Supporting Information

for

Propargyl/Methyl Furanosides as Potential Glycosyl Donors

Srinivasa Rao Vidadala,* Gaddamannugu Gayatri†, G. Narahari Sastry* and Srinivas Hotha* c

gnsastry@gmail.com, s.hotha@iiserpune.ac.in

Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Experimental Techniques</td>
<td>S2</td>
</tr>
<tr>
<td>General Experimental Procedures</td>
<td>S2</td>
</tr>
<tr>
<td>Compound Characterization Data</td>
<td>S3-S9</td>
</tr>
<tr>
<td>1H, 13C and DEPT NMR Spectral Charts of all Compounds</td>
<td>S10-S38</td>
</tr>
<tr>
<td>Computational details: Structure and energies of various conformations</td>
<td>S39-S43</td>
</tr>
</tbody>
</table>
General Experimental Techniques

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Unless otherwise reported all reactions were performed under argon atmosphere. Removal of solvent in vacuo refers to distillation using a rotary evaporator attached to an efficient vacuum pump. Products obtained as solids or syrups were dried under high vacuum. AuBr$_3$ was purchased from multi-national commercial vendors. Analytical thin-layer chromatography was performed on pre-coated silica plates (F$_{254}$, 0.25 mm thickness); compounds were visualized by UV light or by staining with anisaldehyde spray. Optical rotations were measured on a JASCO P-1020 polarimeter. IR spectra were recorded on a Perkin-Elmer 1600 FT-IR spectrometer. NMR spectra were recorded either on a Bruker AC 200, AV 400 or AV 500 with CDCl$_3$ as the solvent and internal standard. Elemental analyses were performed on an ELEMENTAR vario EL analysator. High resolution mass spectroscopy (HRMS) was performed on MALDI-TOF using 2,5-dihydroxybenzoic acid as the solid matrix. Low resolution mass spectroscopy (LRMS) was performed on Waters Acquity UPLC-MS.

General Experimental Procedures

General Procedure for AuBr$_3$-mediated transfuranosylations using propargyl furanosides as glycosyl donors: To a solution of glycosyl donor (0.2 mmol) and aglycone (0.22 mmol) in anhydrous acetonitrile (5 mL) was added 8 mol% of AuBr$_3$ and AgOTf under argon atmosphere at room temperature. The resulting mixture was stirred at room temperature until TLC showed complete conversion. The reaction mixture was concentrated in vacuo to obtain a crude residue which was purified by silica gel column chromatography using ethyl acetate-petroleum ether as mobile phase.

General Procedure for AuBr$_3$-mediated transfuranosylations using methyl furanosides as glycosyl donors: To a solution of glycosyl donor (0.2 mmol) and aglycone (0.22 mmol) in anhydrous acetonitrile (5 mL) was added 8 mol% of AuBr$_3$ and AgOTf under argon atmosphere at room temperature. The resulting mixture was stirred at 65°C until TLC showed complete conversion. The reaction mixture was concentrated in vacuo to obtain a crude residue which was purified by silica gel column chromatography using ethyl acetate-petroleum ether as mobile phase.
Compound Characterization Data

Compound 1a:

\[\alpha_D (\text{CHCl}_3, c \, 1.6) = -37.6; \] ^1H NMR (200.13 MHz, CDCl$_3$): δ 2.37 (t, 1H, J = 2.4Hz), 3.48 (dd, 1H, J = 5.4, 10.6Hz), 3.62 (dd, 1H, J = 3.3, 10.6Hz), 3.90 (d, 1H, J = 4.9Hz), 4.07 (dd, 1H, J = 4.6, 7.4Hz), 4.15 (d, 2H, J = 2.3Hz), 4.31-4.71 (m, 5H), 4.54 (ABq, 2H, J = 11.8Hz), 5.21 (s, 1H), 7.16-7.40 (m, 15H); 13C NMR (55.32 MHz, CDCl$_3$): δ 53.9, 70.6, 72.2, 72.3, 72.9, 74.5, 78.0, 79.0, 79.4, 80.5, 103.0, 127.4-128.3, 137.6, 137.6, 138.1; Mol. Wt. calculated for C$_{29}$H$_{30}$O$_5$Na: 481.535, Found: 481.512.

Compound 1b:

\[\alpha_D (\text{CHCl}_3, c \, 1.3) = +52.2; \] ^1H NMR (200.13 MHz, CDCl$_3$): δ 2.41 (t, 1H, J = 2.4Hz), 3.70 (dd, 1H, J = 7.2, 10.2Hz), 3.77 (dd, 1H, J = 4.8, 10.1Hz), 4.06 (s, 1H), 4.08 (dd, 1H, J = 2.8, 8.3Hz), 4.27 (dd, 2H, J = 1.4, 2.3Hz), 4.42-4.61 (m, 6H), 4.45 (dd, 1H, J = 3.3, 5.1Hz), 5.27 (s, 1H), 7.22-7.38 (m, 15H); 13C NMR (55.32 MHz, CDCl$_3$): δ 54.5, 69.6, 71.9, 72.1, 73.4, 74.5, 79.2, 80.4, 81.6, 86.6, 104.8, 127.5-128.4, 137.4, 137.7, 138.2; Mol. Wt. calculated for C$_{29}$H$_{30}$O$_5$Na: 481.535, Found: 481.449.

Compound 1c:

\[\alpha_D (\text{CHCl}_3, c \, 1.6) = -20.4; \] ^1H NMR (200.13 MHz, CDCl$_3$): δ 2.41 (t, 1H, J = 2.4Hz), 3.60 (d, 1H, J = 2.4Hz), 3.62 (d, 1H, J = 1.0Hz), 3.92 (dd, 1H, J = 3.0, 6.6Hz), 4.05 (dd, 1H, J = 0.9, 3.0Hz), 4.22 (m, 1H), 4.28 (d, 2H, J = 2.2Hz), 4.51 (ABq, 2H, J = 12.0), 4.53 (ABq, 2H, J = 12.0Hz), 4.56 (s, 2H), 5.32 (s, 1H), 7.22-7.32 (m, 15H); 13C NMR (55.32 MHz, CDCl$_3$): δ 54.0, 69.6, 71.9, 72.1, 73.4, 74.4, 79.2, 81.1, 83.4, 88.0, 104.2, 127.6-128.4, 137.4, 137.7, 138.0; Mol. Wt. calculated for C$_{29}$H$_{30}$O$_5$Na: 481.535, Found: 481.510.

Compound 1d:

\[\alpha_D (\text{CHCl}_3, c \, 1.5) = +29.4; \] ^1H NMR (200.13 MHz, CDCl$_3$): δ 2.40 (t, 1H, J = 2.4Hz), 3.77 (d, 2H, J = 5.9Hz), 3.94 (dd, 1H, J = 5.9Hz), 4.23 (dd, 2H, J = 2.4, 5.0Hz), 4.34 (t, 1H, J = 5.9Hz), 4.46 (d, 1H, J = 0.7Hz), 4.52 (s, 2H), 4.60 (dd, 2H, J = 7.4, 12.0Hz), 4.68 (dd, 2H, J = 4.5, 12.1Hz), 5.31 (d, 1H, J = 2.0Hz), 7.22-7.34 (m, 15H); 13C NMR (55.32 MHz, CDCl$_3$): δ 54.7, 69.6, 72.4, 73.1, 73.3, 74.4, 77.8, 78.5, 79.2, 82.1, 103.5, 127.5-128.3, 137.7, 137.9, 138.1; Mol. Wt. calculated for C$_{29}$H$_{30}$O$_5$Na: 481.535, Found: 481.510.

Compound 3a:

\[\alpha_D (\text{CHCl}_3, c \, 1.2) = +42.9; \] ^1H NMR (200.13 MHz, CDCl$_3$): δ 3.38 (s, 3H), 3.46-3.65 (m, 1H), 3.51 (dd, 1H, J = 5.7, 10.5Hz), 3.62 (dd, 1H, J = 4.1, 10.5Hz), 3.91 (dd, 1H, J = 2.2, 11.5Hz), 3.95 (d, 1H, J = 4.9Hz), 4.02 (dd, 1H, J = 4.7, 7.3Hz), 4.14 (qd, 1H, J = 2.5, 9.9Hz), 4.31 (dd, 1H, J
= 3.5, 6.1Hz), 4.45(ABq, 2H, J = 11.9Hz), 4.51(s, 2H), 4.66(d, 2H, J = 4.4Hz), 5.00(s, 1H), 5.16(dd, 1H, J = 3.6, 8.4Hz), 5.23(dd, 1H, J = 3.6, 14.9Hz), 5.58(t, 1H, J = 9.9Hz), 6.12(t, 1H, 9.9Hz), 7.21-7.55(m, 24H), 7.85-8.00(m, 6H) ; 13C NMR (55.32 MHz, CDCl$_3$): δ 55.4, 66.1, 68.6, 69.3, 70.6, 71.4, 72.1, 72.3, 73.1, 77.2, 78.2, 79.3, 80.6, 96.9, 106.0, 127.5-129.9, 13.1, 133.3, 133.4, 137.8, 137.9, 138.3, 165.2, 165.8, 165.8; Mol. Wt. calculated for C$_{54}$H$_{52}$O$_{13}$Na: 931.973, Found: 931.909.

Compound 3b:

$\left[\alpha\right]_D$(CHCl$_3$, c 1.8) = +11.8; 1H NMR (200.13 MHz, CDCl$_3$): δ 1.68(m, 2H), 2.11(m, 2H), 3.25-3.60(m, 4H), 3.92(dd, 1H, J = 3.1, 6.8Hz), 4.03(dd, 1H, J = 1.2, 3.3Hz), 4.05-4.25(m, 2H), 4.44-4.67(m, 6H), 4.96(dq, 1H, J = 1.0, 8.8Hz), 5.04(s, 1H), 5.80(m, 1H), 7.22-7.36(m, 15H); 13C NMR (55.32 MHz, CDCl$_3$): δ 28.6, 30.2, 67.2, 71.4, 72.2, 72.3, 73.1, 78.5, 79.7, 80.3, 105.2, 114.7, 127.4-128.3, 129.6, 137.8, 138.1, 138.2; Mol. Wt. calculated for C$_{31}$H$_{36}$O$_5$Na: 511.604, Found: 511.551.

