Electronic supplementary information for

Self-stacked Co₃O₄ nanosheets for high-performance lithium ion batteries

Xi Wang, Hasigaowa Guan, Shimou Chen, Huiqiao Li, Tianyou Zhai, Daiming Tang, Yoshio Bando, and Dmitri Golberg

International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan.

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China, 266100.

Energy Technology Research Institute, National Institute of Advanced Industrial and Technology (AIST), Umezono, 1-1-1, Tsukuba, 305-8568, Japan.
Experimental

Synthesis of self-stacked Co$_3$O$_4$ nanosheets: 1 g of Co(CH$_3$COO)$_2$ 4H$_2$O, and 0.05 g of PVP (Mw = 30000 g/mol) were loaded into a 100 mL poly(tetrafluoroethylene) (PTFE)-lined stainless steel autoclave, which was then filled with 80 mL mixture solution of ethylene glycol and water. The autoclave was sealed and maintained at 180-200 °C for 12-24 h, and then cooled down to room temperature. The final products were centrifuged, rinsed with distilled water and ethanol several times to remove any impurities. The as-prepared precursors were finally calcined at 350 °C in N$_2$ for 3 h.

Synthesis of Co$_3$O$_4$ hollow spheres: 1 g of Co(CH$_3$COO)$_2$ 4H$_2$O and 0.05 g of PVP (Mw = 30000 g/mol) were loaded into a 100 mL poly(tetrafluoroethylene) (PTFE)-lined stainless steel autoclave, which was then filled with 80 mL ethylene glycol. The autoclave was sealed and maintained at 180-200 °C for 12-24 h, and then cooled down to room temperature. The final products were centrifuged, rinsed with distilled water and ethanol several times to remove any impurities. The as-prepared precursors were finally calcined at 350 °C in N$_2$ for 3 h.

Synthesis of Co$_3$O$_4$ nanoplates: 1 g of Co(CH$_3$COO)$_2$ 4H$_2$O were loaded into a 100 mL poly(tetrafluoroethylene) (PTFE)-lined stainless steel autoclave, which was then filled with 80 mL ethylene glycol. The autoclave was sealed and maintained at 180-200 °C for 12-24 h, and then cooled down to room temperature. The final products were centrifuged, rinsed with distilled water and ethanol several times to remove any impurities. The as-prepared precursors were finally calcined at 350 °C in N$_2$ for 3 h.

Synthesis of Co$_3$O$_4$ nanoflowers: 1 g of Co(CH$_3$COO)$_2$ 4H$_2$O were loaded into a 100 mL poly(tetrafluoroethylene) (PTFE)-lined stainless steel autoclave, which was then
filled with 80 mL mixture solution of ethylene glycol and water. The autoclave was sealed and maintained at 180-200 °C for 12-24 h, and then cooled down to room temperature. The final products were centrifuged, rinsed with distilled water and ethanol several times to remove any impurities. The as-prepared precursors were finally calcined at 350 °C in N₂ for 3 h.

Characterization. X-ray powder diffraction (XRD) patterns were recorded on a Philips X’Pert PRO MPD X-ray diffractometer operated at 35 kV and 45 mA with Cu Kα radiation. Transmission electron microscopy (TEM) images were taken on a JEOL JEM-2010 transmission electron microscope with an accelerating voltage of 200 kV. FE-SEM measurement was carried out with a field-emission microscope (JEOL S-F4800) operated at an acceleration voltage of 10 kV. The nitrogen adsorption-desorption spectra of the samples were determined by nitrogen adsorption-desorption isotherm measurements at 77 K (Micromeritics Automatic Surface Area Analyzer Gemini 2360, Shimadzu).

Electrochemical Characterization: Electrochemical experiments were performed using Swagelok-type cells and 2032-type coin cells. The working electrodes prepared by mixing the Co₃O₄ samples, acetylene black, and poly (vinyl difluoride) (PVDF) at a weight ratio of 70:20:10, were pasted on pure Cu foil (99.6%, Goodfellow). Glass fiber (GF/D) from Whatman was used as a separator. Lithium foil was used as the counter electrode. The electrolyte consisted of a solution of 1 M LiPF₆ in ethylene carbonate (EC)/dimethyl carbonate (DMC)/diethyl carbonate (DEC) (1:1:1, in wt %) obtained from Novolyte Technologies (Suzhou) Co. Ltd. A galvanostatic cycling test of the assembled cells was carried out on an LAND CT2001A system in the voltage range of 0.01-3.0 V (vs. Li⁺/Li) at different current density.
Fig. S1 XRD pattern of the obtained stacked Co$_3$O$_4$ nanosheets calcined at 350°.
Fig. S2 A low-magnification SEM image of the self-stacked Co_3O_4 nanosheets.
Fig. S3 N$_2$ adsorption–desorption isotherm of the self-stacked Co$_3$O$_4$ nanosheets.
Fig. S4 The dark-field TEM image of Co$_3$O$_4$ nanosheets and EDX mapping images of O, Co, and C elements.
Fig. S5 TG curve of precursors calcined in air.
Fig. S6 HRTEM image of a Co$_3$O$_4$ nanoplate.
Fig. S7 Low- and high-magnification SEM images of the self-stacked Co₃O₄ nanosheets exhibiting highly curved nanoplates.