Supporting Information

Feijun Wang,*a Mingliang Qu,a Feng Chen,*a Li Li,a and Min Shi*a,b

1Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, and 130 MeiLong Road, Shanghai 200237, People’s Republic of China, and 2State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People’s Republic of China

feijunwang@ecust.edu.cn, Mshi@mail.sioc.ac.cn

CONTENTS

General remarks...S2
General procedure for the Me₃SiI-promoted reaction of salicylic aldehyde with β-dicarbonyl compound...S3
Reference..S18
General remarks. Dichloromethane was freshly distilled from calcium hydride; THF and toluene were distilled from sodium (Na) under argon (Ar) atmosphere. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. 1H NMR and 13C NMR spectra were recorded on a Bruker AM-300 or AM-400 spectrophotometers. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm$^{-1}$. Flash column chromatography was performed using 300-400 mesh silica gel. For thin-layer chromatography (TLC), silica gel plates (Huanghai GF$_{254}$) were used. Mass spectra were recorded by EI and ESI, and HRMS were measured on a HP-5989 instrument.
General procedure for the Me$_3$Si-promoted reaction of salicylic aldehyde with β-dicarbonyl compound.

To a stirred mixture of Me$_3$SiCl (5.0 mmol), NaI (5.0 mmol), β-dicarbonyl compound 1 (1.0 mmol) and CH$_3$CN (5 mL) was added salicylic aldehyde 2 (1.0 mmol) at ice-bath temperature. The reaction mixture was stirred at room temperature for 24 h. After addition of aqueous Na$_2$S$_2$O$_4$ to the reaction mixture, the organic layer was extracted with dichloromethane, washed with brine, dried over MgSO$_4$, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel to obtain the 4H-benzopyran 3.

Ethyl 2-methyl-4H-chromene-3-carboxylate 3aa.1

Yellow liquid; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 1.33 (t, $J = 7.2$ Hz, 3H), 2.38 (s, 3H), 3.60 (s, 2H), 4.23 (dd, $J = 7.6$, 14.4 Hz, 2H), 6.90 (dd, $J = 1.2$, 8.4 Hz, 1H), 7.02 (dt, $J = 1.2$, 7.2 Hz, 1H), 7.09-7.16 (m, 2H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 14.4, 19.2, 24.8, 60.1, 100.9, 116.0, 120.5, 124.0, 127.5, 128.7, 150.1, 160.6, 167.6; MS (ESI) m/z (%): 219.1 (M + H, 100); HRMS (Micromass LCT) Calcd. for C$_{13}$H$_{15}$O$_3$: 219.1021; Found: 219.1023.
Ethyl 8-methoxy-2-methyl-4H-chromene-3-carboxylate 3ab.

Yellow solid; Mp. 95.3-995.8 °C; 1H NMR (400 MHz, CDCl₃, TMS) δ 1.32 (t, J = 7.2 Hz, 3H), 2.44 (s, 3H), 3.60 (s, 2H), 3.87 (s, 3H), 4.23 (dd, J = 7.2, 14.4 Hz, 2H), 6.69 (d, J = 7.6 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 6.96 (t, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CDCl₃, TMS) δ 14.2, 19.0, 24.7, 55.7, 59.9, 100.7, 109.8, 120.1, 121.3, 123.6, 139.5, 147.3, 160.2, 167.3; MS (ESI) m/z (%): 249.1 (M + H, 100); HRMS (Micromass LCT) Calcd. for C_{14}H_{17}O₄: 249.1127; Found: 249.1135.
Ethyl 7-(diethylamino)-2-methyl-4H-chromene-3-carboxylate 3ac.

Yellow liquid; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 1.15 (t, $J = 7.2$ Hz, 6H), 1.32 (t, $J = 6.8$ Hz, 3H), 2.37 (s, 3H), 3.31 (t, $J = 7.2$ Hz, 4H), 3.48 (s, 2H), 4.21 (dd, $J = 7.6$, 14.4 Hz, 2H), 6.22 (t, $J = 2.0$ Hz, 1H), 6.40 (dd, $J = 2.4$, 8.4 Hz, 1H), 6.92 (t, $J = 8.8$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 12.3, 14.1, 19.1, 23.7, 44.2, 59.7, 98.8, 101.1, 106.7, 108.2, 128.9, 147.3, 150.7, 160.2, 167.7; MS (ESI) m/z (%): 290.2 (M + H, 78); HRMS (Micromass LCT) Calcd. for C$_{17}$H$_{24}$NO$_3$: 290.1756; Found: 290.1752.
Ethyl 6-methoxy-2-methyl-4H-chromene-3-carboxylate 3ad.

Yellow liquid; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 1.32 (t, $J = 6.8$ Hz, 3H), 2.37 (s, 3H), 3.58 (s, 2H), 3.76 (s, 3H), 4.22 (dd, $J = 7.2$, 14.4 Hz, 2H), 6.61 (d, $J = 2.8$ Hz, 1H), 6.68 (dd, $J = 2.8$, 9.2 Hz, 1H), 6.84 (d, $J = 8.4$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 14.2, 19.1, 25.0, 55.3, 59.8, 99.7, 112.7, 113.0, 116.6, 121.1, 144.0, 155.8, 160.6, 167.5; MS (ESI) m/z (%): 249.1 (M + H, 100); HRMS (Micromass LCT) Calcd. for C$_{14}$H$_{17}$O$_4$: 249.1127; Found: 249.1130.
Ethyl 6-chloro-2-methyl-4H-chromene-3-carboxylate 3ae.

Yellow liquid; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 1.32 (t, J = 7.6 Hz, 3H), 2.37 (s, 3H), 3.57 (s, 2H), 4.23 (dd, J = 7.2, 14.0 Hz, 2H), 6.83 (d, J = 8.4 Hz, 1H), 7.08-7.10 (m, 2H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 14.3, 19.2, 24.7, 60.4, 100.5, 117.3, 122.2, 127.5, 128.4, 128.7, 148.6, 160.5, 167.4; MS (ESI) m/z (%): 253.1 (M + H, 65); HRMS (Micromass LCT) Calcd. for C$_{13}$H$_{14}$ClO$_3$: 253.0631; Found: 253.0632.
Ethyl 6-bromo-2-methyl-4H-chromene-3-carboxylate 3af.

Red liquid; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 1.32 (t, J = 7.2 Hz, 3H), 2.37 (s, 3H), 3.57 (s, 2H), 4.22 (dd, J = 6.8, 14.0 Hz, 2H), 6.78 (d, J = 9.2 Hz, 1H), 7.23-7.24 (m, 2H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 14.3, 19.1, 24.6, 60.3, 100.7, 116.2, 117.7, 122.7, 130.4, 131.4, 149.3, 160.3, 167.3; MS (ESI) m/z (%): 297.0 (M + H, 89); HRMS (Micromass LCT) Calcd. for C$_{13}$H$_{14}$BrO$_3$: 297.0126; Found: 297.0133.
Ethyl 6-iodo-2-methyl-4H-chromene-3-carboxylate 3ag.

Yellow liquid; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 1.32 (t, J = 7.2 Hz, 3H), 2.36 (s, 3H), 3.56 (s, 2H), 4.23 (dd, J = 7.2, 14.4 Hz, 2H), 6.66 (d, J = 9.2 Hz, 1H), 7.42 (s, 2H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 14.3, 19.2, 24.4, 60.3, 68.7, 100.9, 118.2, 123.3, 136.4, 137.4, 150.1, 160.3, 167.3; MS (ESI) m/z (%): 345.0 (M + H, 100); HRMS (Micromass LCT) Calcd. for C$_{13}$H$_{14}$IO$_3$: 344.9988; Found: 344.9995.
Ethyl 2-methyl-6-nitro-4H-chromene-3-carboxylate 3ah.

White solid; Mp. 110.5-111.2 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), TMS) \(\delta\) 1.34 (t, \(J = 7.2\) Hz, 3H), 2.41 (s, 3H), 3.69 (s, 2H), 4.25 (dd, \(J = 7.2, 14.4\) Hz, 2H), 7.01 (d, \(J = 9.6\) Hz, 1H), 8.04-8.06 (m, 2H); \(^1\)\(^3\)C NMR (100 MHz, CDCl\(_3\), TMS) \(\delta\) 14.3, 18.9, 24.8, 60.6, 101.4, 116.8, 121.8, 123.7, 124.8, 154.8, 159.8, 166.7; MS (ESI) \(m/z\) (%): 264.1 (M + H, 90); HRMS (Micromass LCT) Calcd. for C\(_{13}\)H\(_{14}\)NO\(_5\): 264.0872; Found: 264.0874.
Ethyl 8-hydroxy-2-methyl-6-nitro-4H-chromene-3-carboxylate 3ai.

White solid; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 1.35 (t, J = 7.6 Hz, 3H), 2.46 (s, 3H), 3.68 (s, 2H), 4.26 (dd, J = 7.2, 14.0 Hz, 2H), 5.82 (br s, 1H), 7.62 (s, 1H), 7.67 (s, 1H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 14.3, 18.8, 24.8, 60.8, 102.4, 109.8, 115.7, 121.5, 142.5, 144.0, 158.8, 166.6; MS (ESI) m/z (%): 280.1 (M + H, 56); HRMS (Micromass LCT) Calcd. for C$_{13}$H$_{14}$NO$_6$: 280.0821; Found: 280.0823.
Ethyl 6,8-dichloro-2-methyl-4H-chromene-3-carboxylate 3aj.