Compound 3c:

$\left[\alpha\right]_D$(CHCl$_3$, c 1.0) = -20.8; 1H NMR (200.13 MHz, CDCl$_3$): δ 0.70(d, 3H, J = 7.0Hz), 0.81, 0.84, 0.88, 0.91(4s, 6H), 1.28(m, 3H), 1.61(m, 4H), 2.03(m, 2H), 3.40(dd, 1H, J = 4.0, 10.5Hz), 3.49(dd, 1H, J = 4.0, 10.4Hz), 3.61(dd, 1H, J = 4.0, 10.4Hz), 3.80(dd, 1H, J = 1.2, 4.7Hz), 3.91(m, 1H), 4.36(dt, 1H, J = 4.1, 7.0Hz), 4.52(dd, 2H, J = 11.7, 18.7Hz), 4.55(d, 2H, J = 1.8Hz), 4.64(s, 2H), 5.21(d, 1H, J = 0.7Hz), 7.25-7.39(m, 15H) ; 13C NMR (55.32 MHz, CDCl$_3$): δ 15.9, 21.1, 22.3, 23.0, 25.1, 29.7, 31.3, 34.4, 39.8, 47.9, 72.0, 72.3, 73.1, 75.3, 78.8, 79.7, 80.4, 101.6, 127.5-128.4, 137.8, 138.0, 138.3; Mol. Wt. calculated for C$_{36}$H$_{46}$O$_5$Na: 581.737, Found: 581.235.

Compound 3d:

$\left[\alpha\right]_D$(CHCl$_3$, c 1.5) = +5.3; 1H NMR (200.13 MHz, CDCl$_3$): δ 3.29(s, 3H), 3.31-3.65(m, 5H), 3.72(dd, 1H, J = 4.0, 9.7Hz), 3.89(dt, 1H, J = 0.9, 4.7Hz), 3.90-4.05(m, 3H), 4.33(dd, 1H, J = 5.7, 10.8Hz), 4.41-4.65(m, 8H), 4.72(ABq, 2H, J = 12.2Hz), 4.82(t, 1H, J = 10.9Hz), 4.88(ABq, 2H, J = 10.8Hz), 5.06(d, 1H, J = 0.8Hz), 7.22-7.33(m, 30H) ; 13C NMR (55.32 MHz, CDCl$_3$): δ 55.0, 66.5, 69.9, 71.3, 72.2, 72.3, 73.1, 73.3, 74.9, 75.7, 77.9, 78.3, 79.7, 78.8, 80.5, 82.0, 97.8, 105.7, 127.4-128.4, 137.7, 137.7, 138.1, 138.1, 138.2, 138.6 ; Mol. Wt. calculated for C$_{54}$H$_{58}$O$_{10}$Na: 890.022, Found: 889.903.

Compound 3e:

$\left[\alpha\right]_D$(CHCl$_3$, c 1.3) = +48.1; 1H NMR (200.13 MHz, CDCl$_3$): δ 3.44-3.52(m, 2H), 3.60(dd, 1H, J = 3.5, 10.6Hz), 3.70(dd, 1H, J = 1.2, 4.6Hz), 3.73-3.83(m, 2H), 4.00(dd, 1H, J = 4.8, 6.6Hz), 4.16(dd, 1H, J = 2.0, 11.6Hz), 4.27(ABq, 2H, J = 11.9Hz), 4.30(dd, 1H, J = 3.0, 7.9Hz), 4.47(d,
1H, J = 1.4Hz), 4.50(ABq, 2H, J = 11.6Hz), 4.56(s, 2H), 4.80(s, 2H), 4.95(d, 1H, J = 1.1Hz), 5.11(s, 2H), 5.36(d, 1H, J = 8.1Hz), 5.91(d, 1H, J = 1.0Hz), 7.14-7.38(m, 30H), 7.51(d, 1H, J = 1.7Hz), 7.58(d, 2H, J = 8.1Hz) ; 13C NMR (55.32 MHz, CDCl3): δ 43.9, 65.5, 70.0, 71.3, 72.0, 72.4, 73.3, 74.0, 77.4, 78.1, 79.7, 80.8, 80.9, 89.2, 100.9, 105.8, 127.5-128.7, 129.3, 136.7, 137.2, 137.4, 137.5, 137.8, 150.6, 162.4 ; Mol. Wt. calculated for C56H56N2O10Na: 940.0410, Found: 939.899.

Compound 3f:

[α]D(CHCl3, c 2.1) = +61.3; 1H NMR (200.13 MHz, CDCl3): δ 2.34(t, 1H, J = 2.3Hz), 3.42-3.67(m, 3H), 3.85-4.00(m, 2H), 4.04(dd, 1H, J = 4.6, 7.2Hz), 4.15-4.55(m, 8H), 4.66(d, 2H, J = 3.6Hz), 4.99(s, 1H), 5.31(dd, 1H J = 3.7Hz), 5.50(dd, 1H, J = 3.5Hz), 5.61(t, 1H, J = 9.9Hz), 6.13(t, 1H, J = 10.0Hz), 7.24-7.56(m, 24H), 7.85-8.01(m, 6H) ; 13C NMR (55.32 MHz, CDCl3): δ 55.2, 66.0, 69.1, 69.2, 70.4, 71.3, 71.6, 72.1, 72.3, 73.1, 75.3, 78.2, 78.3, 79.3, 80.6, 94.7, 106.0, 127.5-129.9, 133.1, 133.3, 133.4, 137.8, 137.9, 138.2, 165.7, 165.8 ; Mol. Wt. calculated for C56H52O13Na: 955.994, Found: 955.545.

