Dual Anticancer Activity in a Single Compound: Visible-Light-Induced Apoptosis by an Antiangiogenic Iridium Complex

Anja Kastl, Alexander Wilbuer, Anna Lena Merkel, Li Feng, Pietro Di Fazio, Matthias Ocker, and Eric Meggers*

*Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany. Fax: +49 6421 2822189; Tel: +49 6421 2821534

Institut für Chirurgische Forschung, Philipps-Universität Marburg, Baldingerstraße, 35043 Marburg, Germany

E-mail: meggers@chemie.uni-marburg.de
Content:

1. Materials and Methods
2. Synthesis of Iridium Complexes
3. Proof of Purity of Complex 11 and Proton Assignment
4. Biological Experiments
 4.1. Protein Kinase Inhibition Properties of Complexes 11 and 11Me
 4.2. Cell Culture Experiments
 4.3. Cell Viability Assays
 4.4. Determination of Photoinduced Cytotoxicities
 4.5. Photoinduced Cytotoxicity of Complex 11 after Medium Exchange
 4.6. Caspase 3/7 Assays
 4.7. Propidium Iodide Staining and Flow Cytometry
 4.8. 3D-Angiogenesis Assays
 4.9. ROS Experiments
1. Materials and Methods

All reactions were carried out under a nitrogen atmosphere. Solvents were distilled under nitrogen from calcium hydride (CH₂CN, CH₂Cl₂), magnesium chips (MeOH), or sodium/benzophenone (THF). DMF was used as HPLC grade without further drying. Iodomethane was washed with saturated aqueous solutions of Na₂S₂O₃ and NaHCO₃ and purified by distillation. All other reagents were purchased from Aldrich or ABCR and used without further purification. Column chromatography was performed with silica gel (230-400 mesh). ¹H, ¹³C, and ⁷⁷Se NMR spectra were recorded on a Bruker DRX (400 MHz), a Bruker DRX (500 MHz), and a Bruker Avance (500 MHz) spectrometer at ambient temperature. NMR standards used are as follows: (¹H NMR) DMSO-d₆ = 2.50 ppm, CDCl₃ = 7.26 ppm, CD₂Cl₂ = 5.32 ppm; (¹³C NMR) DMSO-d₆ = 39.52 ppm, CDCl₃ = 77.16 ppm, CD₂Cl₂ = 53.84 ppm; (⁷⁷Se NMR) external standard was SeMe₂ = 0.0 ppm. ¹H NMR data are reported as follows: chemical shift in ppm downfield from tetramethylsilane (δ scale), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), and integration. ¹³C NMR chemical shifts are reported in ppm downfield from tetramethylsilane (δ scale). ⁷⁷Se NMR chemical shifts are reported in ppm downfield from SeMe₂ (δ scale). IR spectra were obtained on a Bruker Alpha-P series FT-IR spectrometer. High-resolution mass spectra were recorded on a Finnigan LTQ-FT instrument using APCI technique.
2. Synthesis of Iridium Complexes

Scheme S1. Overview of the synthesis of the iridium(III) complex 7.

Iridium(III)-complex 7. Diiodo complex S3 (synthesized according to Scheme S1)$^{[1]}$ (30.0 mg, 31.4 μmol) was dissolved in DMF (4 mL), KSeCN (45.3 mg, 314 μmol) was added and the reaction mixture was stirred at room temperature for 12 h before the solvent was removed under reduced pressure. The resulting red solid was dissolved in acetone, adsorbed onto silica gel and subjected twice to silica gel chromatography (first column: toluene-acetone 4:1, second column: chloroform) to afford complex 7 (14.1 mg, 56%) as a bright orange solid. 1H NMR (400 MHz, DMSO-d_6): δ 11.39 (s, 1H), 9.29 (d, $J = 8.2$ Hz, 1H), 8.77 (d, $J = 7.8$ Hz, 1H), 8.56 (d, $J = 5.3$ Hz, 1H), 8.04 (dd, $J = 8.4$ Hz, $J = 5.4$ Hz, 1H), 7.51 (t, $J = 7.2$ Hz, 1H), 7.38 (t, $J = 7.5$ Hz, 1H), 7.09 (d, $J = 8.4$ Hz, 1H), 6.20-6.18 (m, 2H), 5.42-5.41 (m, 2H), 3.10-3.02 (m, 2H), 2.94-2.87 (m, 2H), 2.73-2.60 (m, 4H). 13C NMR (100 MHz, DMSO-d_6) δ 170.3, 169.8, 153.5, 148.9, 146.0, 142.8, 136.6, 130.9, 127.4, 125.3, 124.8, 124.0, 121.5, 120.5, 116.8, 116.5, 113.5, 113.0, 101.9, 90.2, 87.3, 31.6, 29.5. 77Se NMR (76 MHz, CDCl$_3$): δ 233.89. IR (film) ν (cm$^{-1}$) 3398, 3208, 3042, 2967, 1755, 1690, 1628, 1587, 1526, 1495, 1422, 1406, 1343, 1227, 1050, 1025, 1006, 821, 743, 709, 641, 499. HRMS (APCI) calcd. for C$_{26}$H$_{20}$IrN$_4$O$_2$Se$^+$ (M-SeCN)$^+$ 693.0276, found 693.0375.

