3,4,4,5,5-hexafluorocyclopentene (2j)\(^\text{6}\) were characterized by their high-resolution mass and \(^1\text{H}\) and \(^{13}\text{C}\) NMR spectra, showing essentially the same spectra as those reported in literatures.

1,2-Bis(5’-methoxycarbonyl-2’-methyl-3’-thienyl)-3,3,4,4,5,5-hexafluorocyclopentene (2g)

\(^1\text{H}\) NMR (CDCl\(_3\)): \(\delta 7.76 (s, 2H, \text{thienyl-}\beta)\), 3.89 (s, 6H, \(\text{CO}_2\text{CH}_3\)) and 1.94 (s, 6H, \(\text{CH}_3\)) ppm; \(^{19}\text{F}\) NMR (CDCl\(_3\)): \(\delta -111.6 (t, J = 5.36 \text{ Hz, } 4\text{F}), -133.1 (t, J = 5.36 \text{ Hz, } 2\text{F})\). \(^{13}\text{C}\) NMR (CDCl\(_3\)): \(\delta = 161.4, 148.4, 132.7, 131.6, 125.1, 52.2, 14.6 \text{ ppm};\) HR-MS (ESI-MS): \(m/z = 507.0131, \text{ calcd for (C}_{19}\text{H}_{14}\text{F}_6\text{S}_2\text{O}_4^+) = 507.0130 ([M + Na]^+).\)

1,2-Bis(tris(3,5-di-tert-butylphenylporphyrinato Ni(II)-2’-yl)-3,3,4,4,5,5-hexafluorocyclopentene (4a).

\(^1\text{H}\) NMR (CDCl\(_3\)): \(\delta 9.64 (s, 2H, \text{meso})\), 9.31 (s, 2H, \(\text{pyrrole-}\beta)\), 8.62 (d, \(J = 5.1 \text{ Hz, } 2\text{H}, \text{pyrrole-}\beta)\), 8.53 – 8.48 (m, 10H, \(\text{pyrrole-}\beta)\), 7.74 (s, 2H, \(\text{Ar-H})\), 7.68 (s, 4H, \(\text{Ar-H})\), 7.60 (s, 2H, \(\text{Ar-H})\), 7.57 (m, 6H, \(\text{Ar-H})\), 1.43 (s, 36H, \(\text{tBu})\), 1.35 (s, 36H, \(\text{CH}_3\)) and 1.32 (s, 36H, \(\text{CH}_3\)) ppm; \(^{19}\text{F}\) NMR (CDCl\(_3\)): \(\delta -131.6 (t, J = 5.4 \text{ Hz, } 2\text{F}), -110.4 (t, J = 5.4 \text{ Hz, } 4\text{F}) \text{ ppm;}\) \(^{13}\text{C}\) NMR (CDCl\(_3\)): \(\delta = 149.0, 148.8, 148.7, 143.4, 143.2, 143.0, 142.6, 142.3, 140.6, 139.6, 139.4, 138.9, 134.3, 132.6, 132.5, 132.3, 132.1, 129.7, 129.1, 128.6, 128.4, 121.2, 121.0, 120.9, 120.7, 120.4, 119.3, 102.6, 34.9, 34.8, 34.8, 31.6, 31.6, 31.5 \text{ ppm};\) UV/vis (\(\varepsilon [\text{cm}^{-1} \text{ M}^{-1}]\)) \(\lambda = 409 (250000), 532 (25000) \text{ and 574 (15000) nm};\) HR-MS
ESI-MS): \(m/z = 2055.9813 \), calcd for \((C_{129}H_{142}F_6N_8Ni_2)^+ = 2055.9861 ([M + Na]^+)\). Crystal data: Single crystals were grown from EtOAc/CH\(_3\)CN solution. \(C_{95}H_{16}F_30N_8O \), \(M_w = 1855.16 \), Triclinic, space group \(P-1 \) (No. 2), \(a = 17.203(5) \) Å, \(b = 17.778(5) \) Å, \(c = 24.873(5) \) Å, \(\alpha = 88.392(5)^\circ \), \(\beta = 70.931 (5)^\circ \), \(\gamma = 768.140(5)^\circ \), \(V = 6635(3) \) Å\(^3\), \(Z = 2 \), \(D_{calc} = 1.155 \) g/cm\(^3\), \(T = 153 \) K, 37160 measured reflections, 17491 unique reflections, \(R_1 = 0.0909 \) (\(I > 2.0\sigma(I) \)), \(wR_2 = 0.2749 \) (all data) \(GOF = 1.043 \) (\(I > 2.0\sigma(I) \)). Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-xxxxxx. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

1,2-Bis(5',10',15'-trihexylporphyrinato-2'-yl)-3,3,4,4,5,5-hexafluorocyclopentene (4b).

\(^1\)H NMR (CDCl\(_3\)): \(\delta 9.65 \) (s, 2H, \textit{meso}), \(9.16 \) (s, 2H, pyrrole-\(\beta \)), \(9.07 \) (d, \(J = 5.1 \) Hz, 2H, pyrrole-\(\beta \)), \(9.05 \) (d, \(J = 4.8 \) Hz, 2H, pyrrole-\(\beta \)), \(9.00 \) (d, 2H, \(J = 5.1 \) Hz, pyrrole-\(\beta \)), 8.93 (d, \(J = 4.8 \) Hz, 2H, pyrrole-\(\beta \)), 8.37 (d, \(J = 5.1 \) Hz, 2H, pyrrole-\(\beta \)), 7.98 (d, \(J = 4.8 \) Hz, 2H, pyrrole-\(\beta \)), 4.34 (t, \(J = 7.4 \) Hz, 4H), 4.22 (t, \(J = 7.7 \) Hz, 4H), 3.92 (t, \(J = 7.4 \) Hz, 4H), 2.08-1.93 (m, 12H), 1.47-1.23 (m, 24H), 0.82 (m, 18H) ppm.; The \(^{13}\)C NMR spectrum could not be obtained due to the low solubility of compound 4b.

\(^{19}\)F NMR (CDCl\(_3\)): \(\delta -131.2 \) (t, \(J' = 5.4 \) Hz, 4F), \(-109.3 \) (t, \(J = 5.4 \) Hz, 2F) ppm; UV/vis (\(\varepsilon \) [cm\(^{-1}\) M\(^{-1}\)]) \(\lambda = 410 \) (190000), 541 (19000) and 585 (12000) nm; HR-MS (ESI-MS): \(m/z = 1409.6214 \), calcd for \((C_{81}H_{94}F_6N_8Ni_2)^+ = 1409.6285 ([M + H]^+)\).
Spectral data for new compounds.

Figure S1. 1H NMR spectrum of 1b in DMSO-d_6.

Figure S2. 13C NMR spectrum of 1b in DMSO-d_6.
Figure S3. 1H NMR spectrum of 5 in CDCl$_3$.

Figure S4. 13C NMR spectrum of 5 in CDCl$_3$.
Figure S5. 1H NMR spectrum of 1h in CDCl$_3$.

Figure S6. 13C NMR spectrum of 1h in CDCl$_3$.
Figure S7. 1H NMR spectrum of 1i in CDCl$_3$.

Figure S8. 13C NMR spectrum of 1i in CDCl$_3$.

S12
Figure S9. 1H NMR spectrum of 2g in CDCl$_3$.

Figure S10. 13C NMR spectrum of 2g in CDCl$_3$.
Figure S11. 1H NMR spectrum of 4a in CDCl$_3$.

Figure S12. 13C NMR spectrum of 4a in CDCl$_3$.
Figure S13. 1H NMR spectrum of 4b in CDCl$_3$.

References