Supporting Information

Target recycling amplification for sensitive and label-free impedimetric genosensing based on hairpin DNA and graphene/Au nanocomposite

Ying Chen,a Bingying Jiang,b Yun Xiang,*a Yaqin Chai,a and Ruo Yuan*a

a Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China; Fax: +86-23-68252277; Tel: +86-23-68253172; E-mail: yunatswu@swu.edu.cn (Y.X.), yuanruo@swu.edu.cn (R.Y.).
b School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China

Experimental Section

Materials: Tris-HCl, 6-mercapto-1-hexanol (MCH) and HAuCl₄ were purchased from Sigma (St. Louis, MO). Spectroscopically pure graphite powder was received from Shanghai Chemicals Co., Ltd. (Shanghai, China). Disposable SPCE, comprised of a carbon working electrode (3 mm in diameter), a carbon counter electrode, and a silver pseudoreference electrode, were obtained from Zensor R&D Co., Ltd (Taichung, Taiwan). All oligonucleotides¹ were ordered from Shanghai Sangon Biological Engineering Technology and Services Co., Ltd. (Shanghai, China), and the sequences of these oligonucleotides were as follows:

Hairpin DNA probe: 5’-SH-(CH₂)₅-AGGAAGACGTACGTATCTTCCTTTGTTC-3’;
Complementary DNA: 5’-GAACAAAAGGAAGATACGTACAAAATC-3’;
One base-mismatch DNA: 5’-GAACAAAAGGAAGTACGTACAAAATC-3’;
Three base-mismatch DNA: 5’-GAACAAAAGGAACTAACGTACAAATCA-3’;
Non-complementary DNA: 5’-ACCTGGGGGAGTATTGCGGAGGAAGGT-3’

All reagents were analytical grade and solutions were prepared using ultrapure water (specific resistance of 18 MΩ-cm).

Preparation of graphene oxide (GO): GO was prepared according to modified Hummers’ methods.2,3 In brief, the graphite powder (10 g) was added to a mixture of concentrated H2SO4 (15 mL), K2S2O8 (5 g), and P2O5 (5 g) at 80 °C. The resulting dark blue mixture was thermally isolated and allowed to cool to room temperature over a period of 6 h, followed by dilution with water, filtration and washing with water until pH=7.0. The pellet was dried overnight in air at ambient temperature to obtain the oxidized graphite powder. Next, the oxidized graphite powder (10 g) was added to cold concentrated H2SO4 (0 °C, 230 mL). Then, KMnO4 (30 g) was gradually added to the mixture with the temperature lower than 20 °C. The mixture was stirred at 35 °C for 2 h, followed by the addition of water (460 mL). In next 15 min, water (1.4 L) and 30% H2O2 (25 mL) was added to the mixture to obtain a bright yellow solution. The mixture was filtered and washed with 1:10 HCl solution (2.5 L) and dialysed against water to completely remove metal ions and acids to obtain GO.

Electrochemical deposition of graphene/AuNPs on the electrode: The SPCE was first preconditioned in Tris-HCl buffer (20 mM, pH 7.4) by cycling the potential between -0.6 and 0.6 V at 0.5 V s⁻¹. Next, the N2 bubbled mixture (50 µL) of GO (0.5 mg mL⁻¹) and HAuCl4 (1 mM) in carbonate buffer solution (100 mM, pH 9.0) was applied to the electrode surface, followed by cycling the potential between -1.5 and 0.6 V at a rate of 25 mV s⁻¹ for five cycles to obtain the graphene/AuNP modified SPCE.4
Electrochemical impedance spectroscopy (EIS) sensing protocol: The hairpin probe (10 µL, 1 µM) in PBS buffer (20 mM K₂HPO₄/KH₂PO₄, 0.15 NaCl, pH 7.0) was applied to the working electrode of the freshly prepared graphene/AuNPs modified SPCE and incubated at room temperature (25 °C) for 12 h, followed by washing with 0.2% SDS to remove any non-specifically adsorbed DNA probe. Next, 10 µL of 2 mM MCH was dropped on the electrode surface for 1 h. The electrode was then washed with Tris-HCl buffer (20 mM Tris-HCl, 100 mM NaCl, 5mM MgCl₂, pH 8.0), and the target DNA at various concentrations together with Exo III (5 U) were added and incubated with the electrode at 37 °C for 1 h. After washing with Tris-HCl/SDS (20mM Tris-HCl, 100 mM, 5mM MgCl₂, 0.2% SDS, pH 8.0), 50 µL of KCl solution (0.1 M) containing [Fe(CN)₆]³⁻/⁴⁻ (5 mM, 1:1) was dropped to cover all three electrodes and EIS measurements were performed on a CHI660D EC workstation (CH Instruments Inc., Shanghai, China) with the frequency range from 10 kHz to 50 MHz and an alternate voltage of 5 mV.

SEM images of the SPCE before and after electrochemical deposition of graphene/AuNPs:

Fig. SI1 SEM images of different electrodes: (left) bare SPCE and (right) graphene/AuNPs/SPCE. SEM images were taken by a S4800 scanning electron microscope (HITACHI Co., Japan).
Cyclic voltammograms of the sensor at different stages:

Fig. SI2 Cyclic voltammograms corresponding to (a) bare SPCE electrode, (b) graphene/AuNP modified SPCE and (c) hairpin DNA and MCH self-assembled graphene/AuNPs/SPCE. The voltammograms were recorded in 0.1M KCl solution containing 1 mM $[\text{Fe(CN)}_6]^{3-/4-}$ at a scan rate of 50 mV s$^{-1}$.

References: