Supporting Information

Carbon nitride polymer sensitized TiO$_2$ nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance

Xiaosong Zhou†, Feng Peng*,†, Hongjuan Wang†, Hao Yu†, Yueping Fang*‡

†The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

‡The Institute of Biomaterial, College of Science, South China Agricultural University, Guangzhou, 510642, China

*Corresponding author, Email address: cefpeng@scut.edu.cn (Feng Peng), Fax: +86 20 87114916.
Photoelectrodes Fabrication. The highly ordered TiO$_2$ nanotube array film was prepared by anodic oxidation in a NH$_4$F organic electrolyte, similarly to that described by Paulose et al.1 First, metal Ti foil was cleaned with ethanol and de-ionized water prior to anodization. Then the Ti foil was immersed in a mixed ethylene glycol solution of 0.05% NH$_4$F, and subjected to a constant 60 V anodic potential for 12 h at room temperature in a two-electrode electrochemical cell connected to a DC power supply. After anodic oxidation, the sample was rinsed with de-ionized water, and dried in a N$_2$ stream. The resulting amorphous titania nanotube array film was annealed at 450 ºC for 4h with heating and cooling rates of 10 ºC/min in an O$_2$ atmosphere to crystallize the tube walls and improve its stoichiometry.

Carbon nitride polymer was deposited into the crystallized TiO$_2$ nanotubes by electrodeposition. The preparation of method is similar to that reported in literature.2 The experimental setup used to synthesize the composite film is like that described in literature.$^3,^4$ Typically, the crystallized TiO$_2$ nanotube array film was used as positive electrode and iron silk was used as negative electrode. The interelectrode separation in all the cases was 2 mm. Analytically pure methanol ($\geq 99.5\%$) and acetonitrile mixtures were used as solvent and 0.1 M dicyandiamide was used as electrolyte. The typical sample was deposited under an applied potential of 120 V at room temperature.

The amounts of CN polymer deposited. It is very difficult to measure the amount of CN polymer deposited. Herein, the amount of C-N polymer deposited was calculated.

\[
\text{Charge: } Q = I \cdot t \quad (1-1)
\]

\[
\text{Number of electrons: } N = \frac{Q}{e} = \frac{It}{e} \quad (1-2)
\]
n = N/N₀

C₂H₈N₂ + 12e⁻ → C₃N₄ + CH₄ + 6H₂

Using formula (1-1), (1-2), (1-3) and equation (1-4), we can calculate the amount of C-N polymer with different deposited time according to the below formula:

\[m_{(C₃N₄)} = M_{(C₃N₄)} I/12eN₀ \]

Here, \(I = 0.001 \) A; \(e = 1.6 \times 10^{-19} \) C; \(N₀ = 6.02 \times 10^{23} \) mol⁻¹; \(M_{(C₃N₄)} = 92.06 \) g/mol

Table S1 The amount of C-N polymer deposited with different deposited time

<table>
<thead>
<tr>
<th>Deposited time, (t) (min)</th>
<th>2.5</th>
<th>5.0</th>
<th>10.0</th>
<th>30.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of C₃N₄, (m) (mg)</td>
<td>0.012</td>
<td>0.024</td>
<td>0.048</td>
<td>0.143</td>
</tr>
<tr>
<td>Unit amount of C₃N₄, (m/S^*) (mg/m²)</td>
<td>24</td>
<td>48</td>
<td>96</td>
<td>287</td>
</tr>
</tbody>
</table>

*TNT array electrode area: \(2.5 \times 10^{-2} \) m × \(2.0 \times 10^{-2} \) m = \(5.0 \times 10^{-4} \) m²

Photocatalytic activity test. The photocatalytic activity was measured in a XPAII reactor (Nanjing Xujiang Machineelectronic Plant). The sample film (8×20 mm) was immersed in 10-ml quartz test tube containing 4 ml Acid Orange II (OII) (10 mg/ L) in the dark for 1 h to achieve adsorption equilibrium before irradiation. After that, a 1000 W Xe lamp (the UV light was cut off by 2.0 M sodium nitrite) was used as the visible light source to conduct the photocatalytic experiment at 40 °C. The remaining dye concentration in the reaction solution was determined using the U3010 spectrophotometer. The whole decomposing process was conducted in air without sparging oxygen gas.

X-ray photoelectron spectroscopy (XPS). The chemical bonds of the sample were detected by the XPS analysis, as shown in Figure S1. The C 1s and N 1s spectra were deconvoluted into various peaks (Figure S1a and S1b). The C 1s peak at 284.6 eV is assigned
to the C–C bond in the turbostratic CN structure,5 and the peak at 286.3 eV is attributed to the
sp2 C atoms bonded to N inside the aromatic structure. We assign the peak at 288.4 eV to the
sp3 C–N bond of the sp3 bonded composition.5,6 The N 1s peak is comprised of two
components centered at 398.7 eV and 400.1 eV, which are identified as the C–N–C groups5 and the nitrogen surrounded by an amorphous N–(C\textsubscript{3}) network,7 respectively. The result
shows that the turbostratic CN structure is nearly to the mesoporous carbon nitride reported
by Vinu's8 and the one in bulk by Gao's group6, who used the same kind of carbon nitride
precursor. The O 1s core level peak at 530.0 eV comes from Ti-O-Ti linkages in TiO\textsubscript{2} (Figure
S1c), which is consistent with that of the reports.9,10 The pair of peaks of Ti 2\textit{p}\textsubscript{3/2} and 2\textit{p}\textsubscript{1/2}
appeared at 458.7 and 464.4 eV, respectively, which can be assigned to Ti4+ 2\textit{p} peaks of
TiO\textsubscript{2}9,10 (Figure S1d).
Figure S1. XPS spectra of CN deposited TiO$_2$ nanotube array: (a) C 1s; (b) N 1s; (c) O 1s; (d) Ti 2p.
Fig. S2. The FT-IR of the CN deposited TiO$_2$ nanotube array (deposition time is five minutes).

Figure S3 DRS spectrum of the CN polymer / TNT array (a) and the plain TNT array (b) (deposition time is five minutes).
Supplementary References.

