Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

A highly efficient TBAF-promoted intramolecular cyclization of *gem*-dibromoolefins for the synthesis of 2-bromobenzofurans(thiophenes)

Wei Chen,^a Yicheng Zhang,^a Lei Zhang,^a Min Wang,^a and Lei Wang^{a,b}

^a Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P R China

Tel: + 86-561-3802-069 Fax: + 86-561-3090-518 E-mail: leiwang@chnu.edu.cn

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China

Table of Contents for Supporting Information

1:	Physical			measurements				and	
materi	als·····			•••••			······S1		
2:	Typical	procedur	e for	the	int	ramolecular	cyclizati	on of	
2-(gen	<i>i</i> -dibromovir	nyl)phenol…	······S1						
3:	Optimization			of	of partial			reaction	
condit	ions ·····						$\cdot \cdot S2$		
4:	Further			transformation				of	
2-bron	nobenzofura	n ·····			•••••	• • • • • • • • • • • • • • • • • • • •	······S2		
5:	Characterization data			for	the	intramole	intramolecular cycliz		
produc	ets ·····			···S3					
6:	$^{1}\mathrm{H}$	NMR,	¹³ C	NM	IR	spectra	and	HRMS	
data⋯				•••••		·····S7			
7:									
Refere	ences								
		···S27							

1. Physical measurements and materials

All ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometers. All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. High resolution mass spectroscopy data of the product were collected on a Waters Micromass GCT instrument. Products were purified by flash chromatography on 100–200 mesh silica gels, SiO₂. Unless otherwise noted, the chemicals and solvents were purchased from commercial suppliers either from Aldrich, USA or Shanghai Chemical Company, China and were used without purification prior to use.

2. Typical procedure for the intramolecular cyclization

A Schlenk tube with a magnetic stirring bar was charged with 2-(*gem*-dibromovinyl)phenol (**1a**), TBAF (1.0 M solution in THF, 1.0 mL, 1.0 mmol), and THF (1.0 mL). The reaction mixture was stirred for 10 min at room temperature, and then heated at 45 °C for 4 h. After the reaction mixture was cooled to ambient temperature, the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (eluant: hexane/ethyl acetate) to give the intramolecular cyclization product, 2-bromobenzofuran (**2a**, 195 mg, 99% yield).

3. Optimization of partial reaction conditions

Table The effect of solvent on the intramolecular cyclization of 2-(*gem*-dibromovinyl)phenol $(1a)^a$

	Br Har (1.0 equiv) Har Har (1.0 equiv) Har Har Har Har Har Har Har Har Har Har	Br 2a
Entry	Solvent	Yield $(\%)^b$
1	THF	99
2	CH ₃ CN	98
3	DMF	99
4	DMSO	97
5	1,4-Dioxane	96
6	Toluene	81
7	H_2O	NR
8	CH ₃ CH ₂ OH	NR
9	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ O	H NR

^{*a*} Reaction conditions: 2-(*gem*-dibromovinyl)phenol (**1a**, 1.0 mmol), TBAF (1.0 mmol), solvent (2.0 mL) at 45 °C for 4 h. ^{*b*} Isolated yield.

4. Further transformation of 2-bromobenzofuran

When the prepared 2-bromobenzofuran (2a) reacted with phenylboronic acid and phenylacetylene under the classic Suzuki reaction conditions (See: S. Thielges, E. Meddah, P. Bisseret, J. Eustache, *Tetrahedron Lett.* 2004, *45*, 907–910) and Sonogashira reaction conditions (See: M. Nagamochi, Y.-Q. Fang, M. Lautens, *Org. Lett.* 2007, *9*, 2955–2958), the corresponding cross-coupling product **3a** and **4a** were isolated in 90%, and 92% yields, respectively.

5. Characterization data for the intramolecular cyclization products

2a (Colorless oil):¹ ¹H NMR (400 Hz, CDCl₃): $\delta = 7.43-7.50$ (m, 2H), 7.19–7.26 (m, 2H), 6.71 (s, 1H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 155.7$, 128.7, 128.2, 124.2, 123.3, 120.1, 110.9, 108.2.

2b (White solid, m.p. 41–43 °C):¹ ¹H NMR (400 Hz, CDCl₃): δ = 7.48 (d, *J* = 1.2 Hz, 1H), 7.37 (d, *J* = 8.8 Hz, 1H), 7.23 (dd, *J*₁ = 8.8 Hz, *J*₂ = 1.2 Hz, 1H), 6.69 (s, 1H); ¹³C NMR (100 Hz, CDCl₃): δ = 154.1, 129.9, 129.8, 129.1, 124.4, 119.6, 111.8, 108.0.

2c (Yellow solid, m.p. 55–58 °C):¹ ¹H NMR (400 Hz, CDCl₃): δ = 7.64 (d, *J* = 0.8 Hz, 1H), 7.31–7.38 (m, 2H), 6.69 (s, 1H); ¹³C NMR (100 Hz, CDCl₃): δ = 154.4, 130.5, 129.7, 127.1, 122.7, 116.6, 112.3, 107.8.

2d (White solid, m.p. 70–72 °C): ¹H NMR (400 Hz, CDCl₃): δ = 7.37 (d, J = 1.6 Hz,

1H), 7.26 (d, *J* = 1.2 Hz, 1H), 6.72 (s, 1H); ¹³C NMR (100 Hz, CDCl₃): δ = 150.2, 130.8, 130.8, 129.4, 124.5, 118.3, 116.9, 108.7. HRMS (EI): calcd for C₈H₃BrCl₂O, 263.8742; found, 263.8744.

2e (Yellow solid, m.p. 87–89 °C): ¹H NMR (400 Hz, CDCl₃): δ = 7.59 (d, *J* = 1.6 Hz, 1H), 7.57 (d, *J* = 1.2 Hz, 1H), 6.76 (s, 1H); ¹³C NMR (100 Hz, CDCl₃): δ = 152.0, 131.1, 130.7, 129.7, 121.9, 116.8, 108.7, 104.2. HRMS (EI): calcd for C₈H₃Br₃O, 351.7730; found, 351.7734.

2f (Yellow solid, m.p. 80–82 °C): ¹H NMR (400 Hz, CDCl₃): δ = 7.44–7.42 (m, 2H), 6.76 (s, 1H). ¹³C NMR (100 Hz, CDCl₃): δ = 151.7, 130.8, 130.4, 129.7, 127.2, 118.9, 108.9, 103.8. HRMS (EI): calcd for C₈H₃Br₂ClO, 307.8237; found, 307.8239.

2g (White solid, m.p. 76–78 °C): ¹H NMR (400 Hz, CDCl₃): δ = 7.25 (d, *J* = 1.6 Hz, 1H), 6.90 (d, *J* = 1.2 Hz, 1H), 6.66 (s, 1H), 3.99 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): δ = 145.0, 144.1, 131.4, 129.3, 116.7, 115.0, 110.2, 108.1, 56.4. HRMS (EI): calcd for C₉H₆Br₂O₂, 303.8734; found, 303.8735.

2h (Yellow solid, m.p. 94–96 °C): ¹H NMR (400 Hz, CDCl₃): $\delta = 8.46$ (d, J = 2.0 Hz, 1H), 8.22 (dd, $J_1 = 9.2$ Hz, $J_2 = 2.0$ Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 6.91 (s, 1H); ¹³C

NMR (100 Hz, CDCl₃): δ = 158.3, 144.6, 131.9, 129.0, 120.1, 116.5, 111.3, 109.2. HRMS (EI): calcd for C₈H₃BrNO₃, 240.9372; found, 240.9375.

2i (Colorless oil):^{1 1}H NMR (400 Hz, CDCl₃): δ = 7.37 (d, *J* = 8.4 Hz, 1H), 7.00 (d, *J* = 1.2 Hz, 1H), 6.88 (dd, *J*₁ = 8.0 Hz, *J*₂ = 2.0 Hz, 1H), 6.65 (s, 1H), 3.85 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): δ = 157.8, 156.6, 126.0, 122.0, 120.1, 112.2, 108.0, 95.7, 55.7.

2j (Colorless oil):¹ ¹H NMR (400 Hz, CDCl₃): δ = 7.16 (t, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.72 (s, 1H), 4.01 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): δ = 145.1, 144.7, 130.3, 128.1, 124.1, 112.3, 108.6, 106.5, 56.1.

2k (Colorless oil):^{1 1}H NMR (400 Hz, CDCl₃): $\delta = 8.01$ (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.54–7.58 (m, 2H), 7.46–7.50 (t, J = 7.6 Hz, 1H), 7.16 (s, 1H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 153.4$, 130.3, 128.7, 126.6, 126.6, 126.3, 125.1, 124.9, 124.1, 123.3, 111.7, 107.4.