Yellow solid; Mp. 120.5-121.1 °C; 1H NMR (400 MHz, CDCl₃, TMS) δ 1.32 (t, $J = 7.6$ Hz, 3H), 2.40 (s, 3H), 3.54 (s, 2H), 4.23 (dd, $J = 6.8$, 14.4 Hz, 2H), 6.93 (s, 1H), 7.15 (s, 1H); 13C NMR (100 MHz, CDCl₃, TMS) δ 14.2, 18.9, 25.0, 60.4, 101.1, 122.1, 123.4, 126.7, 127.9, 128.4, 144.8, 160.0, 166.7; MS (ESI) m/z (%): 287.0 (M + H, 100); HRMS (Micromass LCT) Calcd. for C₁₃H₁₃Cl₂O₃: 287.0242; Found: 287.0244.
Ethyl 6-bromo-8-methoxy-2-methyl-4H-chromene-3-carboxylate 3ak.

Red solid; Mp. 187.1-187.6 °C; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 1.32 (t, $J = 7.2$ Hz, 3H), 2.41 (s, 3H), 3.53 (s, 2H), 3.84 (s, 3H), 4.22 (dd, $J = 7.2, 14.8$ Hz, 2H), 6.81 (d, $J = 2.0$ Hz, 1H), 6.83 (d, $J = 2.0$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 14.3, 19.1, 24.6, 56.1, 60.2, 100.7, 113.4, 115.8, 122.8, 123.0, 138.8, 148.1, 160.1, 167.2; MS (ESI) m/z (%): 327.0 (M + H, 90); HRMS (Micromass LCT) Calcd. for C$_{14}$H$_{16}$BrO$_4$: 327.0232; Found: 327.0239.
1-(2-Methyl-4H-chromen-3-yl)ethanone 3ba.²

Yellow liquid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 2.31 (s, 3H), 2.34 (t, J = 1.2 Hz, 3H), 3.67 (s, 2H), 6.91 (dd, J = 1.2, 8.4 Hz, 1H), 7.03 (dt, J = 1.2, 7.6 Hz, 1H), 7.10-7.17 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 19.8, 25.4, 29.6, 108.9, 115.8, 120.0, 124.0, 127.4, 128.6, 149.7, 159.8, 198.7; MS (ESI) m/z (%): 189.1 (M + H, 80); HRMS (Micromass LCT) Calcd. for C₁₂H₁₃O₂: 189.0916; Found: 189.0920.
Ethyl 2-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate 3ca.

Yellow liquid; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 1.24 (t, $J = 7.2$ Hz, 3H), 1.28 (t, $J = 7.2$ Hz, 3H), 3.61 (s, 2H), 3.83 (s, 2H), 4.14-4.21 (m, 4H), 6.86 (dd, $J = 0.8$, 8.0 Hz, 1H), 6.98 (dt, $J = 0.8$, 7.2 Hz, 1H), 7.04-7.11 (m, 2H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 13.8, 13.9, 24.4, 38.5, 60.2, 60.7, 103.3, 115.8, 119.7, 124.1, 127.3, 128.5, 149.6, 155.8, 166.6, 168.9; MS (ESI) m/z (%): 291.1 (M + H, 72); HRMS (Micromass LCT) Calcd. for C$_{16}$H$_{19}$O$_5$: 291.1232; Found: 291.1235.
2,3,4,9-Tetrahydro-1H-xanthen-1-one 3da.\(^3\)

Red solid; Mp. 131.2-131.9 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), TMS) \(\delta\) 2.03-2.08 (m, 2H), 2.45 (t, \(J = 6.8\) Hz, 2H), 2.55 (t, \(J = 5.6\) Hz, 2H), 3.49 (s, 2H), 3.69 (s, 2H), 6.94 (d, \(J = 8.4\) Hz, 1H), 7.04 (dt, \(J = 1.2, 7.6\) Hz, 1H), 7.12-7.16 (m, 2H); \(^13\)C NMR (100 MHz, CDCl\(_3\), TMS) \(\delta\) 20.5, 21.0, 27.6, 36.5, 109.9, 116.3, 120.7, 124.5, 127.4, 129.5, 149.7, 166.7, 198.0; MS (ESI) \(m/z\) (%): 201.1 (M + H, 21); HRMS (Micromass LCT) Calcd. for C\(_{13}\)H\(_{13}\)O\(_2\): 201.0916; Found: 201.0917.
7-Bromo-5-methoxy-2,3,4,9-tetrahydro-1H-xanthen-1-one 3dk.

Red solid; Mp. 187.0-188.0 °C; 1H NMR (400 MHz, CDCl$_3$, TMS) δ 2.02-2.08 (m, 2H), 2.45 (t, J = 5.6 Hz, 2H), 2.60 (t, J = 5.6 Hz, 2H), 3.41 (s, 2H), 3.86 (s, 3H), 6.84 (s, 1H), 6.85 (s, 1H); 13C NMR (100 MHz, CDCl$_3$, TMS) δ 20.4, 20.9, 27.4, 36.4, 56.1, 109.4, 113.5, 116.4, 123.3, 123.5, 138.4, 148.3, 166.1, 197.6; MS (ESI) m/z (%): 309.0 (M + H, 71); HRMS (Micromass LCT) Calcd. for C$_{14}$H$_{14}$BrO$_3$: 309.0126; Found: 309.0130.
Reference: