Electronic Supplementary Information

L-Proline Promoted Fluorescent Sensor for Mg$^{2+}$ Detection in a Multicomponent Sensory System

Yu Dong, Xuerong Mao, Xiaoxiang Jiang, Jiali Hou, Yixiang Cheng* and Chengjian Zhu*
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Yixiang Cheng (yxcheng@nju.edu.cn), Chengjian Zhu (cjzhu@nju.edu.cn)

Contents:
ESI 1. Materials and Methods
ESI 2. Synthesis procedures of 8-formyl-7-hydroxy-4-methylcoumarin (2), host molecular
ESI 3. Fluorescence responses of host molecular to various metals in three different system
ESI 4. Competition experiment of host molecular towards Mg$^{2+}$ in the multicomponent system
ESI 5. The promoting effects of Na$^+$ and L-proline
ESI 6. The promoting effect of L-proline, D-proline and racemic praline
ESI 7. Calculation of the detection limit
ESI 8. 1H NMR and 13C NMR Spectra
ESI 9. Mass spectrum of host molecular
ESI 10. References
ESI 1. Instrumentation and Materials

All solvents and reagents were commercially available and analytical-reagent-grade. THF was purified by distillation from sodium in the presence of benzophenone and Et$_3$N was newly distilled before using. NMR spectra were collected on a 300-Bruker spectrometer 300 MHz for 1H NMR and 75 MHz for 13C NMR and reported as parts per million (ppm) from the internal standard TMS. MS was determined on a Micromass GCT. FT-IR spectra were taken on a Nexus 870 FT-IR spectrometer. Ultraviolet-visible (UV-vis) spectra were obtained using a Shimadzu UV-Vis-NIR spectrophotometer.

Each metal ion titration experiment was started with a 3.0 mL ligand with a known concentration (1.0×10$^{-5}$ mol/L corresponding to host molecular in CH$_3$CN solution). Mg(NO$_3$)$_2$ salt and other various metal salts (nitrate, 1.0 ×10$^{-3}$ mol/L, H$_2$O) were used for the titration. Ligand-metal complexes were produced by adding aliquots of a solution of the selected metal salt to a CH$_3$CN solution of the ligand.

ESI 2. Synthesis procedures of 8-formyl-7-hydroxy-4-methylcoumarin (2), host molecular

![Scheme 1 Synthesis procedures of Host molecular](image)

Synthesis of 8-formyl-7-hydroxy-4-methylcoumarin (2) $^{[1]}$

8-Formyl-7-hydroxy-4-methylcoumarin was prepared according to the literature. $^{[1]}$ 7-Hydroxy-4-methylcoumarin (10g, 56.8mol) and hexamine (19.9g, 142mmol) in glacial acetic acid (90 mL) were heated for 6 h. Then 20% HCl (130 mL) was added in and the mixture was further heated for 40 min, after which the mixture was cooled and extracted with ether twice (50mL× 2). The combined organic layer was concentrated under reduced pressure to afford 8-formyl-7-hydroxy-4-methylcoumarin as light yellow powder. The crude product was recrystallized from ethanol (yield, 15%). m.p. 140-142°C. 1H NMR (300 MHz, CDCl$_3$): δ12.24 (s, 1H), 10.64 (s, 1H), 7.76-7.73 (d, 1H), 6.94-6.91 (d, 1H), 6.23 (s, 1H), 2.45 (s, 3H). 13C NMR (75 MHz, CDCl$_3$): δ191.7, 164.0, 160.2, 155.6, 154.0, 133.7, 114.0, 112.2, 111.5, 109.3, 18.8. FT-IR
(KBr, cm$^{-1}$): 3050, 1720, 1610.

Synthesis of 7-hydroxy-8-((3-hydroxy-phenylimino)methyl)-4-methyl-coumarin [2]

\[
\begin{align*}
&\text{OH} \\
&\text{N} \\
&\text{HO} \\
&\text{O} \\
&\text{O}
\end{align*}
\]

8-formyl-7-hydroxy-4-methylcoumarin (102mg, 0.5mmol) was dissolved in anhydrous THF (8mL) with stirring, then o-aminophenol (65.4mg, 0.6mmol) in ethanol was added into the above solution. The obtained solution was stirred at 25-30°C for 5 hour. Solid precipitated and collected by filtering. The obtained solid was washed with ethanol for 5 times. Then the crude product was recrystallized from EtOH (86.0% yield). m.p. 182-184 °C. 1H NMR (300 MHz, CDCl$_3$): δ14.95 (s, 1H), 9.75 (s, 1H), 9.17 (s, 1H), 7.80-7.76 (d, 1H), 7.29-7.26 (d, 1H), 7.00-6.87 (m, 3H), 6.80-6.76 (d, 1H), 6.23 (s, 1H) 2.40 (s, 1H). MS (EI, m/z): 295.1 (M$^+$*). 13CNR (75 MHz, CDCl$_3$): δ166.28, 159.51, 158.94, 156.57, 154.50, 154.32, 147.61, 130.93, 130.85, 115.39, 114.77, 112.86, 111.16, 110.74, 108.00, 106.47, 18.78.

ESI 3. Fluorescence responses of host molecular to various metals in three different system

![Fig.ESI 3](image-url)

Fig.ESI 3. (a) Fluorescence spectra of the host molecular (1.0×10$^{-5}$ mol/L in CH$_3$CN) in the presence of various metal ions ($\lambda_{ex} = 355$ nm)
Fig. ESI 3. (b) Fluorescence spectra of the host molecular (1.0×10^{-5} mol/L in CH_{3}CN) in the presence of various metal ions + Na^{+} (\lambda_{\text{ex}} = 355 \text{ nm})

Fig. ESI 3. (c) Fluorescence spectra of the host molecular (1.0×10^{-5} mol/L in CH_{3}CN) in the presence of various metal ions + L-proline (\lambda_{\text{ex}} = 355 \text{ nm})
ESI 4. Competition experiment of host molecular towards Mg$^{2+}$ in the multicomponent system

![Graph showing fluorescence intensity of the multicomponent system](image)

Fig. ESI 4. Fluorescence intensity of the multicomponent system (blank = host molecular + Mg$^{2+}$ + Na$^+$ + L-proline) and the multicomponent system with extra 1.0 eq X (X = Li$^+$, K$^+$, Ca$^{2+}$, Cr$^{3+}$, Fe$^{3+}$, Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$, Zn$^{2+}$, Ag$^{2+}$, Hg$^{2+}$, Cd$^{2+}$, Pb$^{2+}$, mix-1, mix-2 and mix-3). (mix-1 = mixture of K$^+$, Ca$^{2+}$, Cr$^{3+}$ and Fe$^{3+}$; mix-2 = mixture of Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$ and Zn$^{2+}$; mix-3 = mixture of Ag$^{2+}$, Hg$^{2+}$, Cd$^{2+}$ and Pb$^{2+}$)

ESI 5. The promoting effect of Na$^+$ and L-proline

![Graph showing relative fluorescence intensity](image)

Fig. ESI 5. Relative fluorescence intensity of host molecular in the presence of Mg$^{2+}$, Mg$^{2+}$+Na$^+$, Mg$^{2+}$+L-proline and Mg$^{2+}$+Na$^+$+ L-proline.
ESI 6. The promoting effect of L-proline, D-proline and racemic proline

Fig. ESI 6. L-proline, D-proline and racemic proline are used as promoter in the multicomponent system, respectively.

ESI 7. Calculation of the detection limit

Fig. ESI 7. Calculation process of the detection limit of this system
ESI 8. 1H NMR and 13C NMR Spectra

1HNMR

13CNMR

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011
ESI 9. Mass spectrum of host molecular

ESI 10. References
