Electric supplementary information (ESI)

Electroless Galvanic Incs on Inorganic WO₃/Al Boards

Masahiro Miyauchi,* Yue Li,b Shunsuke Yanai,c and Kazuya Yotsugic

a Tokyo Institute of Technology. E-mail: mmiyauchi@ceram.titech.ac.jp
b Chinese Academy of Sciences.
c Sekisuijushi Technical Research Corporation.

*Corresponding author: mmiyauchi@ceram.titech.ac.jp

\textbf{Fig. S1} XPS for O-1s and Al-2p orbitals. (i) before treatment, (ii) after dipping in an aqueous HCl solution with a pH of 3.0 for 5 min, (iii) after exposure to air at 120 °C for 30 min.
Although WO$_3$/Al also turns blue in an alkali solution, the color change is not as homogeneous as that after the acid treatment. Moreover, the color change was insignificant after dipping WO$_3$/Al into a neutral aqueous solution.
Fig. S3 SEM images for WO$_3$/Al samples with WO$_3$ thicknesses of 4 µm (a) and 500 nm (b). Insets in (a) and (b) are photographs of WO$_3$/Al. (c) SEM image at the blue spot in Fig. S3 (a).

Blue color appears only around the pinholes of WO$_3$ film with a thickness of 4 µm.
Fig. S4 SEM images for WO$_3$/Al samples. (a) and (b) are before coloration (initial state), (c) and (d) are after repeating the coloration and decoloration processes five time.

Morphology of WO$_3$ does not change after repeating these processes.
Fig. S5 Photographs of various WO_3/Al structures. We confirmed that chromic devices can also be constructed by sputtering an Al foil or Al-coated glass substrate. Additionally, we found that similar to WO_3 crystals, amorphous WO_3 also exhibits an efficient color change.