Electronic Supplementary Information (ESI)

2-Lithiated-2-Phenyloxetane: A New Attractive Synthon for the Preparation of Oxetane Derivatives

Donato Ivan Coppi, Antonio Salomone, Filippo Maria Perna, and Vito Capriati*

Dipartimento Farmaco-Chimico, Università di Bari “A. Moro”, Consorzio Interuniversitario Nazionale “Metodologie e Processi Innovativi di Sintesi” C.I.N.M.P.I.S. Via E. Orabona 4, I-70125 Bari, Italy

Table of Contents

1. General Methods S2

2. Experimental Procedures and characterization data S3

3. 1H and 13C NMR spectra S9
1. General Methods

Tetrahydrofuran (THF), toluene and hexane were freshly distilled under a nitrogen atmosphere: THF over sodium/benzophenone ketyl, toluene and hexane over calcium hydride. For the 1H and 13C NMR spectra (1H NMR 400 or 600 MHz; 13C NMR 100 or 150 MHz), CDCl$_3$ was used as the solvent. GC-MS spectrometry analyses were performed on a gas chromatograph (dimethylsilicon capillary column, 30 m, 0.25 mm i.d.) equipped with a mass selective detector operating at 70 eV (EI). Elemental analyses were performed by using a Carlo Erba CHNS-O EA1108-Elemental Analyzer. Analytical thin layer chromatography (TLC) was carried out on precoated 0.25 mm thick plates of Kieselgel 60 F254; visualization was accomplished by UV light (254 nm) or by spraying with a solution of 5 % (w/v) ammonium molybdate and 0.2 % (w/v) cerium(III) sulfate in 100 ml 17.6 % (w/v) aq. sulphuric acid and heating to 473 K for some time until blue spots appear. All reactions involving air-sensitive reagents were performed under nitrogen in oven-dried glassware using syringe-septum cap technique. Lithiation-deuteriation (electrophilic trapping) reactions were performed in an ethanol/liquid N$_2$ (−116 °C) or acetone/dry ice (−78 °C) cold bath. Racemic or (R)-2-phenyloxetane (2) were prepared starting from racemic or (R)-3-chloro-1-phenylpropan-1-ol (1), respectively, as similarly reported for other cases.1 The enantiomeric ratios were determined as follows: 2-phenyloxetane (2) by GC analysis employing a Chirasil-DEX CB column (250 × 0.25 mm), column head pressure 18 psi, He flow 1.5 mL/min, oven temperature 90 °C, retention times 27.9 min [(S)-2] and 29.8 min [(R)-2]; 2-trimethylsilyl-2-phenyloxetane (2c) by HPLC analysis employing a Cellulose Lux-2 column (250 × 4.6 mm), eluent hex/i-PrOH 99.8/0.2, 1.0 mL/min, retention times 4.93 min and 5.88 min. Spectroscopic data of oxetanes 2a,b have been reported.2

1 F. Bertolini, S. Crotti, V. Di Bussolo, F. Macchia, and M. Pineschi, J. Org. Chem. 2008, 73, 8998.
2. Experimental Procedures and characterization data

Preparation of 2-deuterated [D]-2 or 2-substituted-2-phenyloxetanes 2a–l, 4 – General procedure: A solution of 2 (134 mg, 1.0 mmol) in 5 mL of dry THF was cooled to −78 °C (or to −116 °C, when required) and treated with s-BuLi (1.08 mL, 1.4 mmol, 1.3 M solution in cyclohexane) under N₂. After stirring the resulting mixture for 5 min at the above temperature, MeOD (10 mmol) or the electrophile (2.0 mmol) (as pure liquid or as a solution in 1 mL of THF if solid) was added all at once. The cooling bath was removed and the reaction mixture was allowed to warm to room temperature, then diluted with brine (5 mL), and extracted with Et₂O (3 × 10 mL). The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The crude product so obtained was purified by flash-chromatography (silica gel; hexane/Et₂O 9/1–95/5).

2-Trimethylsilyl-2-phenyloxetane (2c): Colorless oil, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 0.02 (s, 9 H), 2.66 – 2.73 (m, 1 H), 3.06 – 3.12 (m, 1 H), 4.67 – 4.71 (m, 2 H), 7.06 – 7.33 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ, 31.6, 68.8, 86.8, 123.2, 125.1, 127.7, 147.8; GC-MS (70 eV) m/z (%) 205 (72, M⁺ + 1), 105 (53), 73 (100); FT-IR (film, cm⁻¹) 2955, 2919, 2850, 1467, 839. Anal. Calcd. For C₁₂H₁₈OSi: C, 69.84; H, 8.79. Found: C, 70.12; H, 9.02.

2-Tributylstanny1-2-phenyloxetane (2d): Colorless oil, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 0.81 – 0.90 (m, 15 H), 1.23 – 1.26 (m, 6 H), 1.38 – 1.41 (m, 6 H), 2.86 – 2.91 (m, 1 H), 3.20 – 3.29 (m, 1 H), 4.65 – 4.71 (m, 1 H), 4.82 – 4.88 (m, 1 H), 7.02 – 7.08 (m, 3H), 7.27 – 7.31 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 9.1, 13.6, 27.4, 28.9, 35.6, 69.5, 92.8, 121.1, 124.2, 128.1, 151.3; GC-MS (70 eV) m/z (%) 337 (100), 281 (50), 223 (70), 77 (4); FT-IR (film, cm⁻¹) 2956, 2924, 1376, 1068, 699.
2-Benzyl-2-phenyloxetane (2e): Colorless oil, 60% yield. 1H NMR (600 MHz, CDCl$_3$) δ 2.71 • 2.76 (m, 1 H), 2.88 • 2.93 (m, 1 H), 3.19 (s, 2 H), 4.27 • 4.31 (m, 1 H), 4.43 • 4.47 (m, 1 H), 7.19 • 7.43 (m, 10 H); 13C NMR (150 MHz, CDCl$_3$) δ 32.6, 49.4, 64.7, 88.5, 124.2, 126.4, 126.6, 127.8, 127.9, 130.6, 136.6, 147.1; GC-MS (70 eV) m/z (%) 224 (M$^+$, 9), 194 (17), 179 (15), 133 (100), 105 (79), 77 (31); FT-IR (film, cm$^{-1}$) 3061, 3000, 2882, 1602, 1495, 1447, 1231, 979, 766, 700.

Phenyl 2-phenyloxetan-2-yl ketone (2f): Colorless oil, 70 % yield. 1H NMR (600 MHz, CDCl$_3$) δ 2.73 • 2.78 (m, 1 H), 3.68 • 3.73 (m, 1 H), 4.63 • 4.75 (m, 2 H), 7.29 • 7.47 (m, 6 H), 7.61 • 7.63 (m, 2 H), 7.97 (m, 2 H); 13C NMR (150 MHz, CDCl$_3$) δ 34.3, 66.4, 92.5, 123.7, 127.8, 128.9, 130.2, 133.0, 133.2, 141.9, 199.0; GC-MS (70 eV) m/z (%) 238 (M$^+$, 1), 208 (16), 133 (96), 105 (100), 77 (61), 51 (18); FT-IR (film, cm$^{-1}$) 3060, 2972, 2890, 1681, 1598, 1447, 1269, 952, 755, 700.

2,2-Dimethyl-1-(2-phenyloxetan-2-yl)propan-1-ol (2g): Inseparable mixture of diastereoisomers (dr = 2/1), 73% overall yield, yellow solid, mp 96 • 97 °C (Et$_2$O). 1H NMR (400 MHz, CDCl$_3$) δ 0.61 (s, 3 H minor), 0.64 (s, 3 H major), 2.52 • 2.59 (m, 1 H minor), 2.72 • 2.78 (m, 1 H major), 2.98 (d, J = 8.4 Hz, 1 H minor, exchanges with D$_2$O), 3.22 (d, J = 2.8 Hz, 1 H major, exchanges with D$_2$O), 3.29 • 3.43 (m, 1 H minor + 1 H major), 3.52 (d, J = 2.8 Hz, 1 H major, s after exchange with D$_2$O), 3.61 (d, J = 8.4 Hz, 1 H minor, s after exchange with D$_2$O), 4.39 • 4.52 (m, 2 H minor + 2 H major), 7.27 • 7.43 (m, 5 H minor + 5 H major); 13C NMR (100 MHz, CDCl$_3$) δ 27.2 (minor), 27.4 (major), 28.6 (major), 31.6 (minor), 33.9 (minor), 34.6 (major), 66.0 (minor), 66.3 (major), 83.0 (minor), 83.7 (major), 91.5 (minor), 91.9 (major), 125.3 (minor), 126.0 (major), 126.9
(minor), 127.5 (major), 127.9 (minor), 127.9 (major), 143.9 (major), 144.5 (minor); GC-MS (70 eV) m/z (%) minor (t_R = 8.82 min): 220 (M^+, 1), 134 (65), 133 (100), 105 (85), 77 (31), 57 (15); major (t_R = 8.90 min) 220 (M^+, 1), 190 (3), 134 (88), 133 (100), 105 (82), 77 (33) 57 (20); FT-IR (film, cm\(^{-1}\)) 3368, 2963, 2885, 1489, 1446, 1085, 702. Anal. Calcd. For C\(_{16}\)H\(_{15}\)ClO\(_2\): C, 69.95; H, 5.50. Found: C, 69.75; H, 5.84.

![Chemical Structure](image)

1-(2-Phenoxetan-2-yl)-1-ethanol (2i): Inseparable mixture of diastereoisomers (dr = 1.2/1), colorless oil, 80% overall yield. \(^1\)H NMR (600 MHz, CDCl\(_3\)) δ 0.89 (d, J = 6.5 Hz, 3 H major), 0.96 (d, J = 6.4 Hz, 3 H minor), 2.52 • 2.56 (m, 1 H minor), 2.58 (br s, exchanges with D\(_2\)O, 1 H minor), 2.64 • 2.68 (m, 1 H major), 3.17 • 3.22 (m, 1 H major), 3.24 • 3.29 (m, 1 H minor), 3.30 (br s, exchanges with D\(_2\)O, 1 H major), 3.73 (q, J = 6.5 Hz, 1 H major), 3.92 (br s, 1 H minor), 7.01, 7.27 (3 × m, 9 H major + 9 H minor); \(^13\)C NMR (100 MHz, CDCl\(_3\)) δ 26.6 (major), 30.6 (minor), 66.0 (minor), 66.2 (major), 78.6 (minor), 78.9 (major), 90.2 (minor), 91.4 (major), 124.9 (minor), 125.7 (major), 127.0 (minor), 127.4 (major), 127.6\(_2\) (major), 127.6\(_7\) (minor), 127.6\(_8\) (major), 127.7\(_1\) (minor), 128.7\(_0\) (minor), 128.7\(_3\) (major), 133.3 (minor), 133.5 (major), 135.4 (major), 137.2 (minor), 142.4 (minor), 143.0 (major); GC-MS (70 eV) m/z (%) minor (t_R = 11.69 min): 274 (M^+, 1), 133 (100), 105 (85), 77 (70); major (t_R = 11.73 min) 274 (M^+, 1), 133 (100), 105 (82), 77 (73); FT-IR (film, cm\(^{-1}\)) 3368, 2963, 2885, 1489, 1446, 1085, 702. Anal. Calcd. For C\(_{16}\)H\(_{15}\)ClO\(_2\): C, 69.95; H, 5.50. Found: C, 69.75; H, 5.84.

![Chemical Structure](image)
4.50 • 4.57 (m, 2 H minor + 2 H major), 7.25 • 7.37 (m, 5 H minor + 5 H major); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 14.7 (major), 16.1 (minor), 26.3 (major), 30.6 (minor), 65.9 (major), 72.6 (minor), 72.8 (major), 90.9 (minor), 91.8 (major), 124.4 (minor), 125.2 (major), 126. (minor), 127.2 (major), 127.9 (major), 128.0 (minor), 143.4 (major), 144.0 (minor); GC-MS (70 eV) m/z (%) minor (\(t_R = 7.32\) min): 178 (M\(^+\), 1), 160 (3), 133 (100), 105 (96), 77 (40); major (\(t_R = 7.46\) min) 178 (M\(^+\), 1), 160 (4), 133 (100), 105 (94), 77 (38); FT-IR (film, cm\(^{-1}\)) 3430, 2972, 2886, 1447, 968, 757, 702.

2-(2-Phenylloxetan-2-yl)propan-2-ol (2j): Colorless oil, 75% yield. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 0.97 (s, 3 H), 1.15 (s, 3 H), 2.53 • 2.57 (m, 1 H), 3.40 • 3.45 (m, 1 H), 4.43 • 4.47 (m, 1 H), 4.50 • 4.54 (m, 1 H), 7.34 • 7.38 (m, 5 H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 21.8, 23.1, 29.5, 65.6, 73.8, 93.3, 125.9, 126.8, 127.4, 144.0; GC-MS (70 eV) m/z (%) 147 (4), 134 (81), 105 (100), 77 (40); FT-IR (film, cm\(^{-1}\)) 3436, 2971, 2884, 1447, 961, 703.

2-Methyl-1-phenyl-1-(2-phenylloxetan-2-yl)propan-1-ol (2k): Separable mixture of diastereomers, (dr = 2/1), 82% overall yield. Major diastereoisomer: colorless oil, 50% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.52 (d, \(J = 6.6\) Hz, 3 H), 1.17 (d, \(J = 6.6\) Hz, 3 H), 1.94 (hept, \(J = 6.6\) Hz, 1 H), 1.99 • 2.05 (m, 1 H), 3.38 • 3.44 (m, 1 H), 3.77 (s, 1 H, exchanges with D\(_2\)O), 4.35 • 4.43 (m, 2 H), 7.08 • 7.11 (m, 2 H) 7.20 • 7.31 (m, 8 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 17.6, 19.0, 31.5, 32.1, 66.2, 80.7, 95.7, 126.8\(_0\), 126.8\(_2\), 126.8\(_5\), 127.1, 127.6, 128.5, 139.3, 142.2; GC-MS (70 eV) m/z (%) 282 (M\(^+\), 1) 264 (9), 209 (18), 149 (54), 133 (100), 105 (63), 77 (36), 43 (20); FT-IR (film, cm\(^{-1}\)) 3542, 2965, 2884, 1446, 961, 703. Minor diastereoisomer: colorless oil, 32% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.68 (d, \(J = 6.6\) Hz, 3 H), 1.20 (d, \(J = 6.6\) Hz, 3 H), 2.20 (hept, \(J = 6.6\) Hz, 1 H), 2.44 • 2.50 (m, 1 H), 3.31 (s, 1 H, exchanges with D\(_2\)O), 3.64 • 3.71 (m, 1 H), 4.27 • 4.38 (m, 2 H), 6.83 • 6.87 (m, 2 H), 7.07 • 7.14 (m, 4 H), 7.23 • 7.30 (m, 4 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 18.1, 18.4, 32.7, 33.2, 66.2, 81.2, 94.1, 126.4, 126.6, 126.7, 127.0, 127.2; 127.4, 140.5, 143.0; GC-MS (70
Diphenyl(2-phenyloxetan-2-yl)methanol (2l): White solid, mp 98 °C (Et₂O), 70% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.56 • 2.63 (m, 1 H), 3.20 • 3.27 (m, 1 H), 4.06 • 4.12 (m, 1 H), 4.38 • 4.43 (m, 1 H), 7.15 • 7.31 (m, 11 H), 7.58 • 7.61 (m 2 H), 7.75 • 7.77 (m, 2 H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 32.4, 66.1, 80.5, 93.1, 126.9, 127.0, 127.1, 127.2, 127.3, 127.4, 127.5, 127.8, 142.9, 143.0, 143.6; GC-MS (70 eV) m/z (%) 316 (M\(^+\), 2), 270 (5), 183 (47), 133 (100), 105 (90), 77 (47); FT-IR (KBr, cm\(^{-1}\)) 3564, 2968, 2886, 1493, 1446, 909, 885. Anal. Calcd. For C\(_{22}\)H\(_{20}\)O\(_2\): C, 83.51; H, 6.37. Found: C, 83.32; H, 6.51.

2-(But-3-enyl)-2-phenyloxetane (4): Colorless oil, 40% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.81 • 2.17 (m, 4 H), 2.64 • 2.71 (m, 1 H), 2.80 • 2.87 (m, 1 H), 4.47 • 4.59 (m, 2 H), 4.89 (d, \(J = 9.2\) Hz, 1 H), 4.95 (d, \(J = 17.4\) Hz, 1 H), 5.72 • 5.82 (m, 1 H), 7.21 • 7.37 (m, 5 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 27.5, 34.0, 42.4, 65.0, 88.6, 114.3, 124.0, 126.6, 128.1, 138.3, 146.6; GC-MS (70 eV) m/z (%) 188 (M\(^+\), 2), 187 (5), 159 (17), 133 (77), 105 (100), 77 (41); FT-IR (film, cm\(^{-1}\)) 2933, 2882, 1641, 1447, 963, 760, 702.
Preparation of 2-(2,4,6-cycloheptatrien-1-yl)-2-phenyloxetane (6): A solution of 2 (134 mg, 1.0 mmol) in 5 mL of dry THF was cooled to \(-78^\circ\text{C}\) and treated with s-BuLi (1.08 mL, 1.4 mmol, 1.3 M solution in cyclohexane) under Ar. After 5 min stirring at the above temperature, the addition of 1.8 mmol (320 mg) of powdered tropylium tetrafluoroborate in limited amounts produced a color change of the solution, first, from a dark red to a deep green one and finally, with the time, to a pale yellow one. The reaction mixture was stirred for additional 60 min at \(-78^\circ\text{C}\), then slowly allowed to warm up to room temperature, diluted with brine (5 mL), and extracted with Et$_2$O (3 \(\times\) 10 mL). The combined organic phases were dried over Na$_2$SO$_4$ and concentrated \textit{in vacuo}. The crude product was purified by flash-chromatography (silica gel; hexane/Et$_2$O 9/1) to give 6 as a colorless oil (46 mg, 20 \%). 1H NMR (600 MHz, CDCl$_3$) \(\delta\) 1.93 (t, \(J = 5.6\) Hz, 1 H), 2.67 \(\cdots\) 2.72 (m, 1 H), 3.24 \(\cdots\) 3.28 (m, 1 H), 4.68 \(\cdots\) 4.75 (m, 2 H), 5.19 \(\cdots\) 5.22 (m, 1 H), 5.82 \(\cdots\) 5.84 (m, 1 H), 6.12 \(\cdots\) 6.14 (m, 1 H), 6.36 \(\cdots\) 6.39 (m, 1 H), 6.65 \(\cdots\) 6.72 (m, 2 H), 7.35 \(\cdots\) 7.43 (m, 5 H); 13C NMR (150 MHz, CDCl$_3$) \(\delta\) 32.3, 49.4, 65.9, 88.3, 121.3, 121.4, 124.6, 125.0, 125.6, 126.9, 128.2, 130.6, 130.9, 146.0; ESI-MS: 247 [M$^+$ + 23 (Na)]; FT-IR (film, cm$^{-1}$) 3022, 2929, 2880, 1682, 1446, 962, 747.
3. 1H and 13C NMR spectra
1H NMR, 600 MHz, CDCl$_3$

13C NMR, 150 MHz, CDCl$_3$
1H NMR, 600 MHz, CDCl$_3$

13C NMR, 150 MHz, CDCl$_3$
^{1}H NMR, 400 MHz, CDCl$_3$

13C NMR, 100 MHz, CDCl$_3$