Electronic Supplemental Information (ESI)

Lewis acid-catalyzed stereoselective lactonization and subsequent glycosidation of 2-C-malonyl carbohydrates

Tukaram M. Pimpalpalle,[a] Srinivasa Rao Vidadala,[b] Srinivas Hotha[a][b] and Torsten Linker[a][a]

Contents

<table>
<thead>
<tr>
<th>General Experimental Techniques</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Experimental Procedures</td>
<td>S2</td>
</tr>
<tr>
<td>Compound Characterization Data</td>
<td>S3–S5</td>
</tr>
<tr>
<td>^1H, ^{13}C and DEPT NMR Spectral Charts of all Compounds</td>
<td>S6–S14</td>
</tr>
<tr>
<td>NOESY Spectra of Lactones 1c</td>
<td>S15–S16</td>
</tr>
</tbody>
</table>

General Experimental Techniques

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. All reactions were performed under argon atmosphere. Removal of solvent \textit{in vacuo} refers to distillation using a rotary evaporator attached to an efficient vacuum pump. Products obtained as solids or syrups were dried under high vacuum. AuBr_3 was purchased from multi-national commercial vendors. Analytical thin-layer chromatography was performed on pre-coated silica plates (F_{254}, 0.25 mm thickness); compounds were visualized by UV light or by staining with anisaldehyde spray. Optical rotations were measured on a JASCO P-1020 polarimeter. IR spectra were recorded on a Perkin-Elmer 1600 FT-IR spectrometer. NMR spectra were recorded either on a Bruker AC 300, AV 500 or AV 600 with CDCl_3 as the solvent and internal standard. High resolution mass spectroscopy (HRMS) was performed on MALDI-TOF using 2,5-dihydroxybenzoic acid as the solid matrix.
General Experimental Procedures

General Procedure for AuBr$_3$-catalyzed lactonizations: To a solution of methyl glycoside 2 (112 mg, 0.2 mmol) in acetonitrile (3 mL) was added water (0.4 mmol) and 8 mol% of AuBr$_3$ at room temperature. The resulting mixture was heated to 70 °C and stirred until TLC showed complete conversion. The reaction mixture was concentrated in vacuo to obtain a crude residue which was purified by silica gel column chromatography (ethyl acetate-petroleum ether) to give lactones 1c in analytically pure form.

General Procedure for lactone openings: To a solution of lactone _gluco-1c_ (106 mg, 0.2 mmol) in acetonitrile (3 mL) was added nucleophile 5 (0.6 mmol) and TMSOTf (45 mg, 0.2 mmol) at room temperature. The mixture was stirred at this temperature until TLC showed complete conversion. After dilution with water (5 mL), the mixture was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with brine (10 mL) and dried over anhydrous sodium sulphate. After removal of the solvent in vacuo, the residue was purified by silica gel column chromatography (ethyl acetate-petroleum ether) to afford the products 6.

One-pot synthesis of glycoside 6b: To a solution of methyl glycoside _gluco-2_ (112 mg, 0.2 mmol) in acetonitrile (3 mL) was added water (0.4 mmol) and 8 mol% of AuBr$_3$ at room temperature. The resulting mixture was heated to 70 °C and stirred until TLC showed formation of lactone _gluco-1c_. Direct addition of allyl alcohol 5b (40 µL, 0.6 mmol) and TMSOTf (45 mg, 0.2 mmol) at room temperature gave no conversion after 12 h, due to the presence of water. Thus, powdered 4Å molecular sieves was added prior to the reaction with TMSOTf. Again, the conversion was not complete but the allyl glycoside 6b could now be isolated in 35% yield. Thus, a one-pot synthesis of glycosides 6 is possible, but in lower yields compared to the two-step procedure.
Compound Characterization Data

Gluco-lactone 1c:

\[\alpha_d^{\text{CDCl}_3, \text{c} 1.3} = +26.4; \text{ }^1\text{H NMR (600.24 MHz, CDCl}_3\text{): }\delta\]

