Dual-Mode Fluorescence Switching of Photochromic Bisthiazolylcoumarin

Kazushi Suzuki, Takashi Ubukata, Yasushi Yokoyama*

Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, Hodogaya, Yokohama, 240-8501, Japan
*yyokoyama@ynu.ac.jp

Electronic Supplementary Information

ESI-1 Experimental details of the synthesis of 1O, 2O and 3O
ESI-2 Change in absorption spectra of 1, 2 and 3 during photoirradiation
ESI-3 Photoreaction and fluorescence quantum yields of 1, 2 and 3
ESI-4 HPLC chromatograms of 1, 2 and 3 during photoirradiation
ESI-5 Change in fluorescence spectra of 1 and 2 during photoirradiation
ESI-6 Change in absorption spectra of 3 during acid-base titration
ESI-7 Change in fluorescence spectra of 3 during acid-base titration
ESI-8 Determination of fluorescence quantum yield
ESI-9 Change in absorption spectra of 3 during photoirradiation under basic condition
ESI-10 Change in fluorescence spectra of 3 during photoirradiation under basic condition
ESI-11 1H NMR spectra of prepared compounds
ESI-1. Experimental details of the synthesis of 1O, 2O and 3O

General. Chemical reactions were carried out under a dry nitrogen atmosphere. Anhydrous tetrahydrofuran (THF) was purchased and used as received. Dichloromethane and 1,4-dioxane was freshly distilled from calcium hydride before use. All other solvents were also used as received. Flash column chromatography was carried out on 230-400 mesh silica gel using ethyl acetate and hexane as the eluant. Analytical thin-layer chromatography was performed on the pre-coated 0.25-mm thick silica gel TLC plates.

1H NMR Spectra were recorded in deuteriochloroform (CDCl$_3$) or deuterated dimethylsulfoxide (DMSO-d_6) with a 300 MHz or 500 MHz NMR spectrometer. The J values are expressed in Hz and quoted chemical shifts are in ppm. The splitting patterns are indicated as s, singlet; d, doublet; t, triplet; m, multiplet. Infrared spectra (IR) were recorded on a FT-IR spectrometer. Low- and high-resolution mass spectra were measured by the electron impact ionization or electrospray ionization using a Mass spectrometer (MS). Ultraviolet (UV) and visible (VIS) spectra were recorded on a UV/Vis spectrophotometer. Fluorescence spectra were recorded on a fluorescence spectrophotometer. The melting points (Mp) were measured using a hot stage microscope and these values were uncorrected. Measurements of the pH values were carried out by using a HORIBA pH meter D-24.

Photochemical reactions were all carried out in a 10-mm path length quartz cell. Photoirradiation with 313-nm light was carried out using a 500-W high-pressure mercury lamp, separated by filters (a 5-cm water filter, a UV-31 glass filter, a UV-D33S glass filter, a 5-cm aqueous NiSO$_4$:6H$_2$O solution, a 1-cm aqueous K$_2$CrO$_4$ solution, and a 1-cm aqueous potassium diphthalate solution). Photoirradiation with 405-nm light was carried out with a 500 W high-pressure mercury lamp, separated by filters (a 5-cm water filter, a L-39 glass filter, a V-40 glass filter, and a KL-40 interference glass filter). Photoirradiation with 436-nm light was carried out with a 500 W high-pressure mercury lamp, separated by filters (a 5-cm water filter, a Y-43 glass filter, a V-44 glass filter). Photoirradiation with >500-nm light was carried out with a 500 W high-pressure mercury lamp, separated by filters (a 5-cm water filter, two Y-43 glass filters). During the photoreaction, solutions in the cell were stirred continuously.

High-performance liquid chromatography (HPLC) equipped with a UV/Vis detector and a silica gel column (Wakosil 5SIL, 4.6-mm diameter x 150-mm length) was used to determine the concentration of isomers during photoirradiation in regard to 1 and 2. In order to determine the concentration of isomers of 3 during photoirradiation, an HPLC apparatus equipped with reversed-phase column (WakoPak Navi C18-5, 4.6-mm diameter x 250-mm length) was used. HPLC grade acetonitrile and 40 mmol dm$^{-3}$ sodium acetate buffer solution were used as eluent.

Quantum yields were determined according to the method described in our previous paper.1)
Synthesis of 1O, 2O and 3O

Synthesis of 1O, 2O and 3O were carried out according to the following procedures.

Synthesis of (5-methyl-2-phenyl-4-thiazolyl)cyclic-triolborate lithium salt (7).

To a solution of 4-bromo-5-methyl-2-phenylthiazole (6) (1.22 g, 4.81 mmol, 1.00 eq) in anhydrous THF (34 mL) was added dropwise a hexane solution of n-butyllithium (2.63 mol dm$^{-3}$, 2.00 mL, 5.26 mmol, 1.09 eq) at −78 °C under a N$_2$ atmosphere. The resulting solution was stirred at this temperature for 1 h, then triisopropylborate (1.40 mL, 6.10 mmol, 1.27 eq) was added quickly, and the mixture was stirred for overnight with gradual warming up to room temperature. A solution of 1,1,1-tris(hydroxymethyl)ethane (0.587 g, 4.88 mmol, 1.02 eq) in anhydrous THF (20 mL) was then added through a cannula, and the resulting mixture was stirred for 5 h. Concentration to dryness under reduced pressure gave crude 1.74 g of 7 as a brown solid.
Mp >330 °C.

1H NMR (300 MHz, DMSO-d_6, TMS) δ/ppm 0.54 (3H, s), 2.47 (3H, s), 3.70 (6H, s), 7.43 (3H, m), 7.86 (2H, m). (Fig. S22).

IR (neat) v/cm$^{-1}$ 2958, 2869, 2362, 1734, 1456, 1374, 1231, 1069, 979, 930, 761, 688.

LRMS (EI, 70 eV) m/z (rel intensity), 303 ((M-Li+1)$^+$, 53), 263 ((M-46)$^+$, 100), 234 ((M-75)$^+$, 54), 207 ((M-102)$^+$, 78), 175 ((M-134)$^+$, 59).

Synthesis of 3-bromo-4-hydroxy-7-methoxycomarin (11).

A mixture of 4-hydroxy-7-methoxycoumarin (9) (806 mg, 4.19 mmol, 1.00 eq), N-bromosuccinimide (828 mg, 4.65 mmol, 1.11 eq) and Mg(ClO$_4$)$_2$ (299 mg, 1.34 mmol, 0.32 eq) in acetonitrile (120 mL) was stirred for 5h at room temperature under a N$_2$ atmosphere. The reaction mixture was extracted with ethyl ether. The combined organic layer was dried over anhydrous Na$_2$SO$_4$, the drying agent filtered off, and the solvent evaporated. The residue was dried and used without further purification and characterization.

Synthesis of 3-bromo-4-trifluoromethanesulfonyloxy-7-methoxycomarin (5).

To a solution of 3-bromo-4-hydroxy-7-methoxycomarin (11) and triethylamine (1.07 mL, 7.58 mmol, 1.81 eq) in anhydrous dichloromethane (130 mL) was added dropwise trifluoromethanesulfonic anhydride (1.06 mL, 6.30 mmol, 1.50 eq) at 0 °C under a N$_2$ atmosphere. The resulting solution was stirred at room temperature for 30 min, and then was evaporated under reduced pressure. The residue was purified directly by column chromatography on silica gel using ethyl acetate / hexane (15%) as the eluent, to give 825 mg (2.05 mmol) of 5 as a white solid in 49% yield.

Mp 129-132 °C.

1H NMR (300 MHz, CDCl$_3$, TMS) δ/ppm 3.93 (3H, s), 6.91 (1H, d, J/Hz=2.4), 6.99 (1H, dd, J/Hz=8.8, 2.4), 7.64 (1H, d, J/Hz=8.8). (Fig. S23).

IR (neat) v/cm$^{-1}$ 3078, 3009, 2364, 1737, 1603, 1426, 1357, 1211, 1126, 1053, 1018, 934, 805, 587.

LRMS (EI, 70 eV) m/z (rel intensity), 404 ((M+2)$^+$, 100), 402 (M$^+$, 97), 243 ((M-159)$^+$, 75), 241 ((M-161)$^+$, 75)

Synthesis of 3,4-bis(5-methyl-2-phenyl-4-thiazolyl)-coumarin (1O).