21 (Colorless oil): ¹H NMR (400 Hz, CDCl₃): $\delta = 7.38-7.36$ (m, 1H), 7.18–7.17 (m, 2H), 6.72 (s, 1H), 1.52 (s, 9H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 154.2$, 134.6, 129.3, 127.1, 123.3, 121.0, 118.0, 108.1, 34.3, 29.8. HRMS (EI): calcd for C₁₂H₁₃BrO,

252.0151; found, 252.0150.

2m (Colorless oil): ¹H NMR (400 Hz, CDCl₃): δ = 7.52–7.44 (m, 2H), 7.31–7.24 (m, 2H), 6.60 (s, 1H); ¹³C NMR (100 Hz, CDCl₃): δ = 154.1, 141.4, 128.3, 124.2, 123.4, 120.2, 110.9, 103.1. HRMS (EI): calcd for C₈H₅ClO, 152.0028; found, 152.0029.

2n (Colorless oil):¹ ¹H NMR (400 Hz, CDCl₃): δ = 7.75–7.69 (m, 2H), 7.36–7.30 (m, 3H); ¹³C NMR (100 Hz, CDCl₃): δ = 141.0, 139.5, 126.6, 124.7, 124.5, 122.7, 121.6, 115.4.

20 (White solid, m.p. $35-37 \ {}^{\circ}C$):¹ ¹H NMR (400 Hz, CDCl₃): $\delta = 7.60$ (d, J = 8.0 Hz, 1H), 7.51 (s, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 141.9$, 137.9, 127.7, 125.1, 125.0, 124.7, 120.0, 116.6.

2p (White solid, m.p. 55–57 °C):¹¹H NMR (400 Hz, CDCl₃): δ = 7.80 (d, *J* = 2.0 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.41 (dd, *J*₁ = 8.0 Hz, *J*₂ = 2.0 Hz, 1H), 7.23 (s, 1H); ¹³C NMR (100 Hz, CDCl₃): δ = 140.9, 139.4, 127.4, 125.7, 125.2, 122.7, 118.8, 117.2.

2q (White solid, m.p. 48–50 °C):^{1 1}H NMR (400 Hz, CDCl₃): δ = 7.84 (s, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.42 (dd, J_1 = 8.4 Hz, J_2 = 1.6 Hz, 1H), 7.26 (s, 1H); ¹³C NMR (100

Hz, CDCl₃): δ = 142.2, 138.2, 128.2, 126.2, 124.0, 123.7, 118.4, 115.9.

6. ¹H NMR, ¹³C NMR spectra and HRMS data

193

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

24

Shanghai Mass Spectrometry Center

Shanghai Mass Spectrometry Center

Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS Data Report

Instrument: Waters Micromass GCT Premier Ionisation Mode: EI+ Electron Energy: 70eV Card Serial Number: GCT-P-T11-05-050408 Sample Serial Number: HBSF-L05-7 Operator: Li Date: 2011/05/16 Elemental Composition Report Single Mass Analysis Tolerance = 5.0 PFM / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron Ions 1891 formula (e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 N: 0-4 0: 0-6 F: 0-1 Cl: 0-2 Br: 0-3 Minimum: -1.5

Maximum:		1.5	5.0	50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT		For		a i			
351.7730	351.7732	-0.2	-0.6	2.5	116.2		C3	H2	NS	0	F	Br3
	351.7734	-0.4	-1.1	6.0	1.7	C8	H3	0	Br3			
	351.7738	-0.8	-2.3	-0.5	350.3	H2	NS	05	C1	2 B	r2	
	351.7739	-0.9	-2.6	1.5	107.5	C5	H6	N	C1	Br3		
	351.7721	0.9	2.6	6.5	15.8	C6	н	NS	Br3			
	351.7745	-1.5	-4.3	2.0	68.1	C5	H4	02	F	Br3		

Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS Data Report

Instrument: Waters Micromass GCT Premier Card Serial Number: GCT-P-Ti1-05-050409 Sample Serial Number: HBSF-L05-8 Ionisation Mode: EI+ Electron Energy: 70eV Operator: Li Date: 2011/05/16 O₂N Date: 2011/05/16 Elemental Composition Report Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off - Br Monoisotopic Mass, Odd and Even Electron Ions 870 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass) Elements Used: H: 0-80 N: 0-4 O: 0-6 C: 0-60 F: 0-1 C1: 0-2 Br: 0-3 Minimum: -1.5 5.0 PPM Maximum: 1.5 mDa 50.0 DBE Formula C9 N2 O F C12 C3 H3 N4 O3 F Br Calc. Mass i-FIT Mass 240.9372 240.9373 240.9372 0.0 0.0 9.5 77.9 3.5 7.0 2.5 7.5 0.3 -0.1 -0.4 -1.2 C8 H4 N 03 Br C5 H7 N2 02 C1 240.9375 -0.3 -0.7 C5 H7 N2 O2 C1 Br C6 H2 N4 O2 Br 240.9379 20.5 240.9361 1.1 4.6 11.4

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry, Chinese Academic of Sciences High Resolution MS Data Report

Instrument: Waters Micromass GCT Premier Ionisatio Card Serial Number: GCT-P-T11-05-050500 Sample Serial Number: HBSF-CW4-S3 Operator: Li Date: 2011/06/23 Elemental Composition Report Single Mass Analysis Tolerance = 5.0 FPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass. Odd and Even Electron Ions Ionisation Mode: EI+ Electron Energy: 70eV -CI Monoisotopic Mass, Odd and Even Electron Ions 160 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: H: 0-80 N: 0-4 C: 0-60 0: 0-6 C1: 0-3 -1.5 50.0 Minimum: Maximum: 1.5 5.0 Calc. Mass 152.0029 152.0034 mDa -0.1 -0.6 Formula C8 H5 O C1 C5 H8 N C12 PPM BE 6.0 1.5 i-FIT Mass -0.7 3.9 169.9 152.0028

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry, Chinese Academic of Sciences High Resolution MS Data Report

Instrument:	Waters Micromass	GCT Premier	Ionisa	tion Mode: EI+	Elect	ron Energy: 70eV				
Card Serial Number: GCT-P-T11-05-080450										
Sample Se	rial Number:	HBSF-J08-Samp	lei							
Operator: Li Br										
Date: 2011/06/03										
Elemental Composition Report										
Single Mass Analysis OCH3										
Tolerance = 1.5 mDa / DBE: min = -1.5 , max = 50.0										
Element prediction: Off										
Monoisotopic Mass, Odd and Even Electron Ions										
777 formu	la(e) evaluated	with 2 result	ts within limi	ts (all results	(up to 1000)	for each mass)				
Elements	Used:									
C: 0-60	H: 0-80 N: 0	0-4 0:0-6	S: 0-1 Br	: 0-2 I: 0-2						
Minimum:			-1	. 5						
Maximum:		1.5	5.0 50	.0						
Mass	Calc. Mass	mDa	PPM DE	E i-FIT	Formula					
303.8734	303.8735	-0.1	-0.3 6.	0 0.6	C9 H6 O2	Br2				
	303.8721	1.3 4.	3 6.5	3.2	C7 H4 N3 O	Br2				

Shang hai Mass Spectrometry Center Shanghai Institute of Organic Chemistry, Chinese Academic of Sciences High Resolution MS Data Report Electron Energy: 70eV Instrument: Waters Micromass GCT Premier Ionisation Mode: EI+ Card Serial Number: GCT-P-T11-05-0S0452 Sample Serial Number: HBSF-J08-Sample3 Operator: Li Date: 2011/06/03 Elemental Composition Report Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron Ions 491 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 N: 0-4 O: 0-6 Cl: 0-1 Br: 0-2 I: 0-2 Minimum: -1.5 Maximum: 1.5 5.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 252.0150 0.1 252.0151 0.4 6.0 1.0 C12 H13 0 Br 4.0 372.4 252.0149 0.2 0.8 C7 H9 N2 O6 C1 252.0155 -0.4 -1.6 1.5 65.3 C9 H16 N C1 Br Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry, Chinese Academic of Sciences High Resolution MS Data Report Ionisation Mode: EI+ Instrument: Waters Micromass GCT Premier Electron Energy: 70eV Card Serial Number: GCT-P-T11-05-0S0451 Sample Serial Number: HBSF-J08-Sample2 Operator: Li Date: 2011/06/03 Elemental Composition Report Single Mass Analysis Tolerance = 1.5 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron Ions 777 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 N: 0-4 O: 0-6 Cl: 0-1 Br: 0-2 I: 0-2 Minimum: -1.5 Maximum: 1.5 5.0 50.0 Mass Calc. Mass mDa PFM 307.8237 307.8239 -0.2 -0.6 DBE i-FIT Formula 6.0 0.6 C8 H3 O C1 Br2 307.8226 1.1 3.6 6.5 4.0 C6 H N3 C1 Br2

7. References

[1] S. G. Newman, V. Aureggi, C. S. Bryan, M. Lautens, Chem. Commun. 2009, 5236-5238.