3.10(ddd, 1H, J = 10.0, 5.7, 3.9Hz), 3.54(dd, 1H, J = 6.7, 6.2Hz), 3.48(d, 1H, J = 3.9Hz), 3.69 (dd, 1H, J = 10.4, 2.0Hz), 3.72-3.78(m, 2H), 3.78(s, 3H), 3.84(dd, 1H, J = 10.0, 6.2Hz), 4.55(d, 1H, J = 11.0Hz), 4.57(d, 1H, J = 11.9Hz), 4.61(d, 1H, J = 11.5Hz), 4.66(d, 1H, J = 11.5Hz), 4.67(d, 1H, J = 11.0Hz), 4.79(d, 1H, J = 11.9Hz), 6.08(d, 1H, J = 5.7Hz), 7.15-7.40(m, 15H); \text{ }^{13}\text{C NMR (125.06 MHz, CDCl}_3\text{): }\delta\]

43.4, 51.4, 53.2, 68.4, 72.7, 73.5, 73.6, 75.7, 76.9, 100.7, 127.8-128.6, 137.4, 137.5, 137.7, 166.9, 168.4; \text{IR (CHCl}_3\text{): }\nu = 3030, 2953, 2920, 2868, 1788, 1736, 1454, 1154, 1096, 1076, 754, 698 cm\(^{-1}\); Mol. Wt. calculated for C\(_{31}\)H\(_{32}\)O\(_8\)Na: 555.5707, Found: 555.5699.

Galacto-lactone 1c:

\[\alpha_d^{\text{CDCl}_3, \text{c} 1.6} = +7.6; \text{ }^1\text{H NMR (600.24 MHz, CDCl}_3\text{): }\delta\]

2.91(ddd, 1H, J = 9.8, 4.2, 3.5Hz), 3.43(dd, 1H, J = 3.8, 3.5Hz), 3.65(ddd, 1H, J = 8.8, 3.5, 2.5Hz), 3.72(s, 3H), 3.83(ddd, 1H, J = 12.9, 2.5Hz), 3.85(dd, 1H, J = 12.9, 3.5Hz), 4.08(d, 1H, J = 9.8Hz), 4.42(d, 1H, J = 12.0Hz), 4.53(s, 2H), 4.55(d, 1H, J = 12.0Hz), 5.63(d, 1H, J = 4.2Hz), 7.24-7.40(m, 10H); \text{ }^{13}\text{C NMR (125.06 MHz, CDCl}_3\text{): }\delta\]

42.6, 47.0, 52.9, 62.1, 71.4, 72.2, 72.8, 72.9, 97.6, 127.6-128.6, 137.2, 137.2, 167.2, 169.9; \text{IR (CHCl}_3\text{): }\nu = 3028, 2955, 2926, 2870, 1801, 1736, 1454, 1288, 1265, 1119, 1074, 754, 698 cm\(^{-1}\); Mol. Wt. calculated for C\(_{31}\)H\(_{32}\)O\(_8\)Na: 435.4222, Found: 435.4231.

Xylo-lactone 1c:

\[\alpha_d^{\text{CDCl}_3, \text{c} 1.7} = -22.0; \text{ }^1\text{H NMR (600.24 MHz, CDCl}_3\text{): }\delta\]

2.91(ddd, 1H, J = 9.8, 4.2, 3.5Hz), 3.43(dd, 1H, J = 3.8, 3.5Hz), 3.65(ddd, 1H, J = 8.8, 3.5, 2.5Hz), 3.72(s, 3H), 3.83(ddd, 1H, J = 12.9, 2.5Hz), 3.85(dd, 1H, J = 12.9, 3.5Hz), 4.08(d, 1H, J = 9.8Hz), 4.42(d, 1H, J = 12.0Hz), 4.53(s, 2H), 4.55(d, 1H, J = 12.0Hz), 5.63(d, 1H, J = 4.2Hz), 7.24-7.40(m, 10H); \text{ }^{13}\text{C NMR (125.06 MHz, CDCl}_3\text{): }\delta\]

42.6, 47.0, 52.9, 62.1, 71.4, 72.2, 72.8, 72.9, 97.6, 127.6-128.6, 137.2, 137.2, 167.2, 169.9; \text{IR (CHCl}_3\text{): }\nu = 3028, 2955, 2926, 2870, 1801, 1736, 1454, 1288, 1265, 1119, 1074, 754, 698 cm\(^{-1}\); Mol. Wt. calculated for C\(_{23}\)H\(_{24}\)O\(_7\)Na: 435.4222, Found: 435.4231.
Arabino-lactone 1c:

\[[\alpha]_D (\text{CHCl}_3, c \ 1.6) = -34.2; \ \text{^1}H \text{ NMR} \ (600.24 \text{ MHz, CDCl}_3): \ \delta \ 3.02(ddd, 1H, J = 9.5, 4.6, 2.5Hz), 3.29(dd, 1H, J = 9.5, 2.5Hz), 3.47(d, 1H, J = 2.5Hz), 3.62(dd, 1H, J = 12.5, 1.5Hz), 3.68(s, 3H), 3.72-3.78(m, 1H), 3.99(dd, 1H, J = 12.5, 3.8Hz), 4.31(d, 1H, J = 11.7Hz), 4.52(d, 1H, J = 12.1Hz), 4.54(d, 1H, J = 11.7Hz), 4.65(d, 1H, J = 12.1Hz), 6.01(d, 1H, J = 4.6Hz), 7.26-7.4(m, 10H); \ \text{^13}C \text{ NMR} \ (125.06 \text{ MHz, CDCl}_3): \ \delta \ 41.8, 52.1, 53.1, 62.3, 68.9, 71.0, 71.3, 77.0, 101.9, 127.3-128.6, 137.0, 137.6, 166.8, 168.5; \ \text{IR} \ (\text{CHCl}_3) : \ \nu = 3030, 2955, 2930, 2888, 2874, 1784, 1736, 1454, 1437, 1193, 1163, 1111, 752, 698, 667 \text{ cm}^{-1}; \ \text{Mol. Wt. calculated for C}_{23}H_{24}O_7Na: 435.4222, \ \text{Found: 435.4231.}

Compound 6a:

\[[\alpha]_D (\text{CHCl}_3, c \ 1.8) = +69.2; \ \text{^1}H \text{ NMR} \ (200.13 \text{ MHz, CDCl}_3): \ \delta \ 2.51(ddd, 1H, J = 3.8, 8.8, 12.4 Hz), 2.67(ddd, 1H, J = 3.2, 5.7, 8.8 Hz), 3.27, 3.46, 3.52, 3.58, 3.63, 3.69(6s, 18H), 3.34-3.76(m, 10H), 3.81(d, 1H, J = 2.8Hz), 3.92(d, 1H, J = 3.7Hz), 4.40-4.87(m, 12H), 4.94(d, 1H, J = 4.5Hz), 5.02(d, 1H, J = 3.2Hz), 7.05-7.40(m, 30H); \ \text{^13}C \text{ NMR} \ (55.32 \text{ MHz, CDCl}_3): \ \delta \ 46.1, 48.0, 48.2, 49.8, 52.2, 52.2, 52.3, 52.3, 55.2, 57.3, 68.5, 68.8, 70.9, 72.1, 73.5, 73.5, 74.7, 74.7, 74.8, 74.9, 78.6, 80.0, 80.1, 80.3, 99.2, 101.8, 127.4-128.4, 137.9, 137.9, 138.0, 138.1, 138.2, 138.5, 168.7, 168.9, 169.0, 169.6; \ \text{IR} \ (\text{CHCl}_3) : \ \nu = 3030, 3010, 2951, 2928, 2857, 1751, 1736, 1454, 1435, 1146, 1126, 1067, 1051, 754, 698 \text{ cm}^{-1}; \ \text{Mol. Wt. calculated for C}_{33}H_{38}O_9Na: 601.6392, \ \text{Found: 601.6402.}

Compound 6b:

\[[\alpha]_D (\text{CHCl}_3, c \ 1.8) = +69.2; \ \text{^1}H \text{ NMR} \ (200.13 \text{ MHz, CDCl}_3): \ \delta \ 2.71(ddd, 1H, J = 3.2, 6.2, 9.4 Hz), 3.47(s, 3H), 3.59-3.89(m, 7H), 4.04-4.18(m, 2H), 4.50(d, 2H, J = 3.6Hz), 4.55(m, 1H), 4.60(ABq, 2H, J = 13.1Hz), 4.87(ABq, 2H, J = 11.3Hz), 5.11-5.32(m, 4H), 5.29(dd, 1H, J = 1.4, 5.7Hz), 5.70-5.95(m, 2H), 7.05-7.38(m, 15H); \ \text{^13}C \text{ NMR} \ (55.32 \text{ MHz, CDCl}_3): \ \delta \ 46.0, 50.3, 52.2, 65.9, 68.3, 68.5, 71.1, 73.5, 74.6, 74.8, 78.8, 80.2, 97.4, 117.3, 118.5, 127.2-128.4, 131.6, 133.7, 137.9, 137.9, 138.6, 167.8, 168.7; \ \text{IR} \ (\text{CHCl}_3) : \ \nu = 3030, 2951, 2918, 2866, 1757, 1736, 1454, 1132, 1041, 1028, 756, 698 \text{ cm}^{-1}; \ \text{Mol. Wt. calculated for C}_{37}H_{42}O_9Na: 653.7138, \ \text{Found: 653.7137.}
Compound 6c:

\[\alpha_D (\text{CHCl}_3, c 1.8) = +64.0; ^1H \text{ NMR (200.13 MHz, CDCl}_3): \delta \]
2.40(t, 1H, J = 2.3Hz), 2.48(t, 1H, J = 2.4Hz), 2.73(ddd, 1H, J = 3.1, 6.0, 9.1 Hz), 3.50(s, 3H), 3.62-3.82(m, 6H), 4.14(dd, 2H, J = 2.4, 5.3Hz), 4.60(ABq, 2H, J = 12.1Hz), 4.63(d, 2H, J = 2.2Hz), 4.65(ABq, 2H, J = 10.5Hz), 4.87(ABq, 2H, J = 11.2Hz), 5.28(d, 1H, J = 3.1Hz), 7.06-7.38(m, 15H) ;

\[^{13}C \text{ NMR (55.32 MHz, CDCl}_3): \delta 45.8, 49.7, 52.4, 52.8, 54.7, 68.3, 71.5, 73.5, 74.5, 74.7, 74.8, 75.3, 77.1, 78.4, 78.8, 80.0, 97.1, 127.3-128.4, 137.8, 137.9, 138.5, 167.3, 168.3; IR (\text{CHCl}_3): \nu = 3017, 2951, 2926, 1751, 1734, 1454, 1217, 1132, 1053, 1041, 1028, 758, 698, 667 \text{ cm}^{-1}; \text{ Mol. Wt. calculated for C}_{37}H_{38}O_9Na: 649.6820, \text{ Found: 649.6828.} \]

Compound 6d:

\[\alpha_D (\text{CHCl}_3, c 1.6) = +55.1; ^1H \text{ NMR (200.13 MHz, CDCl}_3): \delta \]
2.75(ddd, 1H, J = 3.2, 6.3, 9.6 Hz), 3.38(s, 3H), 3.62-3.92(m, 4H), 4.06(dd, 1H, J = 11.2Hz), 4.23(d, 1H, J = 11.3Hz), 4.48-4.96(m, 10H), 5.28(d, 1H J = 3.2Hz), 7.02-7.40(m, 25H) ;

\[^{13}C \text{ NMR (55.32 MHz, CDCl}_3): \delta 46.1, 50.4, 52.2, 67.0, 68.4, 69.6, 71.2, 73.5, 74.5, 74.6, 74.8, 75.3, 77.1, 78.4, 78.8, 80.2, 97.7, 126.9-128.6, 135.2, 137.2, 137.8, 137.9, 138.6, 167.9, 168.7; IR (\text{CHCl}_3): \nu = 3064, 3030, 2949, 2924, 2868, 1748, 1732, 1496, 1454, 1435, 1361, 1217, 1132, 1055, 1026, 754, 698, 667 \text{ cm}^{-1}; \text{ Mol. Wt. calculated for C}_{45}H_{46}O_9Na: 753.8311, \text{ Found: 753.8319.} \]

Compound 6e:

\[\alpha_D (\text{CHCl}_3, c 1.3) = +53.5; ^1H \text{ NMR (200.13 MHz, CDCl}_3): \delta \]
1.04(t, 3H, J = 7.4Hz), 1.10(t, 3H, J = 7.5Hz), 2.01-2.20(m, 4H), 2.32-2.50(m, 4H), 2.65(ddd, 1H, J = 3.2, 5.9, 9.1 Hz), 3.50(s, 3H), 3.55-3.86(m, 8H), 4.10(d, 2H, J = 4.5, 6.7Hz), 4.60(ABq, 2H, J = 12.1Hz), 4.64(ABq, 2H, J = 10.7Hz), 4.87(ABq, 2H, J = 11.2Hz), 5.22(d, 1H, J = 3.2Hz), 7.05-7.40(m, 15H) ;

\[^{13}C \text{ NMR (55.32 MHz, CDCl}_3): \delta 12.3, 12.3, 12.3, 14.0, 14.1, 14.1, 19.1, 19.8, 46.0, 49.8, 52.3, 63.8, 66.6, 68.5, 68.7, 71.1, 73.5, 74.7, 75.7, 78.6, 80.2, 83.0, 98.0, 127.2-128.4, 138.0, 138.0, 138.7, 168.1, 168.8; IR (\text{CHCl}_3): \nu = 3028, 3010, 2974, 2953, 2924, 2875, 2854, 1751, 1736, 1454, 1217, 1134, 1070, 1040, 1028, 756, 698, 667 \text{ cm}^{-1}; \text{ Mol. Wt. calculated for C}_{43}H_{50}O_9Na: 733.8415, \text{ Found: 733.8425.} \]
Spectral charts

1H NMR Spectrum (500 MHz, CDCl$_3$) of gluco-lactone 1c

13C NMR Spectrum (50.32 MHz, CDCl$_3$) of gluco-lactone 1c

DEPT NMR Spectrum (125 MHz, CDCl$_3$) of gluco-lactone 1c
1H NMR Spectrum (500 MHz, CDCl$_3$) of galacto-lactone 1c

1C NMR Spectrum (50.32 MHz, CDCl$_3$) of galacto-lactone 1c

DEPT NMR Spectrum (50.32 MHz, CDCl$_3$) of galacto-lactone 1c
1H NMR Spectrum (500 MHz, CDCl$_3$) of xylo-lactone 1c

13C NMR Spectrum (125 MHz, CDCl$_3$) of xylo-lactone 1c

DEPT NMR Spectrum (125 MHz, CDCl$_3$) of xylo-lactone 1c
1H NMR Spectrum (500 MHz, CDCl$_3$) of arabino-lactone 1c

13C NMR Spectrum (50.32 MHz, CDCl$_3$) of arabino-lactone 1c

DEPT NMR Spectrum (125 MHz, CDCl$_3$) of arabino-lactone 1c
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of compound 6a

13C NMR Spectrum (50.32 MHz, CDCl$_3$) of compound 6a

DEPT NMR Spectrum (50.32 MHz, CDCl$_3$) of compound 6a
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of compound 6b

13C NMR Spectrum (50.32 MHz, CDCl$_3$) of compound 6b

DEPT NMR Spectrum (50.32 MHz, CDCl$_3$) of compound 6b
1H NMR Spectrum (200.13 MHz, CDCl$_3$) of compound 6c

13C NMR Spectrum (50.32 MHz, CDCl$_3$) of compound 6c

DEPT NMR Spectrum (50.32 MHz, CDCl$_3$) of compound 6c
1H NMR Spectrum (200.13 MHz, CDCl₃) of compound 6d

13C NMR Spectrum (50.32 MHz, CDCl₃) of compound 6d

DEPT NMR Spectrum (50.32 MHz, CDCl₃) of compound 6d
\(^{1}\text{H NMR Spectrum}\) (200.13 MHz, CDCl\(_3\)) of compound 6e

\(^{13}\text{C NMR Spectrum}\) (50.32 MHz, CDCl\(_3\)) of compound 6e

DEPT NMR Spectrum (50.32 MHz, CDCl\(_3\)) of compound 6e
NOESY Spectrum (500 MHz, CDCl$_3$) of *gluco*-lactone 1c

NOESY Spectrum (500 MHz, CDCl$_3$) of *galacto*-lactone 1c
NOESY Spectrum (500 MHz, CDCl₃) of xylo-lactone 1c

NOESY Spectrum (500 MHz, CDCl₃) of arabino-lactone 1c