A suspension of (5-methyl-2-phenyl-4-thiazolyl)cyclic-triolborate lithium salt (7) (3.29 g, 10.65 mmol, 4.18 eq), 3-bromo-4-trifluoromethanesulfonyloxycomarin (4) (0.950 g, 2.55 mmol, 1.00 eq), palladium acetate (94.8 mg, 0.42 mmol, 0.16 eq) and 2-dicyclohexylphosphino-2’,4’,6’-triisopropylbiphenyl (Xphos) (249 mg, 0.52 mmol, 0.20 eq) in anhydrous 1,4-dioxane (5 mL) was heated for 15 min at 160 °C by microwaves. The reaction mixture was extracted with chloroform. The combined organic layer was dried over anhydrous Na$_2$SO$_4$, the drying agent filtered off, and the solvent evaporated. The residue was purified by
column chromatography on silica gel using ethyl acetate / hexane (20 %) as the eluent. After the solvent evaporated, the residue was reprecipitated with chloroform / hexane to give 144 mg (0.292 mmol) of 1O as a white solid in 12% yield. Mp 182-184 °C.

H NMR (500 MHz, CDCl3, TMS) δ/ppm 2.17 (3H, s), 2.34 (3H, s), 7.27 (4H, m), 7.42 (5H, m), 7.57 (1H, m), 7.72 (2H, d, J/Hz=4.2), 7.88 (2H, m) (Fig. S24).

IR (neat) v/cm⁻¹ 3062, 2360, 1712, 1498, 1272, 1194, 993, 751, 687.
LRMS (EI, 70 eV) m/z (rel intensity), 492 (M⁺, 100), 491 ((M-1)⁺, 76), 477 ((M-CH₃)⁺, 41).

Found: m/z 492.09986, Calcd for C₂₉H₂₀N₂O₂S₂: M, 492.09663.

Synthesis of 3,4-bis(5-methyl-2-phenyl-4-thiazolyl)-7-methoxycoumarin (2O).
A suspension of (5-methyl-2-phenyl-4-thiazolyl)cyclic-triolborate lithium salt (7) (3.16 g, 10.2 mmol, 4.92 eq), 3-bromo-4-trifluoromethanesulfonyloxy-7-methoxycoumarin (5) (0.838 g, 2.08 mmol, 1.00 eq), palladium acetate (32.0 mg, 0.143 mmol, 0.69 eq) and 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (Xphos) (120 mg, 0.252 mmol, 0.12 eq) in anhydrous 1,4-dioxane (8 mL) was heated for 15 min at 160 °C by microwaves. The reaction mixture was extracted with chloroform. The combined organic layer was dried over anhydrous Na₂SO₄, the drying agent filtered off, and the solvent evaporated. The residue was purified by column chromatography on silica gel using ethyl acetate / hexane (20 %) as the eluent. After the solvent evaporated, the residue was reprecipitated with chloroform / hexane to give 221 mg (0.423 mmol) of 2O as a white solid in 20% yield. Mp 150-153 °C.

H NMR (300 MHz, CDCl₃, TMS) δ/ppm 2.16 (3H, s), 2.32 (3H, s), 3.91 (3H, s), 6.82 (1H, dd, J/Hz=8.8, 2.4), 6.94 (1H, d, J/Hz=2.4), 7.25-7.35 (4 H, m), 7.43 (3H, m), 7.71 (2H, m), 7.88 (2H, m) (Fig. S25).

IR (neat) v/cm⁻¹ 2966, 2367, 2183, 1723, 1607, 1498, 1288, 1145, 1029, 762, 687.
LRMS (EI, 70 eV) m/z (rel intensity), 523 ((M+1)⁺, 39), 522 (M⁺, 100), 521 ((M-1)⁺, 77), 507 ((M-CH₃)⁺, 65).

Found: m/z 522.10788, Calcd for C₃₀H₂₂N₂O₃S₂: M, 522.10720.

Synthesis of 7-hydroxy-3,4-bis(5-methyl-2-phenyl-4-thiazolyl)-coumarin (3O).
To a solution of 3,4-bis(5-methyl-2-phenyl-4-thiazolyl)-7-methoxycoumarin (2O) (98.2 mg, 0.188 mmol, 1.00 eq) in anhydrous dichloromethane (8 mL) was added an excess of boron tribromide (1.50 mL, 15.8 mmol, 84.0 eq) at -78 °C under a N₂ atmosphere. The resulting solution was stirred at room temperature for 3 days. The reaction was quenched by adding water at 0 °C and the resultant mixture was extracted with dichloromethane. The combined organic layer was dried over anhydrous Na₂SO₄, the drying agent filtered off, and the solvent evaporated. The residue was purified by column chromatography on silica gel using ethyl acetate / hexane (30 %) as the eluent to give 32.1 mg
(0.0631 mmol) of 3O as a white solid in 34% yield.

Mp 105-109 °C.

\(^1\)H NMR (300 MHz, CDCl\text sub{3}, TMS) \(\delta/\text{ppm}\) 2.22 (3H, s), 2.33 (3H, s), 6.70 (1H, dd, \(J/\text{Hz}=8.7, 2.4\)), 6.79 (1H, d, \(J/\text{Hz}=2.4\)), 7.10 (1H, d, \(J/\text{Hz}=8.7\)), 7.26-7.43 (6H, m), 7.69-7.72 (2H, m), 7.83-7.86 (2H, m), 8.63 (1H, brs). (Fig. S26).

IR (neat) \(v/\text{cm}^{-1}\) 3284, 3062, 3022, 2920, 1720, 1693, 1614, 1599, 1569, 1462, 1220, 771.

LRMS (EI, 70 eV) m/z (rel intensity), 509 (\(M^+\), 4), 492 (\((M-OH)^+\), 19), 449 (\((M-60)^+\), 44), 367 (\((M-142)^+\), 100), 278 (\((M-231)^-\), 60)

Found: m/z 509.09923, Calcd for C\textsubscript{29}H\textsubscript{21}N\textsubscript{2}O\textsubscript{3}S\textsubscript{2}: M, 509.09881.
ESI-2. Change in absorption spectra of 1, 2 and 3 during photoirradiation

Figure S1. Change in absorption spectra from 1O to pss

- Concentration / mol dm\(^{-3}\): 2.70 \times 10^{-5} in hexane
- Light intensity / mW cm\(^{-2}\): 0.165 (313 nm)
- Irradiation time / min: 0, 0.25, 0.5, 1, 2, 3, 5, 8, 12

Figure S2. Change in absorption spectra from pss to 1O

- Concentration / mol dm\(^{-3}\): 2.70 \times 10^{-5} in hexane
- Light intensity / mW cm\(^{-2}\): 3.18 (578 nm)
- Irradiation time / min: 0, 1, 3, 6, 10, 15, 22, 30, 45, 75
Figure S3. Change in absorption spectra from $2O$ to pss

Concentration / mol dm$^{-3}$: 2.70×10^{-5} in hexane
Light intensity / mW cm$^{-2}$: 0.150 (313 nm)
Irradiation time / min: 0, 0.25, 0.5, 1, 2, 3, 5, 8, 12, 15

Figure S4. Change in absorption spectra from pss to $2O$

Concentration / mol dm$^{-3}$: 2.70×10^{-5} in hexane
Light intensity / mW cm$^{-2}$: 3.01 (578 nm)
Irradiation time / min: 0, 1, 3, 6, 10, 20, 35, 60, 105
Figure S5. Change in absorption spectra from $3O$ to pss

Concentration / mol dm$^{-3}$: 6.16 x10^{-5} in CH$_2$Cl$_2$
Light intensity / mW cm$^{-2}$: 0.414 (313 nm)
Irradiation time / min: 0, 1, 3, 6, 13, 24, 49, 100, 150

Figure S6. Change in absorption spectra from pss to $3O$

Concentration / mol dm$^{-3}$: 6.16 x10^{-5} in CH$_2$Cl$_2$
Light intensity / mW cm$^{-2}$: 8.57 (578 nm)
Irradiation time / min: 0, 1, 3, 6, 12, 24, 49
ESI-3. Quantum yields of photoreactions of 1, 2 and 3