Compound 4a(α/β):

1H NMR (500.13 MHz, CDCl3): δ 3.35(s, 3H), 3.46-3.54(m, 2H), 3.43(s, 3H), 3.60-3.79(m, 6H), 3.94-4.10(m, 6H), 4.20-4.25(m, 2H), 4.35-4.68(m, 12H), 5.04(s, 1H), 5.08(s, 1H), 5.19-5.27(m, 4H), 5.59(t, 1H. J = 9.8Hz), 5.69(t, 1H, J = 9.8Hz), 6.10-6.16(m, 2H), 7.23-7.52(m, 48H), 7.86-7.99(m, 12H); 13C NMR (125.76 MHz, CDCl3): δ 55.3, 55.5, 65.7, 66.5, 68.7, 68.8, 69.1, 69.3, 69.7, 70.4, 70.7, 71.8, 71.9, 72.0, 72.2, 72.3, 73.2, 73.3, 79.8, 80.2, 81.5, 81.9, 86.6, 86.7, 96.8, 96.9, 101.7, 107.5, 127.5-129.9, 133.0, 133.0, 133.2, 133.3, 133.3, 133.3, 133.5, 137.7, 137.8, 137.9, 138.3, 138.3, 165.1, 165.2, 165.8, 165.8, 165.8, 165.9 ; Mol. Wt. calculated for C54H52O15Na: 931.973, Found: 931.769.

Compound 4b(α/β):

1H NMR (200.13 MHz, CDCl3): δ 1.68(m, 4H), 2.13(m, 4H), 3.25-3.80, 8H), 3.92(dd, 1H, J = 3.3, 6.8Hz), 4.03(dd, 1H, J = 1.2, 3.2Hz), 4.05-4.12(m, 2H), 4.16-4.24(m, 2H), 4.44-4.68(m, 12H), 4.85-5.10(m, 6H), 5.68-5.93(m, 2H), 7.20-7.45(m, 30H); 13C NMR (55.32 MHz, CDCl3): δ 28.6, 28.7, 29.6, 30.2, 66.8, 67.2, 69.7, 71.9, 72.0, 72.2, 72.4, 72.6, 73.3, 73.3, 80.1, 80.4, 83.4, 83.5, 84.2, 88.3, 100.5, 106.1, 114.8, 114.8, 127.5-128.4, 137.5, 137.7, 137.9, 138.0, 138.1, 138.1, 138.2, 138.2 ; Mol. Wt. calculated for C54H52O15Na: 931.973, Found: 931.769.

Compound 4c(α/β):

1H NMR (200.13 MHz, CDCl3): δ 0.69-0.92(m, 22H), 0.95-1.49(m, 6H), 1.54-1.70(m, 4H), 2.05-2.40(m, 4H), 3.30-3.58(m, 2H), 3.60-3.85(m, 4H), 3.96-4.05(m, 4H), 4.30-4.70(m, 14H), 5.17(d, 1H, J = 4.3Hz), 5.25(s, 1H), 7.18-7.40(m, 30H) ; 13C NMR (55.32 MHz, CDCl3): δ
15.8, 15.9, 21.1, 22.2, 22.4, 22.8, 23.0, 24.8, 25.1, 31.3, 31.7, 34.3, 34.5, 39.6, 43.2, 48.0, 48.0, 48.4, 69.5, 71.8, 71.9, 72.5, 72.6, 73.3, 73.3, 74.8, 75.5, 80.0, 80.2, 81.4, 81.7, 84.4, 86.3, 100.8, 102.8, 127.4-128.4, 137.8, 138.1, 138.2, 138.3, 138.3, 138.4; Mol. Wt. calculated for $C_{36}H_{46}O_5Na$: 581.737, Found: 581.236.

Compound 4d (α/β):

1H NMR (200.13 MHz, CDCl$_3$): δ 3.28(s, 3H), 3.34(s, 3H), 3.35(dd, 1H, J = 9.4, 16.8Hz), 3.43(dd, 1H, J = 3.7, 9.5Hz), 3.49(ABq, 2H, J = 9.4Hz), 3.57(dd, 2H, J = 6.7, 10.7Hz), 3.63-3.80(m, 8H), 3.96-4.13(m, 8H), 4.28(dd, 1H, J = 5.8, 7.0Hz), 4.37(m, 1H), 4.42-4.88(m, 22H), 4.93-4.98(m, 2H), 5.07(d, 1H, J = 1.5Hz), 5.13(d, 1H, J = 4.3Hz), 7.20-7.38(m, 60H); ^{13}C NMR (55.32 MHz, CDCl$_3$): δ 55.0, 55.1, 66.5, 66.9, 69.3, 69.6, 70.0, 70.2, 71.9, 72.1, 72.4, 73.3, 73.3, 73.4, 73.4, 75.0, 75.1, 75.6, 75.7, 76.2, 77.8, 78.1, 80.0, 80.0, 80.0, 81.6, 81.8, 82.0, 82.0, 83.6, 86.7, 97.9, 98.1, 100.5, 107.3, 127.5-128.4, 137.5, 137.8, 138.0, 138.1, 138.2, 138.2, 138.2, 138.3, 138.3, 138.7, 138.9; Mol. Wt. calculated for $C_{54}H_{58}O_{10}Na$: 890.022, Found: 890.811.

