1 Figures

Fig. S 1: FT-IR spectra of the thienyl-based precursor and the samples thermally treated at varying temperatures.

Fig. S 2: Deconvoluted XPS-spectrum of the C-1s orbital, measured on the material synthesised at 1000 °C.
Fig. S 3: SEM micrographs of S-doped carbonaceous materials synthesized at 600 °C and 1000 °C.

Fig. S 4: SEM micrograph of poly(1,3,5-tris(thienyl)benzene).
Fig. S 5: Nitrogen sorption isotherm of S-doped carbonaceous material synthesised at 600 °C.

Fig. S 6: Nitrogen sorption isotherm of S-doped carbonaceous material synthesised at 700 °C.
Fig. S 7: Nitrogen sorption isotherm of S-doped carbonaceous material synthesised at 800 °C.

Fig. S 8: Nitrogen sorption isotherm of S-doped carbonaceous material synthesised at 900 °C.
2 Experimental Section

Thermogravimetric analysis was accomplished using an STA6000 device manufactured by Perkin-Elmer. Elemental analysis was accomplished as combustion analysis using a Vario Micro device. X-ray Photoelectron Spectroscopy (XPS) experiments were performed in type Theta probe (Thermo Fisher) using monochromatized Al K$_\alpha$ radiation at $h\nu = 1486.6$ eV. Peak positions were internally referenced to the C1s peak at 284.6 eV. Spectra were devconvoluted using XPSPEAK41 software. Nitrogen sorption isotherms were measured using a Quadrasorb porosimetry device manufactured by Quantachrome, samples were degassed at 150 °C for 10 h at reduced pressure before measurement.

PTTB was synthesised according to our previous publication.1 Sulphur doped carbons were synthesised by annealing 150 mg of yellow PTTB, placed in a ceramic crucible, in a box type furnace (N7/H Nabertherm), equipped with a continuous gas inlet, under a continuous Ar-flow of 2 L min$^{-1}$. Samples were heated to 600 °C, 700 °C, 800 °C, 900 °C or 1000 °C, respectively, with a heating rate of 100 K h$^{-1}$ and the temperature was subsequently kept for 1 h before the samples were allowed to cool down. Homogeneously black powders were obtained that were directly used for characterisation without further treatment.