Table S1. Quantum Yields of the Photoreactions of 1

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$E_T(30)$ / kcal mol$^{-1}$</th>
<th>Φ_{OC}</th>
<th>Φ_{CO}</th>
<th>Conversion / %</th>
<th>Φ_{CO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCN</td>
<td>45.6</td>
<td>0.47</td>
<td>0.033</td>
<td>92</td>
<td>0.0031</td>
</tr>
<tr>
<td>AcOEt</td>
<td>38.1</td>
<td>0.30</td>
<td>0.019</td>
<td>93</td>
<td>0.0029</td>
</tr>
<tr>
<td>Toluene</td>
<td>33.9</td>
<td>0.40</td>
<td>0.033</td>
<td>93</td>
<td>0.0031</td>
</tr>
<tr>
<td>Hexane</td>
<td>31.0</td>
<td>0.44</td>
<td>0.031</td>
<td>92</td>
<td>0.0048</td>
</tr>
</tbody>
</table>

Table S2. Quantum Yields of the Photoreactions of 2

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$E_T(30)$ / kcal mol$^{-1}$</th>
<th>Φ_{OC}</th>
<th>Φ_{CO}</th>
<th>Conversion / %</th>
<th>Φ_{CO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCN</td>
<td>45.6</td>
<td>0.60</td>
<td>0.024</td>
<td>96</td>
<td>0.0026</td>
</tr>
<tr>
<td>Hexane</td>
<td>31.0</td>
<td>0.49</td>
<td>0.013</td>
<td>98</td>
<td>0.0035</td>
</tr>
</tbody>
</table>

Table S3. Quantum yields of the photoreaction and fluorescence of 3

<table>
<thead>
<tr>
<th></th>
<th>$3O$</th>
<th>$3O_{\text{anion}}^{a)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>313 nm</td>
<td>578 nm</td>
</tr>
<tr>
<td>Φ_{OC}</td>
<td>Φ_{CO}</td>
<td>Φ_{CO}</td>
</tr>
<tr>
<td>Conversion / %</td>
<td>Φ_{CO}</td>
<td>Φ_{CO}</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>0.033</td>
<td>0.00054</td>
</tr>
<tr>
<td></td>
<td>0.003</td>
<td>98</td>
</tr>
<tr>
<td>CH$_3$CN</td>
<td>0.17</td>
<td>0.0013</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.011</td>
</tr>
<tr>
<td>H$_2$O-MeOH</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$3O_{\text{anion}}$ a) In order to generate $3O_{\text{anion}}$, excess DBU was added when the photoreaction was carried out in CH$_2$Cl$_2$ and MeOH/10 mM sodium tetraborate buffer solution (pH 9.5) was used in H$_2$O/MeOH. Conversion ratio was calculated from the fluorescence intensity.

b) Excitation wavelength; 330 nm. Anthracene in EtOH was used as the fluorescence standard.

Tables S1, S2 and S3 show the quantum yields of photoreactions of 1, 2, and 3 in different solvents. Fluorescence quantum yields of $3O_{\text{anion}}$ are described in Table S3.

The photocyclozation quantum yields (Φ_{OC}) of $3O$ and $3O_{\text{anion}}$ increased when the solvent polarity increased.

When DBU was added to $3O$ in CH$_2$Cl$_2$, the phenolate anion was generated and the photocyclization occurred, and Φ_{OC} of $3O_{\text{anion}}$ is larger than that of $3O$. However, when acetonitrile was used, it did not show photocyclization. This is in good accordance with the literature description1) that the phenolate anion of 7-hydroxycoumarin takes the quinone monomethide structure in polar solvents such as acetonitrile so that the hexatriene moiety which is necessary for electrocyclization is no longer existing. On the other hand, as $3C$, phenol structure generated in H$_2$O/MeOH, was insoluble in this solvent, the quantum yields could not be determined.
ESI-4. HPLC chromatograms of 1, 2 and 3 during photoirradiation

![HPLC chromatograms of 1, 2 and 3 during photoirradiation](image)

Figure S7. HPLC chromatograms of 1 in hexane.

