Supplementary Information

Discrimination between 5-hydroxymethylcytosine and 5-methylcytosine by a chemically designed peptide

Akiko Nomura,1 Kaori Sugizaki,1 Hiroyuki Yanagisawa,1 Akimitsu Okamoto1,2,*

1Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan, 2PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

*Phone, +81-48-467-9238; Fax, +81-48-467-9205; e-mail, aki-okamoto@riken.jp

Experimental Section

Synthesis of hydroxymethylated DNA. The 5-hydroxymethyl-2′-deoxycytidine phosphoramidite was synthesized according to the facile synthetic protocol (Org. Biomol. Chem., 2011, 9, 4176.). A hydroxymethylated DNA was synthesized by the conventional phosphoramidite method by using an Applied Biosystems 392 DNA/RNA synthesizer. Synthesized DNA was purified by reverse phase HPLC on a 5-ODS-H column (10 × 150 mm, elution with a solvent mixture of 0.1 M triethylammonium acetate (pH = 7.0), linear gradient over 20 min from 5% to 20% acetonitrile at a flow rate 3.0 mL/min).

Peptide Synthesis and Characterization. The peptide 1 was synthesized on an automatic peptide synthesizer (Model 433A, Applied Biosystems) using the Fmoc solid-phase method on an amide resin (Rink Amide MBHA resin, Novabiochem). After synthesis, the peptides were cleaved from the resin and deprotected by treatment with trifluoroacetic acid/triisopropylsilane/1,2-ethanedithiol/water (94/1/2.5/2.5 v/v) and purified by HPLC on Chemcobond 5-ODS-H (10 × 150 mm, Chemco Scientific). The obtained peptide was characterized by MALDI-TOF mass spectrometry. [M + H]+ calcd, 7335.5; found, 7335.3.

Gel Mobility Shift Assays. The DNA strands used in the assay were as follows: G-strand, 32P-5′-TTT ATA TTA AAT ATT ATG GGG [Cp5Cp5hmC]GG GCC CAA TAT ATT A-3′; C-strand, 5′-TAA TAT ATG GCC C[Ip5Cp5hmC] GCC CCA TAA TAT TTA ATA TAA A-3′ (underlines, the sequences to be recognized by the peptide). The 32P-labeled G-strand was annealed with the unlabeled complementary C-strand. The reaction mixture containing the hybridized DNA (50 pM, 500 cpm) and the zinc finger peptide (0–10 μM) was incubated in 20 mM Tris-HCl (pH 8.0), 100 mM sodium chloride, 100 μM zinc chloride, 1 mM tris(2-carboxyethyl)phosphine (TCEP), 0.05% Nonidet P-40, 5% glycerol, 40 ng/μL bovine serum albumin, and 100 ng/μL poly(dI-dC) for 30 min at 4 °C. The reaction mixture was analyzed by polyacrylamide gel electrophoresis in Tris-borate buffer (pH 8.3) at 4 °C. The bands were visualized by autoradiography and quantified using Image Gauge version 4.01 software (Fujifilm). The dissociation constant (Kd) of the peptide for the target DNA was evaluated by curve-fitting the band intensities to the equation: $F = [P]/([P] + K_d)$, where F and [P] represent the fraction of the peptide-bound DNA and the total peptide concentration, respectively.
Fig. S1 CD spectrum of 5'-TTT ATG GTA TCG CGG GCC CAA TAT ATT A-3'/5'-GCG CAA TAT ATT GCC CC^mC GCC CAA TAT TTA ATA TAA A-3'. The measurement of the duplex (10 µM) was carried out in 20 mM Tris-HCl buffer (pH 8.0) containing 100 mM sodium chloride at 4 °C.
Fig. S2 Structure of peptide 1. (a) CD spectra of the peptides in the absence (apo forms, black) or presence (zinc finger forms, gray) of 3 equiv zinc chloride. The peptide concentrations were 18 μM for 1. Measurements were carried out in 10 mM Tris-HCl buffer (pH 7.5) containing 50 mM sodium chloride and 0.1 mM TCEP at 4 °C under nitrogen. (b) Absorption spectra of 1 (72 μM) in the absence (apo forms, black) or presence (cobalt complex forms, gray) of 300 μM cobalt chloride in 10 mM Tris-HCl buffer (pH = 7.5) containing 50 mM sodium chloride at 20 °C under nitrogen.
Fig. S3 A plausible structure of an hmC-containing DNA duplex. (a) Side view of GhmCGG/CGhmCC DNA and (b) top view of the hmC/G base pair in (a). The structures were minimized with OPLS2005 in MacroModel 9.8. (c) Interaction with peptide. The hydroxy group of hmC was extruded toward the outside of the DNA major groove. The location of the hydroxy group would sterically hinder the interaction between peptide pY and DNA.