Productivity enhancement of C=C bioreduction by coupling the in situ substrate feeding product removal technology with isolated enzymes

Elisabetta Brenna, Francesco G. Gatti,* Daniela Monti,* Fabio Parmeggiani and Alessandro Sacchetti

a Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milano, Italy

b Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Milano, Italy

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Contents

General methods ... S2
Experimental procedure for biocatalysed reductions .. S3
Experimental procedures for the overexpression of the enzymes in E. coli BL21 (DE3) S4
Characterization data of compound 1b .. S5
Characterization data of compound 2b .. S6
Characterization data of compound 3b .. S7
Characterization data of compound 4c .. S8
Representative chiral GC/HPLC chromatograms ... S9

* Corresponding authors.
Address: Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Piazza Leonardo Da Vinci 32, 20131, Milano, Italy. Telephone: +39 02 23993070. Fax: +39 02 23993180. E-mail: francesco.gatti@polimi.it or alessandro.sacchetti@polimi.it.
Address: Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131, Milano, Italy. Telephone: +39 02 2850038. Fax: +39 02 28901239. E-mail: daniela.monti@icrm.cnr.it.
General methods

Materials. All chemical reagents and solvents were purchased from Sigma-Aldrich and used without further purification. With the only exception of horse liver alcohol dehydrogenase (HLADH, purchased from Sigma-Aldrich), all the enzymes employed were overexpressed in Escherichia coli BL21 (DE3) strains harboring a specific plasmid prepared according to standard molecular biology techniques: pET30a-OYE2 and pET30a-OYE3 from Saccharomyces cerevisiae BY4741 and pKTS-GDH from Bacillus megaterium DSM509.¹

Analytical methods. GC-MS analyses were performed on an Agilent HP 6890 gas-cromatograph equipped with a 5973 mass detector and an Agilent HP-5 (30 m × 0.25 mm × 0.25 μm) column. Method: 60°C (1 min) / 6°C/min / 150°C (1 min) / 12°C/min / 280°C (5 min). Chiral GC analyses of compounds 1b, 3b, 4b were performed on a DANI HT 86.10 gas-chromatograph equipped with a Varian Chirasil-Dex CB (25 m × 0.25 mm) column. Method for compound 1b: 75°C (1 min) / 3°C/min / 119°C (17 min) / 30°C/min / 180°C (5 min). Method for compounds 3b and 4b: 60°C (1 min) / 2°C/min / 150°C (10 min) / 30°C/min / 180°C (5 min). Chiral GC analyses of compound 2b were performed on an Agilent HP 6890 gas-chromatograph equipped with a Mega DACtBSil.BetaCDX (25 m × 0.25 mm × 0.25 μm) column. Method: 60°C (3 min) / 3°C/min / 180°C (2 min) / 30°C/min / 220°C (5 min). Chiral HPLC analyses were performed on a Merck-Hitachi L-4250 chromatograph equipped with a Chiralcel OD column and UV detector (210 nm). For compound 1c: mobile phase n-hexane/i-PrOH 98:2, flow rate 0.6 mL/min. For the methyl ester prepared from 1b: mobile phase n-hexane/i-PrOH 99:1, flow rate 0.6 mL/min. For compound 2c: mobile phase n-hexane/i-PrOH 98:2, flow rate 0.6 mL/min. For compounds 3c and 4c: mobile phase n-hexane/i-PrOH 97:3, flow rate 1.0 mL/min. ¹H and ¹³C NMR spectra were recorded on a Bruker ARX 400 spectrometer (400 MHz ¹H, 100.6 MHz ¹³C) in CDCl₃ solution at r.t., using TMS as internal standard for ¹H and CDCl₃ for ¹³C; chemical shifts δ are expressed in ppm relative to TMS, J values are given in Hz. Optical rotations were determined on a Dr. Kernchen Propol digital automatic polarimeter and are expressed in ° cm³ g⁻¹ dm⁻¹. TLC analyses were performed on Merck Kieselgel 60 F₂₅₄ plates. Protein concentration was determined with the Bio-Rad Protein Assay reagent according to Bradford,² using bovine serum albumine (BSA) as a standard.

