The Preparation of 2H-1,4-benzoxazin-3-(4H)-ones via Palladium-Catalyzed Intramolecular C-O Bond Formation.

Kai E. O. Ylijoki and E. Peter Kündig*

Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland. E-mail: peter.kundig@unige.ch

Supporting Information.

General experimental. All manipulations on air sensitive compounds were performed under nitrogen atmosphere using standard Schlenk techniques or in a drybox. All solvents were dried by passing them through activated Al₂O₃ (SolvtekH purification system). All other reagents were used without further purification. Flash column chromatography was performed with Silicycle silica gel (40 – 63 µm). IR spectra were recorded on a Perkin-Elmer Spectrum One spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on either a Bruker Avance300 (¹H, 300 MHz) or Bruker AMX-400 (¹H, 400 MHz; ¹³C, 100 MHz) spectrometer. High-resolution mass spectra, performed by the Université de Genève Laboratoire de Science Mass Spectrometrie, were obtained on a quadrupole-time of flight Q STAR XL AppliedBiosystems/MDS Sciex mass spectrometer. Optical rotations were obtained on a Perkin-Elmer 241 polarimeter equipped with a quartz cell (l = 10 cm) and a Na high-pressure lamp (λ = 589 nm). HPLC was performed on an Agilent 1100 series chromatograph. ¹H NMR chemical shifts are reported relative to residual protiated solvent. ¹³C NMR chemical shifts are reported relative to the deuterated solvent. Values of the coupling constants are obtained directly from the spectrum. Although generally measured to ±0.1 Hz, J values are self-consistent to only ±0.5 Hz. Data for the ¹H-¹H COSY is presented such that correlations are listed only once. Compounds prepared by published procedures: 2-bromo-N-methylaniline,¹ 3-bromo-N-methylpyridin-2-amine,² N-(2-bromophenyl)-N-methyl-2-oxo-2-phenylacetamide,³ N-(2-bromophenyl)-2-(4-methoxyphenyl)-N-methyl-2-oxoacetamide,⁴ N-(2-bromophenyl)-2-(4-trifluoromethylphenyl)-N-methyl-2-oxoacetamide,³ N-(2-bromophenyl)-N-methyl-2-(naphthalene-1-yl)-2-oxoacetamide,³ N-(2-bromophenyl)-2-(2-methoxyphenyl)-N-methyl-2-oxoacetamide,³ [HPtBu₃]BF₄,⁴ and Pd(dbʌ)₂.⁵ Ketocarboxylic acids were prepared via addition of the appropriate Grignard reagent to diethyl oxalate,⁶ followed by saponification.

Experimental Details.

\[
\text{N-(2-bromophenyl)-N-methyl-2-oxo-(o-tolyl)acetamide.}\ \text{In a Schlenk flask, carboxylic acid (0.54 g, 3.3 mmol) was dissolved in CH}_2\text{Cl}_2\ (5 \text{ mL}) \text{ under a nitrogen atmosphere. To this, oxalyl chloride (0.28 mL, 3.3 mmol) was added, followed by one drop of dimethylformamide. The reaction was stirred until gas evolution ceased. The solution was cooled to 0 °C and 2-bromo-N-methylaniline (0.62 g, 3.31 mmol) was added, followed by triethylamine (1 mL, 6.62 mmol). The reaction was allowed to warm to room temperature overnight. The reaction was acidified with 1N HCl, diluted with diethyl ether, and the layers separated. The aqueous layer was extracted with diethyl ether, and the combined extracts were washed with water, then brine, and dried over MgSO}_4. The solvent was removed in vacuo and the residue purified by silica gel chromatography using 15% EtOAc/pentane to yield 0.86 g (79%) of product as a yellow oil. Spectroscopically, the product is a 5:1 mixture of rotamers. IR (neat, cm}^{-1}: 2932 (w), 1735 (m), 1653 (s), 1600 (w), 1572 (w), 1477 (s), 1381 (s), 1289 (w), 1226 (s), 1119 (m), 1032 (s), 955 (w), 738 (s), 722 (s); \text{^1H NMR (400 MHz, CDCl}_3): δ 8.13 (d, }J = 7.7 \text{ Hz, 0.2H), 7.95 (d, }J = 7.7 \text{ Hz, 1H), 7.78 (d, }J = 8.0 \text{ Hz, 0.2H), 7.56 (d, }J = 7.9 \text{ Hz, 1H, overlaps 0.2H from other rotomer), 7.44 (t, }J = 7.5 \text{ Hz, 1H, overlaps 0.6H from other rotomer), 7.34-7.25 (m, 3H, overlaps 0.4H from other rotomer), 7.21-7.17 (m, 2H), 3.44 (s, 3H), 3.33 (s, 0.6H), 2.79 (s, 0.6H), 2.26 (s, 3H); \text{^13C{^1H} NMR (100 MHz, CDCl}_3): δ 192.9, 167.2, 140.6, 139.7, 133.9, 133.2, 132.7, 132.5, 132.0, 131.9, 131.4, 130.2, 128.4, 125.7, 123.4, 35.4, 21.1; Electrospray MS m/z calculated for C}_16\text{H}_{15}\text{NO}_2\text{Br (M}^+ + \text{H)}: 332.0280; found: 332.0279.}
\]

N-(2-bromophenyl)-N-methyl-2-oxopropanamide. In a Schlenk flask, pyruvic acid (0.155 mL, 2.23 mmol) was dissolved in CH}_2\text{Cl}_2\ (5 \text{ mL}) \text{ under a nitrogen atmosphere. To this, oxalyl chloride (0.190 mL, 2.23 mmol) was added, followed by one drop of dimethylformamide. The reaction was stirred until gas evolution ceased. The solution was cooled to 0 °C and 2-bromo-N-methylaniline (0.500 g, 2.68 mmol) was added, followed by triethylamine (1 mL, 7.22 mmol). The reaction was allowed to warm to room temperature overnight. The reaction was acidified with 1N HCl, diluted with diethyl ether, and the layers separated. The aqueous layer was extracted with diethyl ether, and the combined extracts were washed with water and brine. The solvent was removed in vacuo and the residue purified by silica gel chromatography using 15% EtOAc/pentane to yield 0.234 g (41%) of product as a yellow oil. IR (MeOH cast, cm}^{-1}: 1720 (m), 1658 (s), 1584 (w), 1478 (m), 1435 (w), 1387 (w), 1351 (m), 1194 (m), 1116 (m), 1030 (m), 959 (w), 878 (w), 764 (m), 726.
(S)-N-(2-bromophenyl)-2-(methoxymethoxy)-N-methyl-2-phenylacetamide. In a Schlenk flask, carboxylic acid (200 mg, 1.01 mmol) was dissolved in CH₂Cl₂ (3 mL) under a nitrogen atmosphere. To this, oxalyl chloride (95 µL, 1.11 mmol) was added, followed by one drop of dimethylformamide. The reaction was stirred until gas evolution ceased. All volatiles were removed under vacuum and the residue dissolved in CH₂Cl₂ (3 mL) and cooled to 0 °C. To this, methylaniline (206 mg, 1.11 mmol) was added, followed by one drop of triethylamine (1.3 mL, 9.7 mmol). The reaction was allowed to warm to room temperature overnight. The reaction was acidified with 1N HCl, diluted with diethyl ether, and the layers separated. The aqueous layer was extracted with diethyl ether, and the combined extracts were washed with water, then brine, and dried over MgSO₄. The solvent was removed in vacuo and the residue purified by silica gel chromatography using 15% EtOAc/pentane to yield 1.24 g (79%) of product as a yellow oil. Spectroscopically, the product is a 7:1 mixture of rotamers. IR (neat, cm⁻¹): 2929 (s), 2855 (m), 1709 (m), 1652 (s), 1583 (m), 1477 (s), 1447 (m), 1383 (m), 1363 (m), 1292 (w), 1237 (w), 1158 (w), 1092 (m), 1030 (m), 976 (s), 893 (w), 763 (s), 722 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.55 (dd, J = 8.0, 0.8 Hz, 0.13H), 7.51 (dd, J = 7.9, 0.9 Hz, 1H), 7.28 (td, J = 7.4, 1.0 Hz, 0.15H), 7.21 (app. qd, J = 5.2, 1.3 Hz, 1H), 7.15-7.08 (m, 2.3H), 3.15 (s, 3H), 3.13 (s, 0.4H), 2.95 (tt, J = 8.3, 3.4 Hz, 0.15H), 2.73 (tt, J = 8.0, 4.4 Hz, 1H), 2.00 (m, 0.30H), 1.80 (d, 12.6 Hz, 1H), 1.70 (m, 0.3H), 1.63-1.48 (m, 4.3H), 1.28-0.95 (m, 7H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 203.12, 202.07, 166.80, 166.10, 140.67, 140.53, 133.68, 133.64, 130.32, 130.08, 129.36, 128.54, 122.87, 121.50, 46.75, 37.73, 35.85, 28.40, 27.22, 25.66, 25.54, 25.19; Electro spray MS m/z calculated for C₁₇H₁₅NO₂Br (M⁺ + H): 324.0593; found: 324.0588.
triethylamine (500 μL, 3.61 mmol). The reaction was allowed to warm to room temperature overnight. The reaction was acidified with 1N HCl, diluted with diethyl ether, and the layers separated. The aqueous layer was extracted with diethyl ether, and the combined extracts were washed with water, then brine, and dried over MgSO₄. The solvent was removed in vacuo and the residue purified by silica gel chromatography using 20% EtOAc/pentane to yield 123 mg (46%) of product as a white solid in 70% ee. Spectroscopically, the product is a 2:1 mixture of rotamers. \([\alpha]_D^{20} = +41 \text{ (c = 0.655, CHCl₃); HPLC: Chiralcel OD-H, 1% iPrOH/hexane for 10 min then 1→20% iPrOH/hexane over 45 min, 1 mL/min, 240 nm; } \tau_R = 24.54 \text{ min (major), } \tau_t = 31.06 \text{ min (minor); IR (CDCl₃ cast, cm}^{-1}: 2925 \text{ (w), 1674 (s), 1584 (w), 1476 (m), 1455 (m), 1287 (w), 1248 (w), 1213 (m), 1148 (m), 1013 (m), 971 (m), 917 (m), 823 (w), 758 (s), 726 (m), 698 (s); ^1H NMR (400 MHz, CDCl₃): } \delta 7.69 \text{ (dd, } J = 8.0, 1.3 \text{ Hz, 2H), 7.52 \text{ (dd, } J = 8.8, 1.1 \text{ Hz, 1H), 7.44-7.39 (m, 2H), 7.27-7.18 (m, 12H), 7.09-7.00 (m, 8H), 6.48 \text{ (dd, } J = 7.8, 1.6 \text{ Hz, 2H), 5.00 (s, 1H), 4.81 (s, 2H), 4.67 (d, } J = 6.9 \text{ Hz, 2H), 4.62 (d, } J = 6.9 \text{ Hz, 1H), 4.49 (d, } J = 6.9 \text{ Hz, 3H), 3.27 (s, 3H), 3.26 (s, 6H), 3.18 (s, 3H), 3.16 (s, 6H); ^13C \{^1H \} NMR (100 MHz, CDCl₃): } \delta 169.64, 169.39, 141.28, 140.73, 135.77, 135.11, 133.89, 133.60, 131.26, 130.23, 129.95, 129.92, 128.62 (2 overlapping signals), 128.58, 128.49, 128.46, 128.32, 128.28, 128.16, 124.11, 123.32, 94.39, 93.91, 75.29, 74.70, 55.67, 55.55, 36.29, 36.21; Electrospray MS \text{ m/z calculated for C}_{17}H_{18}O_3NBrNa (M^+ + Na): 386.0362; found: 386.0351.

\[
\text{N-(2-bromophenyl)-2-hydroxy-N-methyl-2-phenylacetamide (3a). Phenylketoxamide (3.40 g, 11.1 mmol) was dissolved in MeOH (20 mL) under nitrogen and cooled to 0°C in an ice bath. To this, NaBH}_4 (0.50 g, 13.3 mmol) was added and the reaction was allowed to warm slowly to room temperature overnight. The reaction was then-diluted with Et}_2O and acidified with 1N HCl to a pH of 6. The layers were separated and the aqueous layer extracted with Et}_2O. The organic fractions were combined and washed with brine and dried over MgSO}_4. The solvent was removed in vacuo and the product purified by silica gel chromatography with 20% EtOAc/pentane. The fractions were concentrated and residual solvent removed under vacuum to yield 3.14 g (92%) of the desired alcohol as a white solid. The enantioenriched product was obtained from deprotection of the MOM protected alcohol. The protected alcohol (123 mg, 0.34 mmol) was dissolved in MeOH (10 mL) and one drop of conc. HCl was added. The reaction was heated at reflux for 20 min, then quenched with sat. NaHCO}_3 solution. The mixture was extracted with diethyl ether, and the aqueous phase was concentrated and extracted with the diethyl ether. The combined organics were washed with brine and dried over Na}_2SO}_4 to yield 72 mg (67%) of product as a white solid. The product spectra were similar, but not identical to those previously reported.}^7} \text{ Spectroscopically, the product is a 2:1 mixture of amide rotamers favouring rotomer A. 70% ee; [\alpha]_D^{20} = +14 \text{ (c = 0.910, CHCl₃); HPLC: Chiralpak AS-H, 1% iPrOH/hexane for 10 min then 1→20% iPrOH/hexane over 45 min, 1 mL/min, 240 nm; } \tau_R = 32.19 \text{ min (major), } \tau_t = 40.13 \text{ min (minor); IR (CDCl₃ cast, cm}^{-1}: 3420 \text{ (br. w), 3030 (w), 1651 (s), 1584 (w), 1477 (m), 1437 (m), 1360 (m), 1300 (m), 1191 (w), 1136 (w), 1087 (m), 1047 (s), 1016 (m), 934 (w), 820 (w), 760 (s), 727 (m), 713 (m), 698 (s); ^1H NMR (400 MHz, CDCl₃, Rotomer A): } \delta 7.69 \text{ (dd, } J_{1,3} = 8.0 \text{ Hz, } J_{4,2} = 1.3 \text{ Hz, 1H, } H_3), 7.26-7.10 \text{ (m, 4H, } H_5, H_7, H_8), \text{ overlaps signals from}}

\[7 \text{ Hillgren, J. M.; Marsden, S. P. J. Org. Chem. 2008, 73, 6459.} \]
rotomer B), 6.98 (td, J\textsubscript{2,1} = J\textsubscript{2,3} = 7.8 Hz, J\textsubscript{2,4} = 1.3 Hz, 1H, H\textsubscript{2}), 6.81 (dd, J\textsubscript{6,7} = 7.0 Hz, J\textsubscript{6,8} = 2.0 Hz, 2H, H\textsubscript{6}), 6.36 (dd, J\textsubscript{1,2} = 7.9 Hz, J\textsubscript{1,3} = 1.5 Hz, 1H, H\textsubscript{1}), 4.73 (s, 1H, H\textsubscript{4}), 4.49 (br, s, 1H, -OH), 3.24 (s, 3H, Me); 1H-1H COSY (400 MHz, CDCl\textsubscript{3}, Rotomer A): δ 7.69 (H\textsubscript{9}) ↔ δ 7.26-7.10 (H\textsubscript{7}); δ 7.26-7.10 (H\textsubscript{3}) ↔ δ 6.98 (H\textsubscript{8}); δ 7.26-7.10 (H\textsubscript{1}) ↔ δ 6.81 (H\textsubscript{6}); δ 6.98 (H\textsubscript{2}) ↔ δ 6.36 (H\textsubscript{1}); 1H NMR (400 MHz, CDCl\textsubscript{3}, Rotomer B): δ 7.40 (td, J\textsubscript{2,1} = J\textsubscript{2,3} = 9.0 Hz, J\textsubscript{2,4} = 1.3 Hz, 1H, H\textsubscript{2}), 7.38 (td, J\textsubscript{3,1} = J\textsubscript{3,4} = 9.0 Hz, 1.6 Hz, 1H, H\textsubscript{3}), 7.26-7.10 (m, 4H, H\textsubscript{1}, H\textsubscript{7}, H\textsubscript{3}), overlaps signals from rotamer A), 6.69 (dd, J\textsubscript{6,7} = 8.4 Hz, J\textsubscript{6,8} = 1.3 Hz, 2H, H\textsubscript{6}), 5.00 (s, 1H, H\textsubscript{5}), 4.63 (br, s, 1H, -OH), 3.26 (s, 3H, Me); 1H-1H COSY (400 MHz, CDCl\textsubscript{3}, Rotomer B): δ 7.40 (H\textsubscript{2}) ↔ δ 7.38 (H\textsubscript{3}), 7.26-7.10 (H\textsubscript{1}); δ 7.26-7.10 (H\textsubscript{1}) ↔ δ 6.69 (H\textsubscript{6}); 13C1H NMR (100 MHz, CDCl\textsubscript{3}, Rotamers A + B): δ 173.02, 172.60, 140.17, 140.10, 139.30, 137.71, 134.18, 133.56, 131.33, 130.31, 130.22, 130.17, 128.59, 128.54, 128.47, 128.40, 128.35, 128.31, 127.59, 127.48, 124.79, 124.38, 72.86, 71.85, 73.08, 36.97.

\textit{N-(2-bromophenyl)-2-hydroxy-N-methyl-2-(\textit{p}-tolyl)acetamide (3b).} Ketoamide (0.40 g, 1.2 mmol) was dissolved in MeOH (5 mL) under nitrogen and cooled to 0 °C in an ice bath. To this, NaN\textsubscript{3}H\textsubscript{4} (0.059 g, 1.6 mmol) was added and the reaction was allowed to warm slowly to room temperature overnight. The reaction was then diluted with Et\textsubscript{2}O and acidified with 1N HCl to a pH of 6. The layers were separated and the aqueous layer extracted with Et\textsubscript{2}O. The organic fractions were combined and washed with water, then brine, and dried over MgSO\textsubscript{4}. The solvent was removed \textit{in vacuo} and the product purified by silica gel chromatography with 20% EtOAc/pentane. The fractions were concentrated and residual solvent removed under vacuum to yield 0.342 g (86%) of the desired alcohol as a yellow oil. Spectroscopically, the product is a 2:1 mixture of rotamers. IR (CDCl\textsubscript{3} cast, cm-1): 3428 (w), 2923 (w), 1652 (s), 1584 (w), 1512 (w), 1477 (m), 1437 (w), 1358 (m), 1299 (m), 1252 (w), 1192 (w), 1116 (w), 1081 (m), 1046 (m), 1015 (m), 910 (w), 833 (w), 803 (w), 765 (m), 724 (s); 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 7.66 (dd, J = 8.1, 1.4 Hz, 1H), 7.45-7.33 (m, 2H), 7.22 (m, 1H), 7.17 (td, J = 7.9, 1.6 Hz, 1H), 7.00 (td, J = 7.7, 1.4 Hz, 1H), 6.95 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 8.0 Hz, 2H), 6.59 (d, J = 8.0 Hz, 1H), 6.40 (dd, J = 7.9, 1.6 Hz, 1H), 4.95 (s, 0.5Hz), 4.69 (s, 1H), 4.57 (br, s, 0.5Hz), 4.44 (br, s, 1H), 3.23 (s, 1.5Hz), 3.21 (s, 3H), 2.27 (s, 3H), 2.25 (s, 1.5H); 13C1H NMR (100 MHz, CDCl\textsubscript{3}): δ 173.19, 172.80, 140.23, 140.12, 138.07, 137.77, 136.36, 134.81, 134.13, 133.52, 131.39, 130.27, 130.22, 130.19, 129.13, 129.01, 128.60, 128.55, 127.45, 127.37, 124.74, 123.34, 72.53, 71.55, 37.00, 36.89, 21.24; Electrospray MS \textit{m/z} calculated for C\textsubscript{16}H\textsubscript{17}NO\textsubscript{3}Br (M+ + H): 334.0437; found: 334.0441.

\textit{N-(2-bromophenyl)-2-hydroxy-N-methyl-2-(\textit{o}-tolyl)acetamide (3c).} Ketoamide (0.40 g, 1.2 mmol) was dissolved in MeOH (5 mL) under nitrogen and cooled to 0 °C in an ice bath. To this, NaN\textsubscript{3}H\textsubscript{4} (0.055 g, 1.4 mmol) was added and the reaction was allowed to warm slowly to room temperature overnight. The reaction was then diluted with Et\textsubscript{2}O and acidified with 1N HCl to a pH of 6. The layers were separated and the aqueous layer extracted with Et\textsubscript{2}O.
The organic fractions were combined and washed with water, then brine, and dried over MgSO₄. The solvent was removed in vacuo and the product purified by silica gel chromatography with 20% EtOAc/pentane. The fractions were concentrated and residual solvent removed under vacuum to yield 0.36 g (82%) of the desired alcohol as a white solid.

Spectroscopically, the product is a 2.5:1 mixture of rotamers. IR (CDCl₃) 2937 (w), 1744 (w), 1656 (m), 1598 (w), 1511 (w), 1478 (w), 1420 (w), 1362 (m), 1298 (m), 1251 (w), 1178 (m), 1102 (s), 908 (w), 828 (w), 765 (m), 727 (s); δ 7.60 (d, J = 8.1 Hz, 1H), 7.38-7.30 (m, 1.3H), 7.25 (m, 0.4H), 7.12-6.98 (m, 5.2H), 6.95-6.85 (m, 2.8H), 6.80 (d, J = 7.6 Hz, 0.4H), 6.19 (dd, J = 7.9, 0.8 Hz, 1H), 5.20 (d, J = 5.8 Hz, 0.4H), 4.94 (d, J = 5.9 Hz, 1H), 4.44 (d, J = 5.9 Hz, 0.4H), 4.33 (d, J = 5.9 Hz, 1H), 3.23 (s, 1.2H), 3.21 (s, 0.8H), 1.75 (s, 1.2H), 1.68 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.48, 173.16, 140.24, 139.90, 137.53, 136.86, 136.74, 135.49, 134.25, 133.45, 131.18, 130.71, 130.42, 130.13, 130.08, 128.78, 128.71, 128.56, 128.33, 128.17, 127.27, 126.42, 126.17, 124.29, 123.35, 69.69, 69.64, 37.01, 36.97, 18.37, 18.21; Electrospray MS m/z calculated for C₁₁H₁₃NO₂Br (M⁺ + H): 334.0437; found: 334.0441.

\[N-(2\text{-bromophenyl})-2\text{-hydroxy}-N\text{-methyl}-2-(4\text{-}(\text{trifluoromethyl})\text{phenyl})\text{acetamide} \quad (3d)\]

Ketoamide (0.43 g, 1.12 mmol) was dissolved in MeOH (5 mL) under nitrogen and cooled to 0 °C in an ice bath. To this, NaBH₄ (0.051 g, 1.33 mmol) was added and the reaction was allowed to warm slowly to room temperature overnight. The reaction was then diluted with Et₂O and acidified with 1N HCl to a pH of 6. The layers were separated and the aqueous layer extracted with Et₂O. The organic fractions were combined and washed with water, then brine, and dried over MgSO₄. The solvent was removed in vacuo and the product purified by silica gel chromatography with 20% EtOAc/pentane. The fractions were concentrated and residual solvent removed under vacuum to yield 0.35 g (87%) of the desired alcohol as a white solid.

Spectroscopically, the product is a 1.2:1 mixture of rotamers. IR (CDCl₃) 2937 (w), 1744 (w), 1656 (m), 1598 (w), 1511 (w), 1478 (w), 1420 (w), 1362 (w), 1323 (s), 1164 (s), 1120 (s), 1085 (m), 1066 (s), 1048 (m), 1016 (s), 927 (w), 847 (w), 810 (w), 765 (w), 727 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.1 Hz, 1H), 7.60 (m, 0.8H), 7.43-7.37 (m, 7.2H), 7.28-7.18 (m, 3H), 7.01 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 8.1 Hz, 2H), 6.83 (d, J = 8.1 Hz, 1H), 6.62 (d, J = 8.1 Hz, 0.8H), 6.56 (d, J = 7.8 Hz, 0.8H), 6.41 (d, J = 7.9 Hz, 1H), 5.07 (s, 0.8H), 4.83 (s, 1H), 3.26 (s, 2.4H), 3.24 (s, 3H), 2.87 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.27, 171.82, 145.95, 143.20, 141.69, 139.85, 134.29, 133.81, 132.25, 131.09, 130.49, 130.25, 128.83, 128.70, 128.59, 128.04, 127.87, 126.99, 125.37 (q, J = 3.8 Hz), 125.26 (q, J = 3.8 Hz), 125.57, 123.39, 122.62, 117.60, 110.79, 109.59, 72.26, 71.26, 37.21, 37.07, 30.58 (CF₃ signals not observed); Electrospray MS m/z calculated for C₁₆H₁₄NO₂F₃ (M⁺ + H): 388.0154; found: 388.0153.

\[N-(2\text{-bromophenyl})-2\text{-hydroxy}-2-(4\text{-methoxyphenyl})-N\text{-methylacetamide} \quad (3e)\]

Ketoamide (0.57 g, 1.6 mmol) was dissolved in MeOH (20 mL) under nitrogen and cooled to 0°C in an ice bath. To this, NaBH₄ (0.74 g, 2.0 mmol) was added and the reaction was
allowed to warm slowly to room temperature overnight. The reaction was then diluted with
Et₂O and acidified with 1N HCl to a pH of 6. The layers were separated and the aqueous layer extracted with Et₂O. The organic fractions were combined and washed with brine and dried over MgSO₄. The solvent was removed in vacuo and the product purified by silica gel chromatography with 20% EtOAc/pentane. The fractions were concentrated and residual solvent removed under vacuum to yield 0.52 g (90%) of the desired alcohol as a yellow oil. IR (CDCl₃ cast, cm⁻¹): 3414 (br. w), 2928 (w), 1652 (s), 1611 (m), 1585 (m), 1511 (s), 1477 (m), 1439 (m), 1358 (m), 1302 (m), 1247 (s), 1175 (m), 1135 (w), 1113 (w), 1080 (m), 1046 (s), 1031 (s), 1017 (s), 939 (w), 839 (m), 809 (m), 766 (m), 727 (m); ¹H NMR (400 MHz, CDCl₃, Rotomer A): δ 7.68 (dd, J₁,₂ = 8.1 Hz, J₁,₃ = 1.3 Hz, 1H, H₁), 7.19 (td, J₂,₁ = J₂,₃ = 8.0 Hz, J₂,₄ = 1.1 Hz, 1H, H₂), 7.03 (td, J₃,₂ = J₃,₄ = 7.8 Hz, J₃,₁ = 1.4 Hz, 1H, H₃), 6.75 (d, J₆,₇ = 8.8 Hz, 2H, H₆), 6.69 (d, J₇,₆ = 8.8 Hz, 2H, H₇), 3.41 (dd, J₄,₃ = 9.7 Hz, J₄,₂ = 1.5 Hz, 1H, H₄), 4.68 (s, 1H, H₃), 3.77 (s, 3H, -OCH₃), 3.26 (s, 3H, -NMe), 3.23 (s, 3H, -NMe), -OH proton not observed; ¹H-¹H COSY (400 MHz, CDCl₃, Rotomer A): δ 7.68 (H₁) ↔ δ 7.19 (H₂); δ 7.19 (H₂) ↔ δ 7.03 (H₃); δ 7.03 (H₃) ↔ δ 6.41 (H₄); δ 6.75 (H₆) ↔ δ 6.69 (H₇); ¹H NMR (400 MHz, CDCl₃, Rotomer B): δ 7.41 (app. q, J₁,₂ = J₁,₃ = J₁,₄ = 7.8 Hz, 2H, H₁, H₃), 7.35 (dd, J₁,₂ = 8.1 Hz, J₁,₃ = 1.6 Hz, 1H, H₁), 7.22 (dd, J₃,₄ = 7.6 Hz, J₄,₃ = 1.6 Hz, 1H, H₄), 6.66 (d, J₆,₇ = 9.3 Hz, 2H, H₆), 6.62 (d, J₇,₆ = 9.0 Hz, 2H, H₇), 5.30 (s, 1H, H₅), 4.95 (s, 1H, -OH), 3.75 (s, 3H, -OCH₃), 3.26 (s, 3H, -NMe); ¹H-¹H COSY (400 MHz, CDCl₃, Rotomer B): δ 7.41 (H₁) ↔ δ 7.35 (H₃); δ 7.41 (H₃) ↔ δ 7.22 (H₄); δ 6.66 (H₄) ↔ δ 6.62 (H₂); ¹³C¹H NMR (100 MHz, CDCl₃, Rotamers A + B): δ 173.62, 172.85, 159.70, 159.60, 140.27, 140.20, 134.15, 133.55, 131.66, 131.35, 130.24, 130.19, 130.14, 130.10, 128.83, 128.73, 128.57, 128.50, 124.84, 123.36, 113.84, 72.23, 71.27, 55.36, 55.32, 37.00, 36.89; Electrospray MS m/z calculated for C₁₆H₁₅O₃NBr (M⁺ + H): 350.0386; found: 350.0382.

N-(2-bromophenyl)-2-hydroxy-2-(2-methoxyphenyl)-N-methylacetamide (3f). Ketoamide (0.30 g, 0.86 mmol) was dissolved in MeOH (5 mL) under nitrogen and cooled to 0 °C in an ice bath. To this, NaBH₄ (0.039 g, 1.0 mmol) was added and the reaction was allowed to warm slowly to room temperature overnight. The reaction was then diluted with Et₂O and acidified with 1N HCl to a pH of 6. The layers were separated and the aqueous layer extracted with Et₂O. The organic fractions were combined and washed with water, then brine, and dried over MgSO₄. The solvent was removed in vacuo and the product purified by silica gel chromatography with 20% EtOAc/pentane. The fractions were concentrated and residual solvent removed under vacuum to yield 0.20 g (23%) of the desired alcohol as a yellow oil. Spectroscopically, the product is a 2:1 mixture of rotamers. IR (CDCl₃ cast, cm⁻¹): 3439 (w), 2924 (w), 1652 (s), 1600 (m), 1586 (m), 1492 (m), 1462 (m), 1437 (m), 1360 (s), 1297 (m), 1247 (s), 1187 (w), 1164 (w), 1108 (m), 1077 (m), 1045 (s), 1015 (s), 910 (w), 850 (w), 825 (w), 753 (s), 725 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.0 Hz, 1H), 7.39-7.31 (m, 2H), 7.18-7.09 (m, 3.5H), 7.01 (d, J = 7.4 Hz, 1H), 6.90-6.85 (m, 1.5H), 6.80 (t, J = 7.4 Hz, 1H), 6.72 (t, J = 7.4 Hz, 0.5H), 6.61 (d, J = 8.4 Hz, 0.5H), 6.57 (d, J = 8.3 Hz, 1H), 6.29 (d, J = 7.8 Hz, 1H), 5.43 (d, J = 5.4 Hz, 0.5H), 5.22 (d, J = 5.1 Hz, 1H), 4.45 (d, J = 6.1 Hz, 0.5H), 4.36 (d, J = 5.7 Hz, 1H), 3.43 (s, 1.5H), 3.40 (s, 3H), 3.24 (s, 1.5H), 3.22 (s, 3H); ¹³C¹H NMR (100 MHz, CDCl₃): δ 173.62, 173.17, 156.78, 140.34, 140.07, 133.73, 133.27, 130.96, 130.31, 129.69, 129.61, 129.53, 129.24, 128.48, 128.31, 128.11, 123.61.
8.3 Hz, 2H), 3.27 (s, 3H), 3.25 (s, 3H), 1.12 (app. t, 2H), 7.32 (m, 4H), 4.16 (quint,