Wakosil 5SIL, 20 % ethyl acetate / hexane, 1.0 ml min⁻¹, Detection wavelength: 269 nm
(a) Before irradiation, (b) Pss at 313 nm and (c) Pss at 578 nm
Figure S8. HPLC chromatograms of 2 in hexane.

Wakosil 5SIL, 20 % ethyl acetate / n-hexane, 1.0 ml min⁻¹, Detection wavelength: 314 nm
(a) Before irradiation, (b) Pss at 313 nm and (c) Pss at 578 nm
Figure S9. HPLC chromatograms of 3 in CH$_2$Cl$_2$.

WakoPak Navi C18-5, 80% acetonitrile / 20% sodium acetate buffer, 0.5 ml min$^{-1}$.
Detection wavelength: 328 nm
(a) Before irradiation, (b) Pss at 313 nm and (c) Pss at 578 nm
ESI-5. Change in fluorescence spectra of 1 and 2 during photoirradiation

Figure S10. Change in fluorescence spectra of 1 upon successive irradiation of 313- and 578-nm lights.

Concentration / mol dm$^{-3}$: 3.20×10^{-5} in hexane
Excitation wavelength: 356 nm

Figure S11. Change in fluorescence spectra of 2 upon successive irradiation of 313- and 578-nm lights.

Concentration / mol dm$^{-3}$: 3.00×10^{-5} in hexane
Excitation wavelength: 356 nm
Figure S12. Change in fluorescence intensity of 2 detected at 436 nm upon repeated irradiation of 313- and 578-nm lights.

Concentration / mol dm$^{-3}$: 3.00×10^{-5} in hexane

Excitation wavelength: 356 nm
ESI-6. Change in absorption spectra of 3 during acid-base titration

Figure S13. Change in absorption spectra of 3O upon addition of DBU (0 to 12.0 eq.) in CH$_2$Cl$_2$.

Concentration: 6.2 x 10$^{-5}$ mol dm$^{-3}$
equivalence of DBU: 0, 0.1, 0.3, 0.5, 1, 2, 5, 8, 12
ESI-7. Change in fluorescence spectra of 3 during acid-base titration: Determination of pKa

A solution of 3O (5.10 x 10^-6 mol dm^-3) in CH₃OH / H₂O (1/2 v/v) containing NaNO₃ (for adjusting ion strength; 0.1 mol dm^-3) was prepared. The pH value of each solution was adjusted by adding aq. NaOH solution and hydrochloric acid. The fluorescence intensity detected at 487 nm was plotted on a graph with regard to the pH of each solution. A sigmoidal curve which fits best with the data obtained was searched using KaleidaGraph nonlinear regression analysis program (Synergy Software, Reading, PA, USA) to determine the pKa value.¹)

Figure S14. Fluorescence spectral change of 3O at different pH values

Concentration / mol dm^-3: 5.1 x 10^-6
Solvent: CH₃OH/H₂O = 1:2 (containing 0.1 mol dm^-3 aq. NaNO₃)
Excitation Wavelength: 420 nm
pH of the solution: 2.64, 6.05, 6.38, 7.01, 7.58, 9.65
Figure S15. Change in fluorescence intensity of 3O at 487 nm with the change of pH of the solution

Circles: Experimental. Curve: Calculated by the following equation.\(^1\)

\[
F_{487} = F_{487}(2.6) + \frac{k}{(K_a [H^+] + 1)}
\]

where \(F_{487}\) is the fluorescence intensity of 3O at 487 nm at the designated pH, \(F_{487}(2.6)\) is the fluorescence intensity of 3O at 487 nm at pH 2.6, \(K_a\) represents the dissociation constant, \([H^+]\) stands for the concentration of proton, \(k\) expresses the value calculated by
\[
 k = (\varepsilon_{anion} \Phi_{anion} - \varepsilon_{phenol} \Phi_{phenol})
\]
\(\varepsilon\) is the molar absorption coefficient at the excitation wavelength, \(\Phi\) is the fluorescence quantum yield at the excitation wavelength.

ESI-8. Determination of fluorescence quantum yield
The excitation wavelength for the samples and the reference was 330 nm. Fluorescence spectra were calibrated by Rhodamine B. The relative quantum yields of the samples were obtained by comparing the area of the spectra of the sample and the reference. The fluorescence quantum yields were calculated with the following equation:

$$F_{sample} = F_{ref} \left(\frac{I_{sample}}{I_{ref}} \right) \left(\frac{A_{ref}}{A_{sample}} \right) \left(\frac{n_{sample}^2}{n_{ref}^2} \right)$$

where F is the quantum yield, I denotes the area of the fluorescence spectra, A represents the absorbance at the excitation wavelength, and n stands for the refractive index of the solvent used. Anthracene ($\phi = 0.30$ in EtOH$^{1)}$) was used as the reference compound, which was used after recrystallization from EtOH.

ESI-9. Change in absorption spectra of 3 during photoirradiation under basic condition

![Graph showing absorption spectra](image1)

Figure S16. Change in absorption spectra of 3O to pss in CH$_2$Cl$_2$ in the presence of 12.0 eq. DBU

Concentration / mol dm$^{-3}$: 6.16 x 10^{-5} in CH$_2$Cl$_2$
Light intensity / mW cm$^{-2}$: 0.19 (405 nm)
Irradiation time / min: 0, 1, 3, 6, 12, 24, 40

![Graph showing absorption spectra](image2)

Figure S17. Change in absorption spectra of 405-nm pss to 3O in CH$_2$Cl$_2$ in the presence of 12.0 eq. DBU

Concentration / mol dm$^{-3}$: 6.16 x 10^{-5} in CH$_2$Cl$_2$
Light intensity / mW cm$^{-2}$: 5.49 (578 nm)
Irradiation time / min: 0, 3, 16, 30, 60, 130, 180
Figure S18. Change in absorption spectra of 3O to pss in CH$_3$OH/buffer solution

Concentration / mol dm$^{-3}$: 4.38 x 10$^{-5}$
Solvent: CH$_3$OH/Buffer solution = 2:1
Buffer solution: 10 mmol dm$^{-3}$ sodium tetraborate buffer
pH of the solution: 9.48
Light intensity / mW cm$^{-2}$: 0.25 (405 nm)
Irradiation time / min: 0, 0.25, 0.5, 1, 2, 4, 7

Figure S19. Change in absorption spectra of 405-nm pss to 3O in CH$_3$OH/buffer solution with >500-nm light irradiation

Concentration / mol dm$^{-3}$: 4.38 x 10$^{-5}$
Solvent: CH$_3$OH/Buffer solution = 2:1
Composition of the buffer solution: 10 m mol dm$^{-3}$ sodium tetraborate buffer
pH of the solution: 9.48
Irradiation time / min: 0, 31, 60, 120
ESI-10. Change in fluorescence spectra of 3 during photoirradiation under basic condition

![Graph of fluorescence spectra](image)

Figure S20. Change in fluorescence spectra of 3 in CH$_2$Cl$_2$ in the presence of excess DBU upon successive irradiation with 405- and 578-nm lights.

Concentration / mol dm$^{-3}$: 2.46 x 10$^{-6}$
Solvent: CH$_2$Cl$_2$
Excitation wavelength: 330 nm

![Graph of fluorescence spectra](image)

Figure S21. Change in fluorescence spectra of 3 under basic condition upon successive irradiation with 405- and >500-nm lights.

Concentration / mol dm$^{-3}$: 2.75 x 10$^{-6}$
Solvent: CH$_3$OH/Buffer solution = 2:1
Composition of the buffer solution: 10 m mol dm$^{-3}$ sodium tetraborate buffer
pH of the solution: 9.51
Excitation wavelength: 420 nm
Fig. S22 1H NMR spectrum of compound 7 (300 MHz, DMSO-d_6, TMS)
Fig. S23 1H NMR spectrum of compound 5 (300 MHz, CDCl$_3$, TMS)
Fig. S24 1H NMR spectrum of compound 1O (500 MHz, CDCl$_3$, TMS)
Fig. S25 ¹H NMR spectrum of compound 20 (300 MHz, CDCl₃, TMS)
Fig. S26 1H NMR spectrum of compound 3O (300 MHz, CDCl$_3$, TMS)