Synthesis of anatase TiO$_2$ rods with dominant reactive \{010\} facets for the photoreduction of CO$_2$ to CH$_4$ and use in dye-sensitized solar cells

Experimental Details

Preparation of Cs$_{0.68}$Ti$_{1.83}$O$_4$/H$_{0.68}$Ti$_{1.83}$O$_4$. Layered titanate precursor of Cs$_{0.68}$Ti$_{1.83}$O$_4$ was prepared according to a procedure previously reported [1]. Its protonated form of H$_{0.68}$Ti$_{1.83}$O$_4$ was prepared by ion-exchange of Cs$_{0.68}$Ti$_{1.83}$O$_4$ with H$^+$ in a 1 mol·L$^{-1}$ HCl solution for three days.

Micro-sized anatase TiO$_2$ rods: 200 mg of the Cs$_{0.68}$Ti$_{1.83}$O$_4$ powder dispersed in 40 mL deionized water was hydrothermally treated at 180°C for 24 h in a Teflon-lined stainless autoclave with a volume of 80 mL. The resultant product was washed several times with deionized water and then dried in air.

Nano-sized anatase TiO$_2$ rods: 100 mg of the H$_{0.68}$Ti$_{1.83}$O$_4$ powder dispersed in 20 mL of a 0.3 mM Cs$_2$CO$_3$ solution was hydrothermally treated at 180°C for 24 h in a Teflon-lined stainless autoclave with a volume of 80 mL. The resultant product was washed several times with deionized water and then dried in air.

Removal of cesium from as-prepared anatase TiO$_2$ rods: The as-prepared anatase TiO$_2$ rods were dispersed in a 1 mol·L$^{-1}$ HCl solution while stirring for 24 h and then fully washed with deionized water. The recovered powder was heated in a static air atmosphere in a furnace at 600 °C for 2 h and then cooled naturally to room temperature.

Characterization. X-ray diffraction patterns of the samples were recorded on a Rigaku diffractometer using Cu kα irradiation. Their structure was determined using transmission electron microscopy (TEM, Tecnai F30) and scanning electron microscopy (SEM, SUPRA 35). The Brunauer-Emmett-Teller (BET) surface area was determined by nitrogen adsorption-desorption isotherm measurements at 77 K (ASAP 2010).
Chemical compositions and valence band spectra of TiO$_2$ were analyzed using X-ray photoelectron spectroscopy (Thermo Escalab 250, a monochromatic Al K$_\alpha$ X-ray source). All binding energies were referenced to the C 1s peak (284.6 eV) arising from adventitious carbon. The optical absorbance spectra of the samples were recorded in a UV-visible spectrophotometer (JACSCO-550). Raman spectra were collected with LabRam HR 800.

Photoreduction of CO$_2$ Tests. The photoreduction experiments of CO$_2$ were conducted in a home-made Teflon-lined stainless reaction chamber with a quartz window at the top for light irradiation. The volume of the chamber was 50 cm3. 50 mg of the Pt-loaded sample was laid at the bottom of the reaction chamber. Prior to filling the gaseous CO$_2$, the chamber was evacuated by a mechanical pump. Then, CO$_2$ bubbled from water was added to the chamber to reach a pressure of 0.06 MPa. The total amount of products generated in the chamber after light irradiation was determined by analyzing a 1.0 mL gas from the chamber with a gas chromatograph (Agilent Technologies: 6890N). The light source was a 300 W Xe lamp (Beijing Trusttech Co. Ltd, PLS-SXE-300UV).

Fabrications of Dye sensitized solar cells. TiO$_2$ Pastes were prepared following a reported procedure [2]. A TiO$_2$-coated test cell glass plate (transparent) as a reference was received from Dyesol. TiO$_2$ films were deposited on fluorine-doped tin oxide (FTO) glass plates (2.3 mm thickness, 8Ω/sq, Dyesol Glass, cleaned with a 2-propanol using an ultrasonic bath for 30 min, and then thoroughly rinsed with water) by the doctor-blade method, and were then gradually heated at 100°C for 6 min and 550°C for 30 min. The resulting TiO$_2$ films were immersed into a 0.5 mM N719 (Dyesol) dye solution in a 1:1 (v/v) mixture of acetonitrile (HPLC, Lab-scan) and tert-butanol (LR, Ajax Chemicals) and kept for 24 h. Subsequently, the dye-covered TiO$_2$ electrode and Pt-counter electrode (Dyesol) were assembled into a sandwich type cell and sealed with a spacer of 30 μm thickness (Surlyn, DuPont) with a drop of the I$^-$/I$_3^-$ organic solvent based electrolyte solution (EL-HPE, Dyesol) introduced by vacuum back-filling.

Performance measurements of dye sensitized solar cells. Current-voltage curve measurements were performed using a Keithley 2420 Source Meter under illumination of simulated sunlight (100 mW cm$^{-2}$) provided by a solar simulator (Oriel) equipped with
150 W xenon lamp and an AM 1.5G type filter (Newport, 81094). The light intensity was adjusted using an optical power meter (Newport, 1918-c). The IPCE was recorded using a 300 W xenon lamp (Oriel), a monochromator (Oriel, Cornerstone 260), and a power meter (Newport, 1918-c). The quantity of incident photons on the device at each wavelength was calculated using a calibrated Si detector as a reference.

References

Fig. S1 SEM images of (a) $\text{Cs}_{0.68}\text{Ti}_{1.83}\text{O}_4$ and (b) $\text{H}_{0.68}\text{Ti}_{1.83}\text{O}_4$ precursors.

Fig. S2 XRD patterns: (a) $\text{H}_{0.68}\text{Ti}_{1.83}\text{O}_4$; (b) $\text{Cs}_{0.68}\text{Ti}_{1.83}\text{O}_4$; (c, d) the synthesized anatase TiO$_2$ rods with (a) and (b) as precursor.
Fig. S3 XPS spectra and high resolution XPS spectra of Cs 3d, Ti 2p and O 1s of the nano-sized anatase TiO$_2$ rods before (a) and after (b) removing Cs.

Fig. S4 Raman spectra of the anatase rods before (a) and after (b) removing Cs.
Fig. S5 XRD patterns of the solid products by hydrothermally treating Cs$_{0.68}$Ti$_{1.83}$O$_4$ for different reaction time.

Fig. S6 SEM images of the products by hydrothermally treating Cs$_{0.68}$Ti$_{1.83}$O$_4$ for different reaction time: a, 0 h; b, 6 h; c, 12 h; d, 18 h. Scale bars: 250 nm. e, Schematic of growth mechanism of {010} dominant anatase rods from lepidocrocite-type cesium titanate.
Fig. S7 (a, b) SEM images and (c) XRD patterns of {010} dominant anatase rods prepared with H$_{0.68}$Ti$_{1.83}$O$_4$ and sodium carbonate/potassium carbonate as precursor and pH mediator.