Spectroscopically, the product is a 1:1 mixture of rotamers. IR (CDCl₃, cm⁻¹): 3412 (br), 3061 (w), 1652 (s), 1584 (w), 1476 (m), 1356 (m), 1294 (m), 1117 (s), 1051 (m), 1029 (s), 1315.2, 131.0, 130.7, 129.99, 129.84, 129.65, 129.05, 128.96, 128.64, 128.59, 128.51, 128.22, 127.53, 126.63, 126.50, 126.19, 125.67, 125.41, 125.18, 125.08, 124.01, 123.33, 123.02, 122.71, 71.21, 70.90, 37.30, 37.20; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.57, 173.39, 140.30, 139.94, 135.06, 134.08, 134.05, 133.76, 133.38, 131.52, 131.06, 130.73, 129.99, 129.84, 129.65, 129.05, 128.96, 128.64, 128.59, 128.51, 128.22, 127.53, 126.63, 126.50, 126.19, 125.67, 125.41, 125.18, 125.08, 124.01, 123.33, 123.02, 122.71, 71.21, 70.90, 37.30, 37.20; Electrospray MS m/z calculated for C₁₀H₁₆NO₂Br (M⁺ + H): 372.0437; found: 372.0436.

N-(2-bromophenyl)-2-hydroxy-N-methylpropanamide (3h). Ketoamide (0.70 g, 2.9 mmol) was dissolved in MeOH (10 mL) under nitrogen and cooled to 0 °C in an ice bath. To this, NaBH₄ (0.13 g, 3.4 mmol) was added and the reaction was allowed to warm slowly to room temperature overnight. The reaction was then diluted with Et₂O and acidified with 1N HCl to a pH of 6. The layers were separated and the aqueous layer extracted with Et₂O. The organic fractions were combined and washed with water, then brine, and dried over MgSO₄. The solvent was removed in vacuo and the product purified by silica gel chromatography with 20% EtOAc/pentane. The fractions were concentrated and residual solvent removed under vacuum to yield 0.48 g (68%) of the desired alcohol as a yellow oil. Spectroscopically, the product is a 1:1 mixture of rotamers. IR (CDCl₃, cm⁻¹): 3436 (br), 2980 (w), 1652 (s), 1584 (w), 1476 (m), 1356 (m), 1294 (m), 1117 (s), 1051 (m), 1029 (s), 878 (w), 767 (m), 729 (m); ¹H NMR (300 MHz, CDCl₃): δ 7.72 (d, J = 8.0 Hz, 2H), 7.41 (m, 2H), 7.32 (m, 4H), 4.16 (quint, J = 6.6 Hz, 1H), 3.93 (quint, J = 6.8 Hz, 1H), 3.43 (app. t, J = 8.3 Hz, 2H), 3.27 (s, 3H), 3.25 (s, 3H), 1.12 (app. t, J = 6.7 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.57, 173.39, 140.30, 139.94, 135.06, 134.08, 134.05, 133.76, 133.38, 131.52, 131.06, 130.73, 129.99, 129.84, 129.65, 129.05, 128.96, 128.64, 128.59, 128.51, 128.22, 127.53, 126.63, 126.50, 126.19, 125.67, 125.41, 125.18, 125.08, 124.01, 123.33, 123.02, 122.71, 71.21, 70.90, 37.30, 37.20; Electrospray MS m/z calculated for C₁₀H₁₆NO₂Br (M⁺ + H): 372.0437; found: 372.0436.
N-(2-bromophenyl)-2-cyclohexyl-2-hydroxy-N-methylacetamide (3i). Ketoamide (0.28 g, 0.86 mmol) was dissolved in MeOH (5 mL) under nitrogen and cooled to 0 °C in an ice bath. To this, NaBH₄ (0.039 g, 1.0 mmol) was added and the reaction was allowed to warm slowly to room temperature overnight. The reaction was then diluted with Et₂O and acidified with 1N HCl to a pH of 6. The layers were separated and the aqueous layer extracted with EtOAc. The organic fractions were combined and washed with water, then brine, and dried over MgSO₄. The solvent was removed in vacuo and the product purified by silica gel chromatography with 20% EtOAc/pentane. The fractions were concentrated and residual solvent removed under vacuum to yield 0.16 g (59%) of the desired alcohol as a yellow oil. Spectroscopically, the product is a 1:1 mixture of rotamers. IR (CDCl₃ cast, cm⁻¹): 3445 (w), 2925 (s), 2952 (m), 1584 (w), 1447 (m), 1355 (m), 1108 (m), 1015 (m), 1050 (m), 995 (w), 764 (m), 726 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.72 (dd, J = 7.8, 1.1 Hz, 1H), 7.69 (dd, J = 8.1, 1.0 Hz, 1H), 7.44 (td, J = 7.7, 1.2 Hz, 1H), 7.39 (td, J = 8.2, 1.2 Hz, 1H), 7.34 (dd, J = 7.9, 1.3 Hz, 1H), 7.31-7.26 (m, 3H), 3.93 (d, J = 5.5 Hz, 1H), 3.63 (dd, J = 7.0, 3.1 Hz, 1H), 3.37 (d, J = 7.3 Hz, 1H), 3.22 (s, 3H), 3.20 (s, 3H), 3.16 (d, J = 8.0 Hz, 1H), 1.80-1.37 (m, 8H), 1.31-0.98 (m, 14H); ¹³C NMR (100 MHz, CDCl₃): δ 174.60, 174.27, 141.14, 141.11, 134.24, 133.99, 130.47, 130.19, 130.11, 130.05, 128.91, 128.85, 123.65, 123.08, 73.47, 72.83, 41.69, 39.70, 36.82, 36.79, 29.74, 29.71, 26.42, 26.37, 26.03, 25.97, 25.93, 25.80, 25.71, 25.28; Electrospray MS m/z calculated for C₁₃H₂₁NO₂Br (M⁺ + H): 326.0750; found: 326.0752.

N-benzyl-N-(2-bromophenyl)-2-hydroxy-2-phenylacetamide (3j). In a Schlenk flask, carboxylic acid (1.04 g, 6.93 mmol) was dissolved in CH₂Cl₂ (10 mL) under a nitrogen atmosphere. To this, oxalyl chloride (712 µL, 8.32 mmol) was added, followed by one drop of dimethylformamide. The reaction was stirred until gas evolution ceased. The volatiles were removed under vacuum and the residue dissolved in CH₂Cl₂ (20 mL) and cooled to 0 °C. To this solution, 2-bromoaniline (784 µL, 6.93 mmol) was added, followed by triethylamine (2 mL, 27 mmol). The reaction was allowed to warm to room temperature overnight. The reaction was acidified with 1N HCl, diluted with diethyl ether, and the layers separated. The aqueous layer was extracted with diethyl ether, and the combined extracts were washed with water, then brine, and dried over MgSO₄. The solvent was removed in vacuo and the residue purified by silica gel chromatography using 10% EtOAc/pentane to yield 1.68 g (80%) of product as a yellow. IR (CH₂Cl₂ cast, cm⁻¹): 3340 (w), 3070 (w), 1698 (s), 1672 (s), 1592 (m), 1520 (s), 1437 (m), 1273 (m), 1165 (m), 1047 (w), 1026 (w), 989 (s), 923 (m), 856 (w), 826 (m), 764 (s), 734 (m), 691 (m), 673 (m), 585 (w), 509 (m), 493 (m).
(w), 940 (w), 880 (w), 823 (w), 801 (w), 742 (m); 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta\) 9.59 (br. s, 1H), 8.50 (dd, \(J = 8.2, 1.3\) Hz, 1H), 8.43 (d, \(J = 7.3\) Hz, 2H), 7.66 (t, \(J = 7.4\) Hz, 1H), 7.60 (dd, \(J = 8.0, 1.2\) Hz, 1H), 7.52 (t, \(J = 7.9\) Hz, 2H), 7.38 (td, \(J = 8.3, 1.0\) Hz, 1H), 7.06 (td, \(J = 7.9, 1.4\) Hz, 1H); 13C\{1H\} NMR (100 MHz, CDCl\textsubscript{3}): \(\delta\) 186.6, 158.7, 134.7, 134.6, 132.9, 132.6, 131.4, 128.5, 128.4, 126.1, 121.3, 114.2. Electrospray MS \(m/z\) calculated for C\textsubscript{14}H\textsubscript{10}NO\textsubscript{2}Br (M+): 302.9895; found: 302.9893. The solid amide (1.68 g, 5.52 mmol) was dissolved in MeOH (10 mL) and cooled to 0 °C. NaBH\textsubscript{4} (90 mg, 2.38 mmol) was added and allowed to stir overnight. The reaction was quenched with 1M HCl and diluted with ether. The layers were separated and the aqueous phase was extracted with ether. The combined organics were washed with brine and dried over Na\textsubscript{2}SO\textsubscript{4}. The product was purified by silica gel chromatography using 10% EtOAc/pentane to yield 454 mg (75%) of product as a cloudy oil. IR (CDCl\textsubscript{3} cast, cm-1): 3423 (br., w), 2928 (w), 1628 (s), 1582 (w), 1475 (m), 1437 (w), 1381 (m), 1346 (s), 1135 (w), 990 (w), 909 (w), 880 (w), 823 (w), 801 (w). The solution was cooled to 0 °C, and benzylbromide (1.32 mL, 11 mmol) was added slowly. The reaction was allowed to warm to room temperature overnight, then was quenched with sat. NH\textsubscript{4}Cl solution. The mixture was diluted with diethyl ether and the aqueous phase was extracted. The combined organics were washed with brine and dried over Na\textsubscript{2}SO\textsubscript{4}. The product was purified by chromatography using 20% EtOAc/pentane to yield 445 mg (58%) of product as a white solid. Spectroscopically, the product was a 1.7:1 mix of rotamers.

N-(2-bromophenyl)-2-hydroxy-N,2-dimethylpropanamide (3k). In a Schlenk flask, ketoamidine (571 mg, 2.23 mmol) was dissolved in THF (10 mL) under a nitrogen atmosphere and cooled to 0 °C. To this, MeMgBr (0.96 mL, 2.9 mmol, 3M in diethyl ether) was added and allowed to warm to room temperature overnight. The reaction was quenched with saturated NH\textsubscript{4}Cl solution and the layers separated. The aqueous layer was extracted with diethyl ether, and the combined organic fractions were washed with brine and dried over Na\textsubscript{2}SO\textsubscript{4}. The solvent was removed and the residue purified by silica gel chromatography using 10% EtOAc/pentane to yield 770 mg (1.95 mmol, 35%) of product as a white solid. This material was dissolved in MeOH (10 mL) and cooled to 0 °C. NaBH\textsubscript{4} (90 mg, 2.38 mmol) was added and allowed to stir overnight. The reaction was quenched with 1M HCl and diluted with ether. The layers were separated and the aqueous phase extracted with ether. The combined organics were washed with brine and dried over Na\textsubscript{2}SO\textsubscript{4}. The product was purified by column using 10% EtOAc/pentane to yield 445 mg (58%) of product as a white solid. Spectroscopically, the product is a 1:7:1 mix of rotamers. IR (CDCl\textsubscript{3} cast, cm-1): 3449 (br, w), 3065 (w), 3030 (w), 2925 (w), 1652 (s), 1584 (w), 1520 (w), 1494 (w), 1475 (m), 1454 (w), 1436 (w), 1375 (m), 1284 (m), 1253 (w), 1188 (m), 1060 (m), 990 (w), 909 (m), 848 (w), 816 (w), 761 (w), 725 (s), 696 (s); 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta\) 7.62 (dd, \(J = 8.0, 1.2\) Hz, 1H), 7.37 (dd, \(J = 7.3, 1.8\) Hz, 0.6H), 7.23-7.06 (m, 16H), 6.81 (dd, \(J = 7.2, 1.6\) Hz, 2.6H), 6.75-6.70 (m, 2H), 5.83 (dd, \(J = 7.9, 1.5\) Hz, 1H), 5.74 (d, \(J = 14.0\) Hz, 0.6H), 5.54 (d, \(J = 14.3\) Hz, 1H), 4.92 (d, \(J = 6.5\) Hz, 0.6H), 4.74 (d, \(J = 6.5\) Hz, 1H), 4.70 (d, \(J = 6.6\) Hz, 0.6H), 4.56 (d, \(J = 6.5\) Hz, 1H), 4.10 (d, \(J = 14.3\) Hz, 1H), 3.99 (d, \(J = 14.3\) Hz, 0.6H); 13C\{1H\} NMR (100 MHz, CDCl\textsubscript{3}): \(\delta\) 173.11, 172.49, 139.25, 138.23, 137.84, 137.74, 136.08, 134.10, 133.51, 132.54, 132.24, 130.36, 130.24, 129.42, 129.25, 129.13, 128.57, 128.54, 128.52, 128.50, 128.43, 128.39, 128.06, 127.94, 127.86, 127.85, 127.72, 127.54, 125.11, 123.91, 73.05, 72.02, 53.03, 52.26; Electrospray MS \(m/z\) calculated for C\textsubscript{21}H\textsubscript{15}O\textsubscript{2}NBrNa (M+ + Na): 418.0413; found: 418.0398.
MHz, CDCl$_3$): δ 176.9, 142.9, 134.0, 130.2, 128.6, 124.2, 73.2, 31.0, 29.9, 26.5; Electrospray MS m/z calculated for C$_{11}$H$_{15}$O$_2$NBr (M$^+$ + H): 270.1124; found: 270.1117.

N-(2-bromophenyl)-2hydroxyl-N-methyl-2-phenylpropanamide (3l). In a Schlenk flask, ketoamide (580 mg, 1.82 mmol) was dissolved in THF (10 mL) under a nitrogen atmosphere and cooled to -78 °C. To this, MeMgBr (1.2 mL, 3.6 mmol, 3M in diethyl ether) was added and allowed to warm to room temperature overnight. The reaction was quenched with saturated NH$_4$Cl solution and the layers separated. The aqueous layer was extracted with diethyl ether, and the combined organic fractions were washed with brine and dried over Na$_2$SO$_4$. The solvent was removed and the residue purified by silica gel chromatography using 20% EtOAc/pentane to yield 256 mg (42%) of product as a white solid. The NMR spectra are extremely complicated. We therefore carried the product forward with further characterization. IR (CDCl$_3$ cast, cm$^{-1}$): 3363 (br, m), 3967 (w), 2980 (w), 2931 (w), 1630 (s), 1580 (m), 1475 (m), 1444 (m), 1370 (m), 1289 (w), 1202 (w), 1116 (w), 1071 (m), 1028 (m), 939 (w), 912 (w), 760 (m), 726 (s), 702 (s); Electrospray MS m/z calculated for C$_{16}$H$_{17}$NO$_2$Br (M$^+$ + H): 334.0437; found: 334.0454.

N-(2-bromophenyl)-2-hydroxy-N-methyl-2-(4-(trifluoromethyl)phenyl)propanamide (3m). In a Schlenk flask, amidoketone (100 mg, 0.26 mmol) was dissolved in diethyl ether (3 mL) under a nitrogen atmosphere. Methyl magnesium bromide (0.087 mL, 0.26 mmol, 3.0 M) was added and the reaction stirred for three hours. Saturated ammonium chloride solution was added, the layers separated, and the aqueous layer extracted with diethyl ether. The combined extracts were washed were brine and dried over Na$_2$SO$_4$. The solvent was removed and the residue purified by silica gel chromatography (neutralized with 1 mL of Et$_3$N) with 30% Et$_2$O/pentane to yield 73 mg (70%) of product as a white powder. The 1H NMR spectrum is very complicated, suggesting a mixture of several rotamers. IR (CDCl$_3$ cast, cm$^{-1}$): 3395 (br., w), 2928 (w), 2917 (s), 1583 (w), 1478 (w), 1442 (w), 1413 (w), 1354 (w), 1325 (w), 1251 (w), 1163 (s), 1121 (s), 1074 (s), 1029 (w), 1017 (w), 936 (w), 897 (w), 846 (w), 764 (w); 1H NMR (300 MHz, CDCl$_3$): δ 7.72 (br. s, 1H), 7.60-7.36 (m, 3.13H), 7.21-7.11 (m, 3.37H), 6.88-6.75 (m, 0.86H), 6.08 (m, 0.49H), 5.40 (s, 0.51H), 4.93-4.78 (m, 0.25H), 4.24 (s, 0.36H), 3.25 (s, 1.54H), 3.22 (s, 0.96H), 2.93 (br. s, 0.76H), 1.99 (br. s, 0.71H), 1.81 (br. s, 1.22H), 1.64 and 1.62 (both s, 2.37H), 1.30 (s, 1.39H); 13C{1H} NMR (100 MHz, CDCl$_3$): δ 174.6, 147.4, 140.8, 133.6, 131.4, 129.9, 129.7, 127.8, 126.6, 126.3, 125.2, 124.7, 123.6, 29.7, 23.9.
4-Methyl-2-phenyl-2H-benzo[b][1,4]oxazin-3(4H)-one (4a). In a Schlenk flask, Pd(dba)$_2$ (4.0 mg, 7.0 µmol), [HPtBu$_3$]BF$_4$ (4.1 mg, 14.0 µmol), and Cs$_2$CO$_3$ (300 mg, 0.92 mmol) were dissolved in toluene (5 mL) and heated at 80 °C for 30 min. To this, amidoalcohol (216 mg, 0.77 mmol) was added and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The solvent was removed and the residue purified by silica gel chromatography with 5% EtOAc/pentane to yield 141 mg (84%) of product as a pale yellow solid. The enantioenriched product was prepared in an analogous fashion from the enantioenriched alcohol. 70% ee; [α]$_D^{20}$ = –22 (c = 0.187, CHCl$_3$); HPLC: Chiralpak AS-H, 1% iPrOH/hexane for 10 min then 1→10% iPrOH/hexane over 45 min, 1.0 mL/min, 254 nm, t_R = 23.70 min (minor), t_R = 33.15 min (major); IR (CDCl$_3$ cast, cm$^{-1}$): 2922 (w), 1676 (s), 1608 (w), 1501 (m), 1476 (m), 1450 (m), 1419 (w), 1382 (s), 1323 (w), 1301 (w), 1275 (m), 1221 (m), 1184 (w), 1123 (m), 1042 (m), 924 (m), 872 (w), 825 (w), 746 (s), 694 (s); 1H NMR (400 MHz, CDCl$_3$): δ 7.41 (dd, $J_{ortho-meta} = 7.1$ Hz, $J_{ortho-para} = 2.0$ Hz, 2H, H$_{ortho}$), 7.35–7.30 (m, 3H, H$_{ortho}$, H$_{para}$), 7.08–6.94 (m, 4H), 5.74 (s, 1H, -OC$_2$H$_7$), 3.42 (s, 3H, Me); 13C{1H} NMR (100 MHz, CDCl$_3$): δ 164.7, 144.0, 135.4, 129.3, 128.7, 128.6, 126.9, 124.1, 122.8, 117.5, 114.8, 78.6, 28.6; Electrospray MS m/z calculated for C$_{15}$H$_{14}$NO$_2$ (M$^+$ + H): 240.1019; found: 240.1022 (100%).

4-Methyl-2-(p-toly)-2H-benzo[b][1,4]oxazin-3(4H)-one (4b). In a Schlenk flask, Pd(dba)$_2$ (2.9 mg, 5.1 µmol), [HPtBu$_3$]BF$_4$ (2.9 mg, 10.2 µmol), Cs$_2$CO$_3$ (198 mg, 0.61 mmol), and amidoalcohol (170 mg, 0.51 mmol) were dissolved in toluene (5 mL) and heated at 80 °C for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The solvent was removed and the residue purified by silica gel chromatography with 5% EtOAc/pentane to yield 103 mg (80%) of product as a yellow oil. IR (CDCl$_3$ cast, cm$^{-1}$): 2921 (w), 1677 (s), 1501 (m), 1476 (m), 1419 (w), 1382 (s), 1323 (w), 1301 (w), 1276 (m), 1221 (m), 1184 (w), 1123 (m), 1042 (m), 924 (m), 872 (w), 825 (w), 744 (s), 694 (s); 1H NMR (400 MHz, CDCl$_3$): δ 7.41 (dd, $J_{ortho-meta} = 7.1$ Hz, $J_{ortho-para} = 2.0$ Hz, 2H, H$_{ortho}$), 7.35–7.30 (m, 3H, H$_{ortho}$, H$_{para}$), 7.08–6.94 (m, 4H), 5.74 (s, 1H, -OCH$_3$Ph), 3.42 (s, 3H, Me); 13C{1H} NMR (100 MHz, CDCl$_3$): δ 164.7, 144.0, 135.4, 129.3, 128.7, 128.6, 126.9, 124.1, 122.8, 117.5, 114.8, 78.6, 28.6; Electrospray MS m/z calculated for C$_{16}$H$_{16}$NO$_2$ (M$^+$ + H): 254.1019; found: 254.1122.
4-methyl-2-(o-tolyl)-2H-benzo[b][1,4]oxazin-3(4H)-one (4c). In a Schlenk flask, Pd(dba)$_2$ (1.7 mg, 3.1 µmol), [HPtBu$_3$]BF$_4$ (1.7 mg, 6.2 µmol), and Cs$_2$CO$_3$ (120 mg, 0.37 mmol) were dissolved in toluene (5 mL) and heated at 80 °C for 30 min. To this, amidoalcohol (100 mg, 0.46 mmol) was added as a solution in toluene (1 mL) and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The solvent was removed and the residue purified by silica gel chromatography with 5% EtOAc/pentane to yield 66 mg (87%) of product as a pale yellow solid. IR (CDCl$_3$ cast, cm$^{-1}$): 2929 (w), 1677 (s), 1607 (w), 1501 (s), 1476 (m), 1419 (w), 1381 (s), 1323 (w), 1300 (w), 1265 (m), 1218 (m), 1093 (m), 1016 (w), 926 (w), 872 (w), 831 (w), 805 (w), 749 (s); 1H NMR (400 MHz, CDCl$_3$): δ 7.24 (m, 2H), 7.15 (m, 2H), 7.04 (m, 2H), 6.98 (m, 2H), 5.80 (s, 1H), 3.48 (s, 3H), 2.49 (s, 2H), 1.39 (t, 3H); 13C(1H) NMR (100 MHz, CDCl$_3$): δ 165.3, 144.3, 137.6, 133.5, 130.9, 129.7, 129.0, 127.3, 125.9, 123.9, 122.7, 117.2, 114.6, 77.0, 28.5, 19.5; Electrospray MS m/z calculated for C$_{16}$H$_{16}$NO$_2$ (M$^+$ + H): 254.1175; found: 254.1181.

4-methyl-2-(4-(trifluoromethyl)phenyl)-2H-benzo[b][1,4]oxazin-3(4H)-one (4d). In a Schlenk flask, Pd(dba)$_2$ (2.2 mg, 3.8 µmol), [HPtBu$_3$]BF$_4$ (2.2 mg, 7.6 µmol), and Cs$_2$CO$_3$ (150 mg, 0.46 mmol) were dissolved in toluene (5 mL) and heated at 80 °C for 30 min. To this, amidoalcohol (150 mg, 0.38 mmol) was added as a solution in toluene (1 mL) and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The solvent was removed and the residue purified by silica gel chromatography with 5% EtOAc/pentane to yield 97 mg (87%) of product as a yellow solid. IR (CDCl$_3$ cast, cm$^{-1}$): 2929 (w), 1677 (s), 1607 (w), 1501 (s), 1476 (m), 1419 (w), 1381 (s), 1323 (w), 1300 (w), 1265 (m), 1218 (m), 1093 (m), 1016 (w), 926 (w), 872 (w), 831 (w), 805 (w), 749 (m); 1H NMR (400 MHz, CDCl$_3$): δ 7.24 (m, 2H), 7.15 (m, 2H), 7.04 (m, 2H), 6.98 (m, 2H), 5.80 (s, 1H), 3.48 (s, 3H), 2.49 (s, 2H), 1.39 (t, 3H); 13C(1H) NMR (100 MHz, CDCl$_3$): δ 165.3, 144.3, 137.6, 133.5, 130.9, 129.7, 129.0, 127.3, 125.9, 123.9, 122.7, 117.2, 114.6, 77.0, 28.5, 19.5; Electrospray MS m/z calculated for C$_{16}$H$_{16}$NO$_2$ (M$^+$ + H): 308.0892; found: 308.0892.

2-(4-methoxyphenyl)-4-methyl-2H-benzo[b][1,4]oxazin-3(4H)-one (4e). In a Schlenk flask, Pd(dba)$_2$ (3.7 mg, 6.3 µmol), [HPtBu$_3$]BF$_4$ (3.7 mg, 13 µmol), Cs$_2$CO$_3$ (248 mg, 0.76 mmol), and amidoalcohol (223 mg, 0.63 mmol) were dissolved in toluene (5 mL) and heated at 80 °C for 16 hours. The solvent was removed in vacuo and the residue filtered through
Celite with diethyl ether. The solvent was removed and the residue purified by silica gel chromatography with 5% EtOAc/pentane to yield 154 mg (90%) of product as a pale yellow solid. IR (CDCl$_3$ cast, cm$^{-1}$): 2927 (w), 1610 (m), 1504 (s), 1477 (m), 1419 (w), 1384 (s), 1304 (w), 1248 (s), 1177 (s), 1122 (w), 1031 (m), 925 (w), 823 (m), 749 (s); 1H NMR (400 MHz, CDCl$_3$): δ 7.30 (d, $J = 8.8$ Hz, 2H), 7.02 (m, 3H), 6.96 (m, 1H), 6.84 (d, $J = 8.8$ Hz, 2H), 5.66 (s, 1H), 3.76 (s, 3H), 3.43 (s, 3H); 13C (1H) NMR (100 MHz, CDCl$_3$): δ 165.0, 157.9, 144.1, 129.4, 128.4, 127.5, 124.0, 122.7, 117.5, 114.7, 114.1, 78.4, 55.3, 28.6; Electrospray MS m/z calculated for C$_{16}$H$_{16}$NO$_3$ (M$^+$ + H): 272.1124; found: 270.1114.

2-(2-methoxyphenyl)-4-methyl-2H-benzo[b][1,4]oxazin-3(4H)-one (4f). In a Schlenk flask, Pd(dba)$_2$ (1 mg, 1.7 μmol), PrBu$_3$ (1 mg, 3.4 μmol), and Cs$_2$CO$_3$ (51 mg, 0.15 mmol) were dissolved in toluene (5 mL) and heated at 80 $^\circ$C for 30 min. To this, amidoalcohol (55 mg, 0.15 mmol) was added and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The solvent was removed and the residue purified by silica gel chromatography with 10% EtOAc/pentane to yield 40 mg (95%) of product as a yellow oil. IR (CDCl$_3$ cast, cm$^{-1}$): 2927 (w), 1676 (s), 1604 (m), 1500 (s), 1463 (m), 1419 (w), 1382 (s), 1344 (w), 1325 (w), 1300 (m), 1248 (s), 1224 (m), 1191 (w), 1163 (w), 1124 (w), 1025 (m), 926 (w), 878 (w), 830 (w), 801 (w), 747 (s); 1H NMR (300 MHz, CDCl$_3$): δ 7.36 (td, $J = 6.8$, 1.6 Hz, 1H), 7.26 (dd, $J = 7.1$, 1.3 Hz, 1H), 7.08-6.92 (m, 6H), 6.00 (s, 1H), 3.85 (s, 3H), 3.47 (s, 3H); 13C (1H) NMR (100 MHz, CDCl$_3$): δ 165.6, 157.8, 144.8, 130.6, 129.9, 128.8, 124.2, 123.8, 122.6, 120.7, 117.2, 114.5, 111.3, 74.4, 55.9, 28.6; Electrospray MS m/z calculated for C$_{16}$H$_{16}$NO$_3$ (M$^+$ + H): 270.1124; found: 270.1114.

4-methyl-2-(naphthalen-1-yl)-2H-benzo[b][1,4]oxazin-3(4H)-one (4g). In a Schlenk flask, Pd(dba)$_2$ (3.2 mg, 5.6 μmol), [HPrBu$_3$]BF$_4$ (3.2 mg, 11 μmol), and Cs$_2$CO$_3$ (196 mg, 0.97 mmol) were dissolved in toluene (5 mL) and heated at 80 $^\circ$C for 30 min. To this, amidoalcohol (203 mg, 0.55 mmol) was added and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The solvent was removed and the residue purified by silica gel chromatography with 5% EtOAc/pentane to yield 132 mg (84%) of product as a yellow oil. IR (CDCl$_3$ cast, cm$^{-1}$): 2925 (w), 1681 (s), 1608 (w), 1502 (s), 1477 (m), 1419 (w), 1385 (s), 1302 (w), 1274 (m), 1219 (w), 1124 (w), 1043 (w), 1017 (w), 925 (w), 791 (m), 774 (m), 749 (s); 1H NMR (300 MHz, CDCl$_3$): δ 8.30 (d, $J = 8.2$ Hz, 1H), 7.87 (t, $J = 9.0$ Hz, 2H), 7.61 (t, $J = 6.8$ Hz, 1H), 7.55 (t, $J = 6.9$ Hz, 1H), 7.37-7.34 (m, 2H), 7.08-7.06 (m, 2H), 6.98-6.88 (m, 2H), 6.35 (s, 1H), 3.56 (s, 3H); 13C (1H) NMR (100 MHz, CDCl$_3$): δ 165.16, 144.12, 134.12, 131.62, 130.68, 130.18, 129.84, 128.85, 126.74, 126.03, 126.01, 124.87, 124.26, 124.05, 122.89, 117.54, 114.70, 77.36, 28.72; Electrospray MS m/z calculated for C$_{19}$H$_{16}$NO$_2$ (M$^+$ + H): 290.1175; found: 290.1171.
2,4-dimethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (4h). In a Schlenk flask, Pd(dba)$_2$ (4.7 mg, 2.1 μmol), [HPtBu$_3$]BF$_4$ (4.7 mg, 16 μmol), and Cs$_2$CO$_3$ (291 mg, 1.44 mmol) were dissolved in toluene (5 mL) and heated at 80 °C for 30 min. To this, amidoalcohol (200 mg, 0.81 mmol) was added and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The solvent was removed and the residue purified by silica gel chromatography with 5% EtOAc/pentane to yield 63 mg (60%) of product as a yellow oil. IR (CDCl$_3$ cast, cm$^{-1}$): 2932 (w), 1682 (s), 1609 (w), 1503 (m), 1478 (w), 1419 (w), 1386 (m), 1311 (w), 1274 (m), 1235 (w), 1129 (w), 1109 (w), 1070 (w), 1039 (w), 750 (m); 1H NMR (400 MHz, CDCl$_3$): δ 7.05-6.95 (m, 4H), 4.63 (q, $J = 6.8$ Hz, 1H), 3.36 (s, 3H), 1.88 (m, 5H), 1.36 (m, 6H); 13C(1H) NMR (100 MHz, CDCl$_3$): δ 167.0, 144.4, 129.9, 123.8, 122.6, 117.1, 114.6, 73.6, 28.5, 16.5; Electrospray MS m/z calculated for C$_{10}$H$_{12}$NO$_2$ (M$^+$ + H)$^+$: 178.0862; found: 178.0863.

2-cyclohexyl-4-methyl-4H-benzo[b][1,4]oxazin-3(4H)-one (4i). In a Schlenk flask, Pd(dba)$_2$ (2.5 mg, 4.3 μmol), [HPtBu$_3$]BF$_4$ (2.5 mg, 8.6 μmol), and Cs$_2$CO$_3$ (168 mg, 0.50 mmol) were dissolved in toluene (5 mL) and heated at 80 °C for 30 min. To this, amidoalcohol (140 mg, 0.43 mmol) was added as a solution in toluene (1 mL) and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The solvent was removed and the residue purified by silica gel chromatography with 5% EtOAc/pentane to yield 90 mg (62%) of product as a yellow oil. IR (CDCl$_3$ cast, cm$^{-1}$): 2926 (m), 2853 (m), 1677 (s), 1608 (w), 1502 (s), 1477 (m), 1450 (w), 1419 (w), 1381 (s), 1320 (w), 1275 (m), 1230 (m), 1186 (w), 1129 (w), 1040 (w), 993 (w), 923 (w), 894 (w), 826 (w), 745 (s); 1H NMR (400 MHz, CDCl$_3$): δ 7.03-6.91 (m, 4H), 4.36 (d, $J = 6.4$ Hz, 1H), 3.35 (s, 3H), 1.88-1.64 (m, 5H), 1.36-1.15 (m, 6H); 13C(1H) NMR (100 MHz, CDCl$_3$): δ 165.5, 144.4, 129.5, 123.8, 122.2, 116.9, 114.5, 81.4, 38.9, 29.0, 28.2, 27.8; Electrospray MS m/z calculated for C$_{15}$H$_{20}$NO$_2$ (M$^+$ + H)$^+$: 246.1488; found: 246.1491.

4-benzyl-2-phenyl-2H-benzo[b][1,4]oxazin-3(4H)-one (4j). In a Schlenk flask, Pd(dba)$_2$ (71 mg, 0.12 mmol), [HPtBu$_3$]BF$_4$ (72 mg, 0.24 mmol), and Cs$_2$CO$_3$ (404 mg, 1.24 mmol) were dissolved in toluene (20 mL) and heated at 80 °C for 30 min. To this, amidoalcohol (246 mg, 0.62 mmol) was added and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The crude product was dissolved in MeOH (10 mL) and cooled to 0 °C. NaBH$_4$ (40 mg) was added and stirred for two hours. The reaction was quenched with 1M HCl and extracted with diethyl ether. The combined organics were washed with brine and dried over MgSO$_4$. The solvent was removed and the
residue purified by silica gel chromatography with 5% EtOAc/pentane to yield 74 mg (38%) of product as a pale yellow solid. IR (CDCl$_3$ cast, cm$^{-1}$): 3032 (w), 2926 (w), 2855 (w), 1680 (s), 1606 (w), 1499 (s), 1466 (w), 1453 (w), 1396 (s), 1326 (m), 1301 (w), 1277 (m), 1245 (m), 1205 (w), 1184 (w), 1159 (w), 125 (w), 1084 (w), 1049 (m), 1030 (w), 923 (w), 885 (w), 834 (w), 749 (s), 696 (s); 1H NMR (400 MHz, CDCl$_3$): δ 7.44 (m, 2H), 7.34-7.18 (m, 8H), 7.05 (dd, $J = 7.5, 0.9$ Hz, 1H), 6.93 (dd, $J = 8.9, 6.0$, 3.0 Hz, 1H), 6.83 (m, 2H), 5.82 (s, 1H), 5.30 (d, $J = 16.1$ Hz, 1H), 5.04 (d, $J = 16.1$ Hz, 1H); 13C (1H) NMR (100 MHz, CDCl$_3$): δ 164.8, 144.0, 136.0, 128.4, 127.4, 126.7, 126.5, 124.1, 122.6, 117.6, 115.5, 78.5, 45.2; Electrospray MS m/z calculated for C$_2$H$_{18}$NO$_2$ (M$^+$ + H): 316.1332; found: 316.1333.

2,2,4-trimethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (4k). In a Schlenk flask, Pd(db$_2$)$_2$ (9.6 mg, 17 μmol), [H$_2$P$_3$Bu$_3$]BF$_4$ (10 mg, 34 μmol), Cs$_2$CO$_3$ (652 mg, 2.00 mmol) were combined and heated at 80 °C under a nitrogen atmosphere for 30 min. To this, tertiary alcohol (454 mg, 1.67 mmol) was added and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The product was purified by silica gel chromatography using 5% EtOAc/pentane to yield 136 mg (70%) of product as a pale yellow solid. IR (CDCl$_3$ cast, cm$^{-1}$): 3025 (w), 2925 (m), 2855 (w), 1681 (s), 1609 (w), 1503 (m), 1477 (w), 1418 (w), 1384 (m), 1307 (w), 1284 (w), 1260 (m), 1198 (w), 1165 (m), 1125 (w), 1044 (w), 955 (w), 748 (m); 1H NMR (400 MHz, CDCl$_3$): δ 7.03-6.92 (m, 4H), 3.36 (s, 3H), 1.50 (s, 6H); 13C (1H) NMR (100 MHz, CDCl$_3$): δ 169.0, 143.4, 129.9, 123.8, 122.3, 117.5, 114.3, 77.9, 28.7, 23.9. Electrospray MS m/z calculated for C$_2$H$_{14}$NO$_2$ (M$^+$ + H): 192.1019; found: 192.1011.

2,4-dimethyl-2-phenyl-2H-benzo[b][1,4]oxazin-3(4H)-one (4l). In a Schlenk flask, Pd(db$_2$)$_2$ (4.4 mg, 7.7 μmol), [H$_2$P$_3$Bu$_3$]BF$_4$ (4.4 mg, 15 μmol), Cs$_2$CO$_3$ (301 mg, 0.92 mmol) were combined and heated at 80 °C under a nitrogen atmosphere for 30 min. To this, tertiary alcohol (256 mg, 0.77 mmol) was added and stirred for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The product was purified by silica gel chromatography using 5% EtOAc/pentane to yield 136 mg (70%) of product as a pale yellow solid. IR (CDCl$_3$ cast, cm$^{-1}$): 2934 (w), 2855 (w), 1689 (m), 1609 (w), 1503 (m), 1477 (w), 1448 (w), 1418 (w), 1379 (s), 1306 (w), 1281 (w), 1247 (w), 1220 (w), 1135 (w), 1040 (w), 750 (w), 700 (w); 1H NMR (400 MHz, CDCl$_3$): δ 7.43 (m, 2H), 7.25 (m, 2H), 7.18 (tt, $J = 7.2, 1.3$ Hz, 1H), 7.09 (dd, $J = 7.8, 1.6$ Hz, 1H), 6.97 (td, $J = 7.5, 1.6$ Hz, 1H), 6.92 (td, $J = 7.5, 1.6$ Hz, 1H), 6.80 (dd, $J = 7.8, 1.6$ Hz, 1H), 3.38 (s, 3H), 1.92 (s, 3H); 13C (1H) NMR (100 MHz, CDCl$_3$): δ 166.7, 144.0, 140.15, 129.7, 128.3, 127.8, 125.1, 123.6, 122.4, 117.5, 114.5, 81.9, 28.8, 27.5; Electrospray MS m/z calculated for C$_{18}$H$_{16}$O$_2$N (M$^+$ + H): 254.1175; found: 254.1167.
2,4-dimethyl-2-(4-(trifluoromethyl) phenyl)-2H-benzo[b][1,4]oxazin-3(4H)-one (4m). In a Schlenk flask, Pd(dba)$_2$ (31 mg, 0.054 mmol), PbBu$_3$ (22 mg, 0.11 mmol), and K$_3$PO$_4$•H$_2$O (84 mg, 0.36 mmol) were dissolved in toluene (5 mL) and heated at 80 °C for one hour under a nitrogen atmosphere. To this, amidoalcohol (73 mg, 0.18 mmol) was added and the reaction was allowed to proceed for 16 hours. The solvent was removed in vacuo and the residue filtered through Celite with diethyl ether. The solvent was removed and the product residue purified by silica gel chromatography with 5% EtOAc/pentane to yield approximately 58 mg (77%). Some phosphine oxide by product contaminates the final product. IR (CDCl$_3$): δ 2922 (w), 1677 (s), 1613 (w), 1593 (w), 1503 (s), 1477 (w), 1410 (w), 1379 (s), 1280 (m), 1246 (s), 1166 (m), 1123 (s), 1107 (s), 1081 (s), 1065 (m), 1040 (w), 1017 (m), 951 (w), 843 (m), 748 (s); 13C{H} NMR (100 MHz, CDCl$_3$): δ 172.7, 166.2, 144.4, 143.7, 130.4, 129.5, 125.7, 125.5 (q, J = 3.7 Hz), 124.0, 122.9, 117.6, 114.8, 81.7, 29.1, 166 Hz, 1H), 3.41 (s, 3H), 1.91 (s, 3H); 13C{H} NMR (100 MHz, CDCl$_3$): δ 166.2, 144.4, 143.7, 130.4, 130.0, 129.5, 125.7, 125.5 (q, J = 3.7 Hz), 124.0, 122.9, 117.6, 114.8, 81.7, 29.1, 27.5 (CF$_3$ signal not observed); Electrospray MS m/z calculated for C$_{17}$H$_{15}$O$_3$NF$_3$ (M$^+$ + H): 322.1049; found: 322.1052.