Compound 5a:

$[\alpha]_D$(CHCl$_3$, c 1.3) = +0.8; 1H NMR (200.13 MHz, CDCl$_3$): δ 3.38(s, 3H), 3.44-3.68(m, 3H), 3.75-4.20(m, 4H), 4.27-4.80(m, 3H), 4.46(ABq, 2H, J = 11.8Hz), 4.66(ABq, 2H, J = 11.8Hz), 5.01(s, 1H), 5.22(dd, 1H, J = 3.5, 9.4Hz), 5.25(dd, 1H, J = 3.5, 19.5Hz), 5.59(t, 1H, J = 9.8Hz), 6.13(t, 1H, J = 9.8Hz), 7.24-7.50(m, 24H), 7.86-8.00(m, 6H); ^{13}C NMR (55.32 MHz, CDCl$_3$): δ 55.4, 66.1, 68.6, 69.2, 70.5, 71.3, 72.0, 72.2, 73.0, 78.2, 79.2, 80.5, 96.8, 105.9, 127.4-129.8, 133.0, 133.3, 133.3, 137.8, 137.8, 138.2, 165.2, 165.7, 165.8; Mol. Wt. calculated for $C_{54}H_{52}O_{13}Na$: 931.973, Found: 931.916.

Compound 5b (α/β):

1H NMR (200.13 MHz, CDCl$_3$): δ 1.57(m, 4H), 2.03(m, 4H), 3.20-3.78(m, 8H), 3.86(dd, 1H, J = 0.8, 4.5Hz), 4.01(dd, 1H, J = 4.7, 7.0Hz), 4.10-4.40(m, 4H), 4.42-4.72(m, 12H), 4.90-5.15(m, 6H), 5.59-5.90(m, 2H), 7.21-7.60(m, 30H); ^{13}C NMR (55.32 MHz, CDCl$_3$): δ 28.5, 28.6, 29.6, 30.2, 66.8, 67.2, 69.6, 69.7, 71.9, 72.0, 72.2, 72.3, 72.6, 73.3, 80.1, 80.3, 83.4, 84.1, 88.2, 88.3, 100.5, 106.0, 114.8, 114.8, 127.5-128.4, 137.5, 137.6, 137.8, 137.9, 138.0, 138.0, 138.0, 138.1; Mol. Wt. calculated for $C_{31}H_{36}O_{5}Na$: 511.604, Found: 511.551.

Compound 5c:

$[\alpha]_D$(CHCl$_3$, c 1.2) = +14.4; 1H NMR (200.13 MHz, CDCl$_3$): δ 0.79(d, 3H, J = 6.9Hz), 0.87, 0.90, 0.90, 0.94(4s, 6H), 1.01(m, 2H), 1.25(m, 3H), 1.63(m, 2H), 2.16(m, 2H), 3.36(dt, 1H, J = 4.3, 10.4Hz), 3.63(t, 1H, J = 10.9Hz), 3.63(dd, 1H, J = 10.9, 19.8Hz), 3.90(dd, 1H, J = 3.3, 7.1Hz), 4.03(dd, 1H, J = 1.2, 3.4Hz), 4.25(m, 1H), 4.51(ABq, 2H, J = 11.9Hz), 4.52(ABq, 2H, J
= 11.8Hz), 4.56(d, 2H, J = 1.5Hz), 5.16(s, 1H), 7.26-7.32(m, 15H); 13C NMR (55.32 MHz, CDCl$_3$): δ 16.1, 21.2, 22.2, 23.0, 25.6, 31.6, 34.3, 43.3, 48.4, 69.7, 71.9, 72.0, 73.2, 79.7, 80.0, 83.7, 88.6, 107.6, 127.5-128.4, 137.6, 138.0, 138.2; Mol. Wt. calculated for C$_{36}$H$_{46}$O$_5$Na: 581.737, Found: 581.423.

Compound 5d:

$[\alpha]_D$(CHCl$_3$, c 2.3) = +24.4; 1H NMR (200.13 MHz, CDCl$_3$): δ 3.36(s, 3H), 3.47-3.78(m, 5H), 3.97(dd, 2H, J = 8.8, 17.2Hz), 4.04-4.15(m, 2H), 4.20(dd, 1H, J = 4.9, 9.5Hz), 4.40-4.65(m, 8H), 4.74(ABq, 2H, J = 3.7Hz), 4.76(t, 2H, J = 8.6Hz), 4.89(ABq, 2H, J = 11.0Hz), 5.18(s, 1H), 7.23-7.33(m, 30H); 13C NMR (55.32 MHz, CDCl$_3$): δ 55.1, 65.7, 69.6, 69.9, 71.7, 72.0, 73.2, 73.3, 75.0, 75.9, 77.6, 79.8, 81.1, 82.0, 83.2, 87.8, 98.1, 106.7, 127.5-128.4, 137.4, 137.7, 138.0, 138.1, 138.3, 138.8; Mol. Wt. calculated for C$_{54}$H$_{58}$O$_{10}$Na: 890.022, Found: 889.839.

Compound 6a:

$[\alpha]_D$(CHCl$_3$, c 1.8) = +54.2; 1H NMR (200.13 MHz, CDCl$_3$): δ 3.44(s, 3H), 3.56-3.74(m, 3H), 3.92-4.03(m, 2H), 4.15-4.35(m, 3H), 4.40-4.60(m, 2H), 4.53(ABq, 2H, J = 11.8Hz), 4.59(ABq, 2H, J = 11.9Hz), 5.12(d, 1H, J = 1.3Hz), 5.23-5.31(m, 1H), 5.24(s, 1H), 5.68(t, 1H, J = 9.8Hz), 6.12(t, 1H, J = 9.5Hz), 7.20-7.55(m, 24H), 7.86-8.01(m, 6H); 13C NMR (55.32 MHz, CDCl$_3$): δ 28.7, 30.2, 67.6, 70.0, 72.4, 73.0, 73.2, 77.9, 78.1, 81.7, 97.1, 104.6, 127.3-129.9, 133.0, 133.2, 133.3, 137.9, 138.1, 138.3, 165.0, 165.8, 165.8; Mol. Wt. calculated for C$_{54}$H$_{52}$O$_{13}$Na: 931.973, Found: 931.904.

Compound 6b:

$[\alpha]_D$(CHCl$_3$, c 1.3) = +27.2; 1H NMR (200.13 MHz, CDCl$_3$): δ 1.64(m, 2H), 2.18(m, 2H), 3.41(dd, 1H, J = 6.6, 16.1Hz), 3.66-3.80(m, 3H), 3.90(dd, 1H, J = 2.6, 4.6Hz), 4.10(t, 1H, J = 4.9Hz), 4.35(m, 1H), 4.55(ABq, 2H, J = 12.0Hz), 4.61(ABq, 2H, J = 12.0Hz), 4.62(d, 2H, J = 2.5Hz), 4.91-5.06(m, 2H), 5.10(d, 1H, J = 2.5Hz), 5.80(m, 1H), 7.22-7.40(m, 15H); 13C NMR (55.32 MHz, CDCl$_3$): δ 28.7, 30.2, 67.6, 70.0, 72.4, 73.2, 73.4, 77.9, 78.1, 82.5, 105.2, 114.8, 127.5-128.3, 137.8, 138.1, 138.1, 138.2; Mol. Wt. calculated for C$_{31}$H$_{36}$O$_5$Na: 511.604, Found: 511.550.

Compound 6c:

$[\alpha]_D$(CHCl$_3$, c 1.3) = +1.2; 1H NMR (200.13 MHz, CDCl$_3$): δ 0.76(d, 3H, J = 6.9Hz), 0.86, 0.87, 0.89, 0.90(4s, 6H), 0.80-1.00(m, 2H), 1.10-1.35(m, 3H), 1.31-1.70(m, 2H), 2.00-2.20(m, 2H), 3.31(dt, 1H, J = 4.27, 10.5Hz), 3.76(dd, 1H, J = 6.8, 10.0Hz), 3.79(dd, 1H, J = 5.2, 10.1Hz), 3.89(dd, 1H, J = 2.7, 4.5Hz), 4.19(t, 1H, J = 5.0Hz), 4.38(dd, 1H J = 5.3, 12.0Hz), 4.56(ABq, 2H, 11.9Hz), 4.60(ABq, 2H, J = 11.9Hz), 4.60(s, 2H), 5.18(d, 1H, J = 2.5Hz), 7.22-7.40(m, 15H); 13C NMR (55.32 MHz, CDCl$_3$): δ 16.2, 21.1, 21.2, 23.1, 25.5, 31.5, 34.3, 43.1, 48.5, 69.6, 72.5,
73.2, 73.3, 77.6, 77.9, 79.8, 82.6, 106.5, 127.5-128.3, 137.8, 138.1, 138.3; Mol. Wt. calculated for C$_{36}$H$_{46}$O$_5$Na: 581.737, Found: 581.426.

Compound 6d:

\[\alpha \]$_D$(CHCl$_3$, c 1.2) = +28.1; 1H NMR (200.13 MHz, CDCl$_3$): δ 3.34(s, 3H), 3.41-3.75(m, 6H), 3.96(dd, 1H, J = 2.4, 4.5Hz), 4.07(dd, 1H, J = 3.2, 10.8Hz), 4.21(dd, 1H, J = 4.5, 5.8Hz), 4.33(dd, 1H, J = 5.8, 11.5Hz), 4.46-4.86(m, 12H), 4.9(ABq, 2H, J = 10.9Hz), 5.21(d, 1H, J = 1.9Hz), 7.24-7.38(m, 30H) ; 13C NMR (55.32 MHz, CDCl$_3$): δ 55.1, 66.3, 69.7, 69.9, 72.3, 73.2, 73.2, 73.3, 75.1, 75.8, 77.2, 77.7, 77.9, 78.2, 79.8, 82.0, 98.0, 105.4, 127.4-128.4, 137.9, 137.9, 138.1, 138.1, 138.2, 138.7 ; Mol. Wt. calculated for C$_{54}$H$_{58}$O$_{10}$Na: 890.022, Found: 889.905.

Compound 6e:

\[\alpha \]$_D$(CHCl$_3$, c 1.3) = +48.1; 1H NMR (200.13 MHz, CDCl$_3$): δ 3.70-3.85(m, 4H), 3.93(dd, 1H, J = 2.1, 11.6Hz), 4.05(dd, 1H, J = 5.1, 9.9Hz), 4.18-4.37(m, 4H), 4.46(dd, 2H, J = 2.4, 11.8Hz), 4.54-4.63(m, 4H), 4.79(s, 2H), 5.12(s, 2H), 5.14(d, 1H, J = 2.4Hz), 5.34(d, 1H, J = 8.1Hz), 6.00(d, 1H, J = 1.4Hz), 7.16-7.38(m, 30H), 7.50-7.55(m, 2H), 7.64(d, 1H, J = 8.3Hz); 13C NMR (55.32 MHz, CDCl$_3$): δ 44.0, 65.7, 69.3, 71.2, 72.2, 72.5, 73.3, 73.4, 74.4, 78.2, 78.6, 81.0, 82.2, 89.1, 101.1, 105.1, 127.56-128.67, 129.2, 136.7, 137.1, 137.1, 137.1, 137.2, 137.6, 137.9, 150.6, 162.4 ; Mol. Wt. calculated for C$_{56}$H$_{56}$N$_2$O$_{10}$Na: 940.041, Found: 939.896.

Compound 7:

\[\alpha \]$_D$(CHCl$_3$, c 1.7) = +13.7; 1H NMR (200.13 MHz, CDCl$_3$): δ 3.28(s, 3H), 3.49(dd, 1H, J = 5.6, 10.6Hz), 3.60(dd, 1H, J = 3.7, 10.5Hz), 3.83(d, 1H, J = 4.5Hz), 4.02(d, 1H, J = 4.8Hz), 4.35(dd, 1H, J = 3.9, 5.9Hz), 4.46(ABq, 2H, J = 11.9Hz), 4.53(d, 2H, J = 1.7Hz), 4.60(dd, 2H, J = 12.0, 16.8Hz), 4.92(s, 1H), 7.15-7.38(m, 15H) ; 13C NMR (55.32 MHz, CDCl$_3$): δ 54.7, 71.0, 72.0, 72.1, 72.8, 78.1, 79.4, 80.2, 106.1, 127.2-128.1, 137.6, 137.6, 138.1; Mol. Wt. calculated for C$_{27}$H$_{30}$O$_5$Na: 457.514, Found: 457.426.

Compound 8:

\[\alpha \]$_D$(CHCl$_3$, c 1.6) = -17.7; 1H NMR (200.13 MHz, CDCl$_3$): δ 3.39(s, 3H), 3.71(dd, 1H, J = 6.9, 10.2Hz), 3.79(dd, 1H, J = 5.0, 10.2Hz), 3.97(dd, 1H, J = 1.4, 2.5Hz), 4.05(dd, 1H, J = 2.5, 5.8Hz), 4.42(m, 1H), 4.49(d, 2H, J = 2.5Hz), 4.52(ABq, 2H J = 10.7Hz), 4.55(dd, 2H, J = 6.6, 12.3Hz), 4.92(d, 1H, J = 1.4Hz), 7.21-7.38(m, 15H) ; 13C NMR (55.32 MHz, CDCl$_3$): δ 55.6, 69.6, 71.8, 72.1, 73.3, 80.0, 81.4, 86.7, 108.0, 127.5-128.4, 137.4, 137.7, 138.2; Mol. Wt. calculated for C$_{27}$H$_{30}$O$_5$Na: 457.514, Found: 457.495.

S8
Compound 9:

\[\alpha \]_D (CHCl₃, c 1.3) = +53.3; 1H NMR (200.13 MHz, CDCl₃): \(\delta \) 3.39(s, 3H), 3.60(d, 1H, J = 0.6Hz), 3.61(s, 1H), 3.90(dd, 1H, J = 2.6, 6.2Hz), 3.99(d, 1H, J = 1.9Hz), 4.22(dd, 1H, J = 4.9, 10.6Hz), 4.50(ABq, 2H, J = 11.9Hz), 4.53(Abq, 2H, J = 12.7Hz), 4.53(d, 2H, J = 10.6Hz), 4.96(s, 1H), 7.16-7.41(m, 15H); 13C NMR (55.32 MHz, CDCl₃): \(\delta \) 54.9, 69.8, 71.8, 72.0, 73.3, 80.8, 83.4, 88.0, 107.2, 127.5-128.3, 137.5, 17.8, 138.0; Mol. Wt. calculated for C\textsubscript{27}H\textsubscript{30}O\textsubscript{5}Na: 457.514, Found: 457.426.

Compound 10:

\[\alpha \]_D (CHCl₃, c 1.2) = +16.9; 1H NMR (200.13 MHz, CDCl₃): \(\delta \) 3.37(s, 3H), 3.75(d, 1H, J = 0.6Hz), 3.78(s, 1H), 3.89(dd, 1H, J = 2.4, 4.5Hz), 4.19(m, 1H), 4.36(dd, 1H, J = 5.5, 11.9Hz), 4.58(ABq, 2H, J = 12.1Hz), 4.59(ABq, 2H, J = 12.0Hz), 4.60(s, 2H), 5.02(d, 1H, J = 1.5Hz), 7.20-7.38(m, 15H); 13C NMR (55.32 MHz, CDCl₃): \(\delta \) 55.5, 69.6, 72.5, 73.2, 73.4, 77.8, 78.2, 82.4, 106.3, 127.5-128.3, 137.8, 138.0, 138.2; Mol. Wt. calculated for C\textsubscript{27}H\textsubscript{30}O\textsubscript{5}Na: 457.51, Found: 457.495.
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 1a

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 1a

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 1a
\(^1\)H NMR Spectrum (200.13 MHz, CDCl\(_3\)) of Compound 1c

\(^{13}\)C NMR Spectrum (50.32MHz, CDCl\(_3\)) of Compound 1c

DEPT NMR Spectrum (50.32MHz, CDCl\(_3\)) of Compound 1c
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 1d

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 1d

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 1d
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 2f

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 2f

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 2f
\(^{1}\)H NMR Spectrum (200.13 MHz, CDCl\(_3\)) of Compound 3b

\(^{13}\)C NMR Spectrum (50.32 MHz, CDCl\(_3\)) of Compound 3b

DEPT NMR Spectrum (50.32 MHz, CDCl\(_3\)) of Compound 3b
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 3c

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 3c

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 3c
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 3d

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 3d

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 3d
1H NMR Spectrum (400.13 MHz, CDCl$_3$) of Compound 3e

13C NMR Spectrum (100.61 MHz, CDCl$_3$) of Compound 3e

DEPT NMR Spectrum (100.61 MHz, CDCl$_3$) of Compound 3e
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 3f

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 3f

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 3f
1H NMR Spectrum (500.13 MHz, CDCl$_3$) of Compound 4a

13C NMR Spectrum (125.76 MHz, CDCl$_3$) of Compound 4a

DEPT NMR Spectrum (125.76 MHz, CDCl$_3$) of Compound 4a
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 4b

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 4b

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 4b
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 4c

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 4c

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 4c
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 5a

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 5a

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 5a
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 5b

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 5b

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 5b
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 5c

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 5c

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 5c
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 6a

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 6a

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 6a
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 6c

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 6c

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 6c
\(^1\text{H}\) NMR Spectrum (200.13 MHz, CDCl\(_3\)) of Compound 6d

\(^{13}\text{C}\) NMR Spectrum (50.32MHz, CDCl\(_3\)) of Compound 6d

DEPT NMR Spectrum (50.32MHz, CDCl\(_3\)) of Compound 6d
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 7

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 7

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 7
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of Compound 8

13C NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 8

DEPT NMR Spectrum (50.32MHz, CDCl$_3$) of Compound 8
Table 1: Structures of the various conformations generated using OPLS_2005 force field along with the relative energies, in kcal/mol, at AM1 level for the α and β isomers of the products.

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th></th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>RE</td>
<td>Structure</td>
<td>RE</td>
</tr>
<tr>
<td>ribf-1</td>
<td>1.8</td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td>ribf-2</td>
<td>0.2</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>ribf-3</td>
<td>1.1</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>ribf-4</td>
<td>0.0</td>
<td></td>
<td>5.9</td>
</tr>
<tr>
<td>ribf-5</td>
<td>4.1</td>
<td></td>
<td>7.0</td>
</tr>
<tr>
<td>ribf-6</td>
<td>3.2</td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td>ribf-7</td>
<td>4.1</td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>ribf-8</td>
<td>12.6</td>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>Compound</td>
<td>Value 1</td>
<td>Value 2</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>lyxf-8</td>
<td>2.8</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>lyxf-9</td>
<td>9.4</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>lyxf-10</td>
<td>11.1</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>araf-1</td>
<td>10.0</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>araf-2</td>
<td>7.4</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>araf-3</td>
<td>4.0</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>araf-4</td>
<td>4.0</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>araf-5</td>
<td>0.0</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>araf-6</td>
<td>5.1</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>araf-7</td>
<td></td>
<td>3.7</td>
<td>2.8</td>
</tr>
<tr>
<td>araf-8</td>
<td></td>
<td>0.6</td>
<td>1.6</td>
</tr>
<tr>
<td>araf-9</td>
<td></td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>araf-10</td>
<td></td>
<td>4.1</td>
<td>3.7</td>
</tr>
<tr>
<td>xylf-1</td>
<td></td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>xylf-2</td>
<td></td>
<td>2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>xylf-3</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>xylf-4</td>
<td></td>
<td>4.1</td>
<td>0.0</td>
</tr>
<tr>
<td>xylf-5</td>
<td></td>
<td>11.7</td>
<td>6.0</td>
</tr>
<tr>
<td>xylf-6</td>
<td>1.4</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>xylf-7</td>
<td>5.9</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>xylf-8</td>
<td>5.8</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>xylf-9</td>
<td>-</td>
<td>-</td>
<td>5.7</td>
</tr>
<tr>
<td>xylf-10</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
</tr>
</tbody>
</table>