Supporting Information for

“Volatilisation of Ferrocene from Ionic Liquids: Kinetics and Mechanism”

Chaopeng Fu,¹ Dr. Leigh Aldous,¹ Edmund J. F. Dickinson,¹ Dr. Ninie S. A. Manan²,³ and Prof. Richard G. Compton¹,*

¹ Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom

² School of Chemistry and Chemical Engineering, The QUILL Centre, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom

³ Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia

Figure S1 Cyclic voltammetry displaying the oxidation of ferrocene for 15 µL [C₂mim][NTf₂] on a 10.2 µm platinum microelectrode at 298.15 K, after (a) 300, (b) 540 and (c) 780 min flow of dry nitrogen.
Figure S2 Cyclic voltammetry displaying the oxidation of ferrocene for 15 μL [C$_2$mim][NTf$_2$] on a 10.2 μm platinum microelectrode at 302.15 K, after (a) 300, (b) 540 and (c) 780 min flow of dry nitrogen.

Figure S3 Cyclic voltammetry displaying the oxidation of ferrocene for 15 μL [C$_2$mim][NTf$_2$] on a 10.2 μm platinum microelectrode at 306.15 K, after (a) 300, (b) 540 and (c) 780 min flow of dry nitrogen.
Figure S4 Cyclic voltammetry displaying the oxidation of ferrocene for 15 µL [C_4mim][BF_4] on a 10.2 µm platinum microelectrode at 298.15 K, after (a) 300, (b) 540 and (c) 780 min flow of dry nitrogen.

Figure S5 Cyclic voltammetry displaying the oxidation of ferrocene for 15 µL [C_4mim][BF_4] on a 10.2 µm platinum microelectrode at 302.15 K, after (a) 300, (b) 540 and (c) 780 min flow of dry nitrogen.
Figure S6 Cyclic voltammetry displaying the oxidation of ferrocene for 15 µL [C₄mim][BF₄] on a 10.2 µm platinum microelectrode at 306.15 K, after (a) 300, (b) 540 and (c) 780 min flow of dry nitrogen.

Figure S7 Cyclic voltammetry displaying the oxidation of ferrocene for 15 µL [C₄mim][BF₄] on a 10.2 µm platinum microelectrode at 306.15 K, after (a) 300, (b) 540 and (c) 780 min flow of dry nitrogen.