(S)-2-(methoxymethoxy)2-phenylacetic acid (5). (S)-Mandelic acid (2.00 g, 13.2 mmol) was dissolved in MeOH (25 mL) and pTsOH (65 mg) was added. The solution was heated at reflux for 16 hours, then the solvent was removed and the residue dissolved in diethyl ether. The solution was washed with NaHCO$_3$ solution, extracted with diethyl ether, washed with brine, and dried over Na$_2$SO$_4$ to provide 1.64 g (75%) of the crude ester. The crude product (1.64 g, 9.87 mmol) was dissolved in CH$_2$Cl$_2$ (25 mL) and cooled to 0 °C in an ice bath. MOMCl (18.0 mL, 37.8 mmol, 2.1 M sol. in toluene) was added, followed by slow addition of diisopropylethylamine (3.5 mL, 20.0 mmol). The reaction was allowed to warm to room temperature overnight. Water was added and the product extracted with CH$_2$Cl$_2$. The combined organics were washed with brine and dried over Na$_2$SO$_4$ to provide 2.33 g of crude protected alcohol. The material (2.33 g) was dissolved in MeOH (50 mL) and Ba(OH)$_2$•8H$_2$O was added. The reaction was stirred for 20 min then cooled to 0 °C in an ice bath, followed by addition of 22.2 mL of 1M HCl to bring the pH to 6. The solution was diluted with water and extracted with CH$_2$Cl$_2$. The combined extracts were washed with brine and dried over Na$_2$SO$_4$ to prove 588 mg (23% overall) of product as a white solid with 90% ee; $[a]_D^{20} = +144$ (c = 2.94, CHCl$_3$); HPLC: Chiralpak AD-H, 1% iPrOH/hexane for 10 min then 1→20% iPrOH/hexane over 45 min, 1 mL/min, 240 nm; t_R = 26.55 min (minor), t_R = 28.34 min (major); IR (CDCl$_3$ cast, cm$^{-1}$): 3690-2300 (br, s), 1495 (w), 1455 (w), 1402 (w), 1212 (m), 1149 (s), 1108 (s), 1040 (s), 989 (m), 919 (m), 765 (w), 722 (m), 698 (m); 1H NMR (400 MHz, CDCl$_3$): δ 10.16 (br, s, 1H), 7.47 (m, 2H), 7.37 (m, 3H), 5.19 (s, 1H), 4.74 (d, J = 6.9 Hz, 1H), 4.69 (d, J = 6.9 Hz, 1H), 3.39 (s, 3H); 13C{H} NMR (100 MHz, CDCl$_3$):

δ 176.0, 135.4, 129.1, 128.8, 127.5, 94.9, 76.3, 56.1; Electrospray MS m/z calculated for C_{10}H_{12}O_{4}Na (M^+ + Na): 219.0627; found: 219.0620.

N-(3-bromopyridin-2-yl)-N-methyl-2-oxo-2-phenylacetamide. In a Schlenk flask, benzoylformic acid (255 mg, 1.70 mmol) was dissolved in CH_{2}Cl_{2} (5 mL) under a nitrogen atmosphere. To this, oxalyl chloride (0.175 mL, 2.04 mmol) was added, followed by one drop of dimethylformamide. The reaction was stirred until gas evolution ceased, then all volatiles were removed under vacuum. The residue was redissolved in CH_{2}Cl_{2} (5 mL) and was cooled to 0 °C. 3-bromo-N-methylpyridin-2-amine (332 mg, 1.80 mmol) was added, followed by triethylamine (0.700 mL, 5.05 mmol). The reaction was allowed to warm to room temperature overnight. Volatiles were removed under vacuum and the residue taken up in CH_{2}Cl_{2} and washed with water. The aqueous layer was extracted with CH_{2}Cl_{2} and the combined extracts were washed with brine, and dried over MgSO_{4}. The solvent was removed in vacuo and the residue purified by silica gel chromatography using 15% EtOAc/pentane to yield 235 mg (41%) of product as a white solid. IR (CDCl_{3} cast, cm\(^{-1}\)): 1662 (s), 1596 (w), 1570 (m), 1432 (m), 1375 (w), 1316 (w), 1233 (m), 1146 (m), 1052 (w), 1024 (w), 964 (w), 892 (s), 854 (w), 803 (w), 735 (m); \(^1\)H NMR (300 MHz, CDCl_{3}): δ 8.17 (dd, J_{1,2} = 4.7 Hz, J_{1,3} = 1.6 Hz, 1H, H_{1}); 8.02 (app. d, J_{4,5} = 5.1 Hz, 2H, H_{4}); 7.98 (dd, J_{3,2} = 8.0 Hz, J_{3,4} = 1.6 Hz, 1H, H_{3}); 7.61 (tt, J_{6,5} = 7.4 Hz, J_{6,4} = 1.3 Hz, 1H, H_{6}); 7.48 (t, J_{5,4} = J_{5,6} = 7.8 Hz, 2H, H_{5}, H_{3}); 7.10 (dd, J_{2,3} = 8.0 Hz, J_{2,1} = 4.7 Hz, 1H, H_{2}); 3.51 (s, 3H, Me); \(^1\)H-\(^1\)H COSY (300 MHz, CDCl_{3}): δ 8.17 (H_{1}) ↔ δ 7.10 (H_{2}); δ 8.02 (H_{4}) ↔ δ 7.48 (H_{3}); δ 7.98 (H_{3}) ↔ δ 7.10 (H_{2}); δ 7.61 (H_{6}) ↔ δ 7.48 (H_{5}); \(^{13}\)C\(^{1}\)H NMR (75 MHz, CDCl_{3}): δ 189.2, 166.9, 153.0, 147.4, 143.0, 134.0, 133.6, 130.2, 128.4, 124.5, 117.4, 34.4; Electrospray MS m/z calculated for C_{14}H_{12}N_{2}O_{2}Br (M^+ + H): 319.0076; found: 319.0076.

N-(3-bromopyridin-2-yl)-2-hydroxy-N-methyl-2-phenylacetamide (6). Ketoamide (235 mg, 0.74 mmol) was dissolved in MeOH (5 mL) under nitrogen and cooled to 0 °C in an ice bath. To this, NaBH\(_4\) (33 mg, 0.87 mmol) was added and the reaction was allowed to warm slowly to room temperature overnight. The reaction was then diluted with Et\(_2\)O and acidified with 1N HCl to a pH of 6. The layers were separated and the aqueous layer extracted with Et\(_2\)O. The organic fractions were combined and washed with water, then brine, and dried over MgSO\(_4\). The solvent was removed in vacuo and the product purified by silica gel chromatography with 70% EtOAc/pentane to provide 108 mg (46%) of product as a white solid. Spectroscopically, the product is mainly one rotomer with ≈15% of a second compound. IR (CDCl_{3} cast, cm\(^{-1}\)): 3413 (br, w), 3064 (w), 2932 (w), 1655 (s), 1566 (m), 1429 (s), 1353 (s), 1305 (m), 1231 (w), 1191 (w), 1145 (m), 1092 (m), 1062 (s), 1021 (s), 937 (w), 911 (m), 849 (w), 800 (m), 762 (m), 727 (s), 698 (s); \(^1\)H NMR (400 MHz, CDCl_{3}): δ 8.39 (br. s, 1H), 7.70 (br. s, 1H), 7.15-7.08 (m, 4H), 6.72 (d, J = 7.1 Hz, 2H), 5.14 (br. s, 1H), 3.70 (s, 3H, Me).
4.60 (br. s, 1H), 3.27 (s, 3H); \(^{13}\text{C}\{^1\text{H}\}\) NMR (100 MHz, CDCl\(_3\)): \(\delta\) 173.1 (br), 152.2, 147.7 (br), 142.6, 137.8 (br), 128.3, 128.2, 127.1, 124.9, 119.9, 72.4 (br), 35.5; Electrospray MS \(m/z\) calculated for C\(_{14}\)H\(_{14}\)O\(_2\)N\(_2\)Br (M\(^+\) + H): 321.0233; found: 321.0231.

2-((2-bromopyridin-2-yl)oxy)-N-methyl-2-phenylacetamide (8) and 4-methyl-2-phenyl-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one (7). Amide (23 mg, 0.072 mmol), Pd(dba)\(_2\) (1 mg, 1.7 \(\mu\)mol), [HPtBu\(_3\)]BF\(_4\) (1 mg, 3.4 \(\mu\)mol), and Cs\(_2\)CO\(_3\) (28 mg, 0.086 mmol) were combined in toluene (5 mL) and heated at 80 °C for 16 hours. The solvent was removed and the residue filtered through Celite. The product was purified by silica gel chromatography using 10% EtOAc/pentane to provide 13 mg (56%) of 8 as an oil. The crude mixture was a 1:2 mixture of 7:8. After purification, only 8 was fully characterized. IR (CDCl\(_3\) cast, cm\(^{-1}\)): 3298 (w), 3063 (w), 2929 (w), 1665 (s), 1582 (m), 1533 (m), 1496 (w), 1427 (s), 1366 (w), 1307 (m), 1243 (m), 1189 (w), 1159 (w), 1127 (w), 1071 (m), 1031 (m), 893 (w), 788 (m), 748 (m), 732 (m), 697 (m); \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.05 (dd, \(J = 4.8, 1.6\) Hz, 1H), 7.85 (dd, \(J = 7.6, 1.6\) Hz, 1H), 7.60 (d, \(J = 7.0\) Hz, 2H), 7.38-7.28 (m, 3H), 6.83 (dd, \(J = 7.6, 4.8\) Hz, 1H), 6.71 (br. s, 1H), 6.51 (s, 1H), 2.88 (d, \(J = 4.9\) Hz, 3H); \(^{13}\text{C}\{^1\text{H}\}\) NMR (100 MHz, CDCl\(_3\)): \(\delta\) 169.93, 157.52, 145.75, 141.98, 136.35, 128.45, 128.39, 126.80, 119.13, 107.09, 77.36, 26.14; Electrospray MS \(m/z\) calculated for C\(_{14}\)H\(_{13}\)O\(_2\)N\(_2\)BrNa (M\(^+\) + Na): 343.0052; found: 343.0063. Minor isomer: \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.04 (dd, \(J = 4.8, 1.6\) Hz, 1H), 7.64 (m, 1H, overlaps), 6.96 (dd, \(J = 7.9, 4.9\) Hz, 1H), 5.79 (s, 1H), 3.57 (s, 3H), remaining signals are buried under other isomer peaks.)
13C CPD-Spectrum

KY3-048_C13/1
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011
1H Spectrum

KY2-060/1
1H Spectrum

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011
13C CPD-Spectrum
KY3-dime/2

1H Spectrum

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2011
13C CPD-Spectrum