Scheme S2. Overview of the synthesis of the iridium(III) complexes 10, 11, and 11Me. Complex 11 has been reported.[2]

Dichloro complex 10. Iodomethane complex S7[2] (16.9 mg, 19.9 μmol) was dissolved in THF (4 mL), TBACl (55.4 mg, 199 μmol) was added, and the reaction mixture was stirred at room temperature for 10 min before the solvent was removed under reduced pressure. The resulting red solid was kept at room temperature overnight and afterwards dissolved in CH₂Cl₂, adsorbed onto silica gel and subjected to silica gel chromatography (hexane-ethyl acetate 1:1) to afford complex 10 (11.1 mg, 76%) as a dark red solid. ^1H NMR (500 MHz, DMSO-d₆): δ 11.30 (s, 1H), 9.34 (d, J = 8.0 Hz, 1H), 8.84 (d, J = 5.0 Hz, 1H), 8.79 (d, J = 7.9 Hz, 1H), 8.02 (dd, J = 8.4 Hz, J = 5.3 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.64 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.37-7.35 (m, 1H), 7.30-7.28 (m, 1H), 7.22-7.20 (m, 2H), 7.17-7.15 (m, 1H), 7.12-7.10 (m, 2H), 7.06-7.03 (m, 2H), 6.76 (d, J = 8.7 Hz, 1H), 6.65 (d, J = 8.9 Hz, 1H), 6.27 (d, J = 8.9 Hz, 1H), 1.89 (s, 3H). ^13C NMR (100 MHz, DMSO-d₆) δ 170.5, 170.0, 153.3, 146.4, 145.8, 143.3, 142.4, 141.8, 141.7, 141.3, 136.3, 131.3, 128.7, 128.2, 127.5, 127.4, 127.3, 126.7, 126.7, 126.5, 124.6, 123.7, 122.7, 121.6, 120.0, 115.4, 114.8, 113.5, 87.0, 86.4, 84.4, 84.0, 7.3. IR (film) v (cm⁻¹) 3171, 3021, 2919, 2725, 2257,

1752, 1704, 1523, 1494, 1416, 1341, 1294, 1228, 1148, 1017, 816, 750, 638, 489. HRMS (APCI) calcd. for C_{34}H_{24}IrClN_{3}O_{2}^{+} (M+H)^{+} 734.1174, found 734.1185.

Iridium(III)-complex S8. Pyridocarbazole S4[1] (30.0 mg, 99.6 µmol), [IrCl(DBCOT)]_{2} (47.3 mg, 54.8 µmol) and K_{2}CO_{3} (9.6 mg, 69.7 µmol) were dried in vacuo for 30 min and then suspended in MeCN-MeOH (2:1, 5 mL). After 14 h stirring at room temperature the purple suspension was centrifuged (4000 rpm, 3 min, 4 °C) and washed with MeCN-MeOH (2:1, 2 mL) and Et_{2}O (2 mL) to obtain complex S6 (63.2 mg, 91%) as a purple solid. Because of solubility issues the crude material was carried on to the next step without further purification. Iridium(I)-complex S6 (63.0 mg, 90.4 µmol) was suspended in CH_{2}Cl_{2} (18 mL) and iodomethane (200 µL, 3.21 mmol) was added in the dark at room temperature. The reaction mixture was stirred in the dark for 120 h. The solvent was removed under reduced pressure and the crude product was adsorbed onto silica gel and subjected to silica gel chromatography using ethyl acetate-hexane 2:1 as eluent to afford comlex S8 (46.5 mg, 61%) as an intensive red solid. ^{1}H NMR (400 MHz, CDCl_{3}): δ 9.43 (dd, J = 8.3 Hz, J = 0.8 Hz, 1H), 9.00 (d, J = 7.6 Hz, 1H), 8.30 (d, J = 4.5 Hz, 1H), 7.70 (dd, J = 8.5 Hz, J = 5.3 Hz, 1H), 7.69-7.64 (m, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.48 (t, J = 7.3 Hz, 1H), 7.21-7.18 (m, 2H), 7.13-7.01 (m, 6H), 6.69 (d, J = 8.8 Hz, 1H), 6.44 (d, J = 8.6 Hz, 1H), 5.55 (d, J = 8.8 Hz, 1H), 3.30 (s, 3H), 2.17 (s, 3H). ^{13}C NMR (100 MHz, CDCl_{3}) δ 169.9, 169.2, 154.1, 147.3, 145.9, 144.1, 143.3, 142.3, 141.5, 139.9, 137.1, 131.7, 128.8, 128.5, 127.9, 127.8, 127.8, 127.1, 126.2, 126.0, 125.9, 124.1, 122.8, 122.6, 121.1, 117.2, 114.9, 112.8, 81.7, 79.8, 79.4, 78.2, 24.1, 18.9. IR (film) ν (cm⁻¹) 3017, 2921, 1755, 1700, 1585, 1496, 1440, 1412, 1378, 1334, 1249, 1230, 987, 744, 672, 611. HRMS (APCI) calcd. for C_{33}H_{25}IrN_{3}O_{2}^{+} (M-I)^{+} 712.1572, found 712.1569.

Iridium(III)-complex 11Me. Iridium(III)-complex S8 (26.0 mg, 31.0 µmol) was dissolved in THF (10 mL), cooled to 0 °C, and AgBF_{4} (9.1 mg, 46.5 µmol) was added. The reaction mixture was stirred for 5 min at 0 °C before KSeCN (8.0 mg, 62.0 µmol) was added and the suspension was
stirred for 1 h slowly warming up to room temperature. The solvent was removed under reduced pressure and the crude product was adsorbed onto silica gel and subjected to silica gel chromatography using ethyl acetate-hexane 2:1 as eluent to afford complex 11Me (20.4 mg, 81%) as an intensive red solid. 1H NMR (400 MHz, CD$_2$Cl$_2$): δ 9.47 (dd, $J = 8.4$ Hz, $J = 0.9$ Hz, 1H), 8.98 (d, $J = 8.0$ Hz, 1H), 8.18 (dd, $J = 5.3$ Hz, $J = 0.8$ Hz, 1H), 7.90 (dd, $J = 8.4$ Hz, $J = 5.3$ Hz, 1H), 7.68-7.63 (m, 1H), 7.52-7.46 (m, 2H), 7.28-7.19 (m, 4H), 7.14-7.10 (m, 4H), 6.94 (d, $J = 8.6$ Hz, 1H), 6.50 (d, $J = 8.7$ Hz, 1H), 5.99 (d, $J = 8.8$ Hz, 1H), 5.60 (d, $J = 8.9$ Hz, 1H), 3.28 (s, 3H), 1.99 (s, 3H). 13C NMR (100 MHz, CD$_2$Cl$_2$) δ 169.9, 169.4, 153.7, 147.3, 143.5, 143.1, 142.7, 142.4, 142.1, 141.1, 137.5, 131.7, 129.1, 128.9, 128.3, 128.3, 127.9, 127.8, 127.7, 127.5, 127.2, 126.3, 124.5, 123.6, 123.2, 121.4, 117.5, 116.1, 112.8, 105.2, 84.6, 84.3, 82.4, 79.7, 24.2, 15.6. 77Se NMR (76 MHz, CDCl$_3$): δ 59.43. IR (film) ν (cm$^{-1}$) 3061, 3016, 2922, 2111, 1756, 1700, 1586, 1474, 1412, 1379, 1335, 1230, 988, 904, 743, 672. HRMS (APCI) calcd. for C$_{35}$H$_{25}$IrN$_3$O$_2$ (M-SeCN)$^+$ 712.1572, found 712.1575.
3. Proof of Purity of Iridium Complex 11 and Proton Assignment

1H-NMR of complex 11:

![NMR Spectrum]

![Chemical Structure]
13C-NMR of complex 11:

77Se-NMR of complex 11:
HPLC chromatograph of complex 11:

Complex 11 was eluted with a normal phase silica gel column (Merck Purospher STAR, LiChroCART 250 x 4.6 mm, Si, 5 µm) on an Agilent 1200 Series HPLC system with quaternary pump. Flow rate: 0.75 mL/min; with UV-detection: 520 nm; gradient: 10 min hexanes/acetone 70:30, then over 10 min gradient to hexanes/acetone 50:50.

Result: Purity of complex 11 > 98%.

Figure S1. HPLC trace of complex 11.
4. Biological Experiments

4.1. Protein Kinase Inhibition Properties of Complexes 11 and 11Me

Kinases (VEGFR3, Pim1) and substrates (Jak3tide, S6) were purchased from Millipore, or MoBiTec. Assays for VEGFR3 (human) and Pim1 (human): Various concentrations of inhibitor were incubated at room temperature in 20 mM MOPS/NaOH, 10 mM Mg(OAc)$_2$, 10% DMSO (resulting from the inhibitor stock solution), pH 7.0, in presence of substrate (JAK3tide for VEGFR3: 100 µM, S6 for Pim1: 50 µM) and kinase (VEGFR3: 8.8 nM, Pim1: 1.6 nM) that was diluted with 20 mM MOPS/NaOH, 1mM EDTA, 0.01% Brij-35, 5% glycerol, 0.1% 2-mercaptoethanol and 1mg/mL BSA. After 45 min, the reaction was initiated by adding ATP to a final concentration of 100 µM, including approximately 0.1 µCi/µL [γ-33P]ATP. Reactions were performed in a total volume of 25 µL. After 180 min for VEGFR3 and 45 min for Pim1, the reaction was terminated by spotting 17.5 µL on a circular P81 phosphocellulose paper (diameter 2.1 cm, Whatman) followed by washing four times (five minutes each wash) with 0.75% phosphoric acid and twice with acetone. The dried P81 papers were transferred to a scintillation vial, 5 mL of scintillation cocktail were added and the counts per minute (CPM) determined with a Beckmann Coulter™ LS6500 Multi-Purpose Scintillation Counter. IC$_{50}$ values were defined to be the concentration of inhibitor at which the CPM was 50% of the control sample, corrected by the background. All measurements were performed two times in duplicate.

Table S1. IC$_{50}$ values of 11 and 11Me against VEGFR3 and Pim1.[a]

<table>
<thead>
<tr>
<th>Complex</th>
<th>VEGFR3</th>
<th>Pim1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11Me</td>
<td>4.6 µM</td>
<td>>30 µM</td>
</tr>
<tr>
<td>11</td>
<td>42 nM$^{[2]}$</td>
<td>333 nM$^{[2]}$</td>
</tr>
</tbody>
</table>

[a] Measured at 100 µM ATP.
4.2. Cell Culture Experiments

Human HeLa cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich) and 1% of a mixture of penicillin and streptomycin (10000 Units penicillin and 10 mg/mL streptomycin, Sigma-Aldrich). Cells were maintained in 25 cm² flasks in a 5% CO₂-humidified atmosphere at 37°C. Passage takes place every 2–3 days.

4.3. Cell Viability Assays

The toxicity of the photoactivated compounds was determined using the MTT cell viability assay. For this purpose the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Invitrogen) was dissolved in phosphate buffered saline (5 mg/ml) and further diluted in culture medium (1:11). 24 h after the addition of the metal complexes the culture medium with the dissolved inhibitors was removed from the cells and replaced by 200 µL diluted MTT reagent. After 3 h of incubation at 37 °C and 5% CO₂, 155 µL of the dilution were rejected and 90 µL of DMSO were added. To completely dissolve the Formazan salts plates were incubated for 10 min on a shaker and afterwards quantified by measuring the absorbance at 535 nm with a Spectramax M5 microplate reader (Molecular Devices). The cell viability was calculated as percentage of untreated control cells. All indicated values concerning cell viability are average values of 18 individual wells prepared in two independent experiments.

4.4. Determination of Photoinduced Cytotoxicities

For the investigation of photoinduced cytotoxicity of the metal complexes, cells were cultured in 96 well plates in a number of 9000 cells per well. After an initial incubation period of 24 h at 37 °C and 5% CO₂, the designated metal compound was added. For this purpose the inhibitor dissolved in DMSO (Sigma-Aldrich) was first diluted in culture medium to the desired concentration and then transferred into the culture plate. The amount of DMSO was kept constant at 1% for all tests.
Before irradiation the inhibitor treated cells were incubated in the dark for 1 h. Irradiation takes place by a Hg/Xe arc lamp from Newport. To better understand the photoactivity of our compounds we used different light transmission ranges with lower wavelength borders from 330-505 nm. This transmission ranges were determined with sorting filters from Newport. After the irradiation, cells were put back into the incubator until the next day. 24 h after the addition of the complexes, the photoinduced cytotoxicity of the compounds was determined using the MTT cell viability assay.

4.5. Photoinduced Cytotoxicity of Complex 11 after Medium Exchange

In order to investigate the contribution of intracellular compound 11 on the photoactivated cytotoxic effect, the culture medium with the dissolved complex 11 (1 µM) was removed after 1 h of incubation and replaced by fresh medium. Subsequently, the cells were irradiated with light (λ ≥ 450 nm) for 1 h. Cytotoxicity was determined 24 h after compound administration by the MTT assay which revealed a significant cytotoxicity of complex 11 in the experiment with medium exchange.

![Figure S2. Comparison of photoinduced cytotoxicity of complex 11 with and without medium exchange before irradiation.](image-url)
4.6. Caspase 3/7 Assays

Measuring the activity of caspases is a current approach to detect apoptosis in cell culture. In this study the activity of the caspases 3 and 7 was determined using the Apo-ONE® Homogeneous Caspase-3/7 Assay from Promega. 18,000 cells/well were cultured on opaque 96 well plates and incubated for 24 h at 37 °C and 5% CO₂. Compound 11 was diluted in culture medium to a concentration of 1 µM with a final DMSO concentration of 1%. At the end of the incubation period the existing culture medium was removed and 100 µl of the diluted complex 11 were added. After 1 h of incubation in the dark samples were irradiated for 45 min (λ ≥ 450 nm). 5 h after the irradiation lysis buffer and the precursor of the fluorescent dye (Z-DEVD-R110) from Promega were added according to the supplier’s instruction in a 100:1 mixture. After an incubation of 1 h on an orbital shaker and an additional incubation for 8 h in the dark, fluorescence was detected at the microplate reader (Spectramax M5, Molecular Devices) (Ex 490 nm / Em 525 nm). In the presence of active caspases 3 and 7 the protecting peptides (DEVD) of the non-fluorescent precursor are cleaved releasing the fluorescent leaving group rhodamine 110. The results indicate a nearly 3-fold increase in the fluorescence for cells treated with complex 11 and light compared to the irradiated control without 11. Because the fluorescence signal is proportional to the caspase activity, these results suggest a significant increase in the activity of these enzymes after addition and photoactivation of 11. Based on this fact we conclude that the photoinduced cytotoxicity we see for compound 11 is the result of an apoptotic cell response.
Figure S3. Photoinduced apoptosis with iridium complex 11. Determination of the activity of the caspases 3 and 7 in HeLa cells 5 h after the addition of 1 µM of inhibitor 11 and the following period of 45 min irradiation at a lower transmission range of 450 nm. Caspase activity was measured by the Apo-ONE® Homogeneous Caspase-3/7 Assay from Promega according to the supplier’s instruction. The determined fluorescent signal is proportional to the caspase activity. The illustrated results represent average values of three independent measurements. Error bars indicate standard deviations.

4.7. Propidium Iodide Staining and Flow Cytometry

Apoptosis and cell cycle progression was observed through propidium iodide (PI)-staining of the cells and following flow cytometry. HUVEC cells were plated in twelve-well plates (8 x 10^4 cells per well) with EBM-2 medium (Lonza, Walkersville, USA) and incubated for 24 hours. After treating the cells with 5 µM of 11 or 11Me for 24 hours, respectively, floating and attached cells were harvested, centrifugated, and resuspended in a hypotonic solution containing 0.1 % sodium citrate, 0.1 % Triton X-100, and 50 µg/mL propidium iodide. Cells were incubated with PI solution for at least 1 hour on ice before analyzing them with Attune acoustic focusing cytometer (Applied Biosystems, Carlsbad, USA).
4.8. 3D-Angiogenesis Assays

Microvascular endothelial cells are known to build 3-dimensional capillary-like structures in a gel-matrix based in vitro assay. We took advantage of this ability to demonstrate the anti-angiogenic properties of compound \(\text{11} \). Human Umbilical Vein Endothelial Cells (HUVEC) embedded in a collagen matrix were purchased from PromoCell in a ready-to-use assay kit. These cells that exist as small aggregates of 400-500 cells called spheroids were treated with compound \(\text{11} \) and \(\text{11Me} \) (3 \(\mu \text{M} \) or 5 \(\mu \text{M} \)) diluted in culture medium and stimulated by the administration of 25 ng/mL VEGF. Afterwards the assay plate was placed in a humidified incubator at 37 °C and 5% CO\(_2\) for 48 h. The concentration of DMSO was 1% for all tests. After 48 h the cumulative sprout length of randomly selected spheroids was determined by light microscopy (Axiovert 200M, Zeiss). The results of the positive and negative control are each based on 10 individual spheroids while the average cumulative sprout length of the samples treated with \(\text{11} \) and \(\text{11Me} \) are based on 24 and 23 evaluated spheroids.

4.9. ROS Experiments

The presence of reactive oxygen species (ROS) after photosensitization was tested by the fluorescent dye carboxy-H\(_2\)DCFDA \{5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate\}. HeLa cells were cultured in a black 96 well plate with optical bottom in a number of 18,000 cells per well. After an initial incubation time of 24 h, the culture medium was replaced by 100 \(\mu \text{l} \) phosphate buffered saline (PBS + Ca\(^{2+}\)/Mg\(^{2+}\)) (Invitrogen) supplemented with 10 \(\mu \text{M} \) carboxy-H\(_2\)DCFDA (Invitrogen), 1 \(\mu \text{M} \) of compound \(\text{11} \) and 1% DMSO. After 30 min, cells were washed twice with PBS and maintained in medium for the following 45 min irradiation at a lower wavelength border of 450 nm. Immediately after irradiation, fluorescence readings were performed with a Spectramax M5 microplate reader (Molecular Devices) at an excitation wavelength of 495 nm and emission wavelength of 529 nm. The non-fluorescent carboxy-H2DCFDA permeates live cells and is deacetylated by nonspecific intracellular esterases. In the presence of nonspecific ROS
the reduced fluorescein compound is oxidized and emits bright green fluorescence. Our measurements exhibited a low fluorescent signal in cells treated with 11 which significantly increased after irradiation. However, the irradiation of cells without 11 showed nearly the same increase which leads to the conclusion that most of the generated ROS is due to the irradiation with light and is not induced by the photoactivation of 11. Because we know that the irradiation with visible light of $\lambda \geq 450$ nm does not induce cell death, we further conclude that the photoinduced cytotoxicity we detected for 11 has nothing to do with an increased intracellular ROS level.

Figure S4. Detection of reactive oxygen species (ROS) in inhibitor treated, light treated, and inhibitor plus light treated HeLa cells. Cells were preincubated with 10 µM carboxy-H$_2$DCFDA and 1 µM of compound 11 followed by 45 min irradiation ($\lambda \geq 450$ nm). The cells of the negative control were treated with an adequate amount of medium plus 1% DMSO. As a positive control cells were incubated 45 min with 1 mM tert-butylhydroperoxide (TBHP). The fluorescent signal of the oxidized reagent carboxy-DCF is proportional to the amount of ROS in the sample. All test conditions were measured six times in quadruplicate. Error bars indicate standard deviations.