Experimental procedures for the biocatalysed reductions

Baker’s yeast-mediated bioreduction

Method A (homogenous phase). To a mechanically stirred mixture of commercial baker’s yeast (250 g) in tap water (1 L) at 30°C, was added a solution of glucose (50 g) in water (100 mL). After 1 hour the substrate 1a (1 g) was added in one portion. The vigorous stirring was continued for 4 days. During that time more baker’s yeast (100 g) and glucose (20 g) were added after 24 and 48 hours. Then, the mixture was filtered on a celite pad and the aqueous phase was extracted with EtOAc (4 × 250 mL). The combined organic phase was concentrated under reduced pressure to afford a brownish oil that was dissolved in CH₂Cl₂ (150 mL). To this solution, after washing with brine (2 × 100 mL) and drying over Na₂SO₄, activated MnO₂ (20 g) was added. After complete conversion of the residual allylic alcohol to the corresponding aldehyde (checked by TLC), the MnO₂ was removed by filtration and the solution was concentrated under reduced pressure. The residue was submitted to column chromatography purification using n-hexane/EtOAc (9:1) as eluent to give, in order of elution, the starting material and the corresponding saturated alcohol.

Method B (SFPR technology). The same procedure of Method A is followed. The substrate 1a-4a adsorbed on XAD 1180 resin (for substrate loading and Xr/s see Table 1) was added in one portion. After 48 h, the mixture was filtered on a sintered glass funnel (porosity 0, >165 μm) and the aqueous phase was extracted again with more resin (10 g). The combined resin crops were washed with acetone (100 mL) and EtOAc (4 × 100 mL). The work-up was carried out as described above.

Enoate reductases-mediated bioreduction

Method A (OYEs). The substrate 1a-4a either dissolved in DMSO or adsorbed on XAD 1180 resin (for substrate loading and Xr/s see Table 1) was added to a solution of glucose (4 eq. with respect to 1a-4a), NADP⁺ (0.1 mM), GDH (4 U mL⁻¹) and OYE (150 μg mL⁻¹) in phosphate buffer (1.0÷10.0 mL, 50 mM, pH 7.0). The mixture was stirred for 12 h in an orbital shaker (160 rpm, 30°C). The solution was decanted and both the resins and the aqueous phase were extracted with EtOAc (2 × 0.5 mL/mL aq), centrifuging after extraction (15000 g, 1.5 min). The combined organic solutions were dried over Na₂SO₄ and concentrated under reduced pressure, yielding the saturated aldehyde or a mixture of saturated aldehyde and starting material. Reactions in optimized conditions were scaled up to preparative scale (50÷150 mg) for product characterization and determination of isolated yields.

Method B (OYEs+HLADH). The same procedure of Method A is followed, adding HLADH (2 U mL⁻¹) and NAD⁺ (0.1 mM) to the reaction mixture.
Experimental procedure for the overexpression of the enzymes in *E. coli* BL21 (DE3)

A 5 mL culture in LB medium containing the appropriate antibiotic (50 μg mL⁻¹ kanamycin for pET-30a, 100 μg mL⁻¹ ampicillin for pKTS) was inoculated with a single colony from a fresh plate and grown overnight at 37°C and 220 rpm. This starter culture was used to inoculate a 200 mL culture, which was in turn grown overnight at the same conditions and used to inoculate a 1.5 L culture. The latter was shaken at 37°C and 220 rpm until OD₆₀₀ reached 0.4-0.5 and then enzyme expression was induced by adding 0.1 mM IPTG (50 ng mL⁻¹ anhydrotetracycline was also added in the case of the pKTS-GDH plasmid). After 5-6 h the cells were harvested by centrifugation (5000 g, 20 min, 4°C), resuspended in 50 mL of lysis buffer (20 mM phosphate buffer pH 7.0, 300 mM NaCl, 10 mM imidazole) and homogenized (Haskel high-pressure homogenizer). The cell-free extract, after centrifugation (20000 g, 20 min, 4°C), was chromatographed on IMAC stationary phase (Ni-Sepharose Fast Flow, GE Healthcare) with a mobile phase composed of 20 mM phosphate buffer, pH 7.0, 300 mM NaCl and a 10-300 mM imidazole gradient. Protein elution was monitored at 280 nm, the fractions were collected according to the chromatogram and dialyzed twice against 1.0 L of 20 mM phosphate buffer pH 7.0 (12 h each, 4°C) to remove imidazole and salts. Purified protein aliquots were stored frozen at –80°C.
(S)-2-methoxy-3-(4-methoxyphenyl)propanal (1b)

$^{[\alpha]}_D^{20} = -21.6$ (c 1.14, CHCl$_3$), ee 94%; 1H NMR (400 MHz, CDCl$_3$) δ ppm 9.68 (d, $J = 1.8$ Hz, 1 H), 7.15 (d, $J = 8.5$ Hz, 2 H), 6.85 (d, $J = 8.5$ Hz, 2 H), 3.80 (s, 3 H), 3.76 (ddd, $J = 7.6, 5.2, 2.2$ Hz, 1 H), 3.42 (s, 3 H), 2.79-3.01 (m$_{AB}$, 2 H). 13C NMR (100 MHz, CDCl$_3$) δ ppm 203.3, 158.5, 130.3, 128.3, 113.9, 86.6, 58.5, 55.2, 35.5. HRMS (ESI) calcd for C$_{11}$H$_{14}$O$_3$ 194.0943, found 194.0941.
(S)-2-benzylpentanal (2b)

\([\alpha]_D^{20} = -7.0\ (c\ 1.1,\ CHCl_3),\ ee\ 90\%;\)\n
\(^1\mathrm{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) ppm 9.59 (d, \(J = 2.5\) Hz, 1 H), 7.06-7.27 (m, 5 H), 2.78 (m, 2 H), 2.51-2.60 (m, 1 H), 1.17-1.63 (m, 4 H), 0.83 (t, \(J = 7.6\) Hz, 3 H). \(^{13}\mathrm{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) ppm 204.6, 138.9, 128.9, 128.5, 126.3, 53.2, 35.1, 30.8, 20.2, 14.0. HRMS (ESI) calcd for C\(_{12}\)H\(_{16}\)O 176.1201, found 176.1199.
(S)-5-methoxy-1,2,3,4-tetrahydronaphthalene-2-carbaldehyde (3b)

$[\alpha]_D^{20} = -5.0$ (c 1.0, CHCl$_3$), ee 73%; 1H NMR (400 MHz, CDCl$_3$) δ ppm 9.79 (d, $J = 1.2$ Hz, 1 H), 7.11 (t, $J = 8.0$ Hz, 1 H), 6.76 (d, $J = 7.4$ Hz, 1 H), 6.68 (d, $J = 7.8$ Hz, 1 H), 3.81 (s, 3 H), 2.87-3.01 (m, 3 H), 2.56-2.70 (m, 2 H), 2.19-2.28 (m, 1 H), 1.68-1.80 (m, 1 H). 13C NMR (100 MHz, CDCl$_3$) δ ppm 203.9, 157.2, 135.6, 126.3, 124.9, 121.4, 107.3, 55.2, 46.6, 28.7, 22.7, 22.0. HRMS (ESI) calcd for C$_{12}$H$_{14}$O$_2$ 190.0994, found 190.0991.
(S)-(5-methoxychroman-3-yl)methanol (4c)

\[\alpha \]D\textsubscript{20} = -6.2 (c 1.17, CHCl\textsubscript{3}), ee 98%; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) ppm 7.05 (t, \(J = 8.2 \) Hz, 1 H), 6.48 (d, \(J = 8.2 \) Hz, 1 H), 6.42 (d, \(J = 8.2 \) Hz, 1 H), 4.27 (ddd, \(J = 10.7, 3.1, 1.4 \) Hz, 1 H), 3.95 (dd, \(J = 10.7, 7.7 \) Hz, 1 H), 3.81 (s, 3 H), 3.73 (dd, \(J = 10.8, 5.8 \) Hz, 1 H), 3.64 (dd, \(J = 10.8, 7.8 \) Hz, 1 H), 2.79 (dd, \(J = 17.1, 6.0 \) Hz, 1 H), 2.38 (dd, \(J = 17.1, 7.8 \) Hz, 1 H), 2.29-2.19 (m, 1 H), 1.62 (br s, 1H). 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta \) ppm 158.2, 155.4, 126.9, 110.2, 109.4, 102.0, 67.3, 63.6, 55.4, 34.4, 21.9. HRMS (ESI) calcd for C\textsubscript{11}H\textsubscript{14}O\textsubscript{3} 194.0943, found 194.0948.
Representative GC/HPLC chromatograms

Methyl (S)-2-methoxy-3-(4-methoxyphenyl)propanoate (prepared from 1b), ee 94% by HPLC

(S)-2-benzylpentanal (2b), ee 90% by GC

(S)-5-methoxy-1,2,3,4-tetrahydronaphthalene-2-carbaldehyde (3b), ee 83% by GC

(S)-(5-methoxochroman-3-yl)methanol (4c), ee 98% by HPLC