Electronic supplementary information for the manuscript

“Facile preparation of amine and amino acid adducts of [60]fullerene using chlorofullerene C_{60}Cl_6 as a precursor”

Alexey B. Kornev, Ekaterina A. Khakina, Sergey I. Troyanov, Alla A. Kushch, Alexander Peregudov, Alexey Vasilchenko, Dmitry G. Deryabin, Vyacheslav M. Martynenko, and Pavel A. Troshin*

Table of contents:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. S1</td>
<td>HPLC profiles of compounds 1a, 1b and 1f (Phenomenex Luna 5u C18(2) column, 150 x 4.6 mm, methanol/toluene 70/30 v/v, flow rate 1 mL min(^{-1})).</td>
<td>3</td>
</tr>
<tr>
<td>Fig. S2</td>
<td>(^1)H (a), full (^{13})C (b) and low field (^{13})C (c) NMR spectra of 1a (CDCl(_3), 600 MHz for (^1)H NMR and 150 MHz for (^{13})C NMR).</td>
<td>4</td>
</tr>
<tr>
<td>Fig. S3</td>
<td>(^1)H (a), low field (^{13})C (b) and high field (^{13})C (c) NMR spectra of 1b (CDCl(_3), 600 MHz for (^1)H NMR and 150 MHz for (^{13})C NMR).</td>
<td>5</td>
</tr>
<tr>
<td>Fig. S4</td>
<td>H-H COSY (a) and H-C HMBC (b) NMR spectra of 1b.</td>
<td>6</td>
</tr>
<tr>
<td>Fig. S5</td>
<td>Low-field H-C HMQC (a) and high-field H-C HMQC (b) NMR spectra of 1b.</td>
<td>7</td>
</tr>
<tr>
<td>Fig. S6</td>
<td>(^1)H (a) and full (^{13})C (b) NMR spectra of 1c (CDCl(_3), 600 MHz for (^1)H NMR and 150 MHz for (^{13})C NMR).</td>
<td>8</td>
</tr>
<tr>
<td>Fig. S7</td>
<td>Low field (^{13})C (a) and high field (^{13})C (b) NMR spectra of 1c (CDCl(_3), 150 MHz).</td>
<td>9</td>
</tr>
<tr>
<td>Fig. S8</td>
<td>(^1)H (a) and full (^{13})C (b) NMR spectra of 1d (CDCl(_3), 600 MHz for (^1)H NMR and 150 MHz for (^{13})C NMR).</td>
<td>10</td>
</tr>
<tr>
<td>Fig. S9</td>
<td>Low field (^{13})C (a) and high field (^{13})C (b) NMR spectra of 1d (CDCl(_3), 150 MHz).</td>
<td>11</td>
</tr>
<tr>
<td>Fig. S10</td>
<td>Low-field H-H COSY (a) and high-field H-H COSY (b) NMR spectra of 1d.</td>
<td>12</td>
</tr>
<tr>
<td>Fig. S11</td>
<td>Low-field H-C HMQC (a) and high-field H-C HMQC (b) NMR spectra of 1d.</td>
<td>13</td>
</tr>
<tr>
<td>Fig. S12</td>
<td>H-C HMBC NMR spectrum of 1d.</td>
<td>14</td>
</tr>
<tr>
<td>Fig. S13</td>
<td>(^1)H (a) and full (^{13})C (b) NMR spectra of 1e (CDCl(_3), 600 MHz for (^1)H NMR and 150 MHz for (^{13})C NMR).</td>
<td>15</td>
</tr>
<tr>
<td>Fig. S14</td>
<td>Low field (^{13})C (a) and high field (^{13})C (b) NMR spectra of 1e (CDCl(_3), 150 MHz).</td>
<td>16</td>
</tr>
<tr>
<td>Fig. S15</td>
<td>H-H COSY (a) and H-C HMQC (b) NMR spectra of 1e.</td>
<td>17</td>
</tr>
<tr>
<td>Fig. S16</td>
<td>H-C HMBC NMR spectrum of 1e.</td>
<td>18</td>
</tr>
</tbody>
</table>
Fig. S17. 1H (a) and full 13C (b) NMR spectra of 1f (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).

Fig. S18. Low field 13C (a) and high field 13C (b) NMR spectra of 1f (CDCl$_3$, 150 MHz).

Fig. S19. H-C HMQC (a) and H-C HMBC (b) NMR spectra of 1f.

Fig. S20. 1H (a), full 13C (b) and low field 13C (c) NMR spectra of 1g (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).

Fig. S21. 1H (a), full 13C (b) and low field 13C (c) NMR spectra of 1h (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).

Fig. S22. 1H (a), full 13C (b) and low field 13C (c) NMR spectra of 1i (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).

Fig. S23. 1H (a) and H-H COSY (b) NMR spectra of 1j (CDCl$_3$, 600 MHz)

Fig. S24. 1H (a), full 13C (b) and low field 13C (c) NMR spectra of 1k (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).

Fig. S25. H-H COSY (a) and H-C HMQC (b) NMR spectra of 1k.

Fig. S26. H-C HMBC NMR spectrum of 1k.

Fig. S27. 1H (a) and full 13C (b) NMR spectra of 1l (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).

Fig. S28. Low field 13C (a) and high field 13C (b) NMR spectra of 1l (CDCl$_3$, 150 MHz).

Fig. S29. ESI-MS spectra of 1a (a), 1c (b), 1g (c) and 1j (d)

Fig. S30. ESI-MS spectrum of 1k.

Fig. S31. The absorption spectra of the compound 1f in low polar solvent (toluene), the acid 1l in polar solvent (tetrahydrofurane) and the salt 1l-K in water.

X-ray crystallography for 1d·CHCl$_3$

Experimental procedures used for the preparation of 1a-l

Preparation of water-soluble salts 1l-K and 1l-Na

Virological assays

Table S1. Agarose gel electrophoresis for 1k and 1l-K in aqueous solution
Fig. S1. HPLC profiles of compounds 1a (a), 1b (b) and 1f (c) (Phenomenex Luna 5u C18(2) column, 150 x 4.6 mm, methanol/toluene 70/30 v/v, flow rate 1 mL min⁻¹).
Fig. S2. 1H (a), full 13C (b) and low field 13C (c) NMR spectra of 1a (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S3. 1H (a), low field 13C (b) and high field 13C (c) NMR spectra of 1b (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S4. H-H COSY (a) and H-C HMBC (b) NMR spectra of 1b.
Fig. S5. Low-field H-C HMQC (a) and high-field H-C HMQC (b) NMR spectra of 1b.
Fig. S6. 1H (a) and full 13C (b) NMR spectra of 1c (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S7. Low field 13C (a) and high field 13C (b) NMR spectra of 1c (CDCl$_3$, 150 MHz).
Fig. S8. 1H (a) and full 13C (b) NMR spectra of 1d (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S9. Low field 13C (a) and high field 13C (b) NMR spectra of 1d (CDCl$_3$, 150 MHz).
Fig. S10. Low-field H-H COSY (a) and high-field H-H COSY (b) NMR spectra of 1d.
Fig. S11. Low-field H-C HMQC (a) and high-field H-C HMQC (b) NMR spectra of 1d.
Fig. S12. H-C HMBC NMR spectrum of 1d.
Fig. S13. 1H (a) and full 13C (b) NMR spectra of 1e (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S14. Low field 13C (a) and high field 13C (b) NMR spectra of 1e (CDCl$_3$, 150 MHz).
Fig. S15. H-H COSY (a) and H-C HMQC (b) NMR spectra of 1e.
Fig. S16. H-C HMBC NMR spectrum of 1e.
Fig. S17. 1H (a) and full 13C (b) NMR spectra of 1f (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S18. Low field 13C (a) and high field 13C (b) NMR spectra of 1f (CDCl$_3$, 150 MHz).
Fig. S19. H-C HMQC (a) and H-C HMBC (b) NMR spectra of 1f.
Fig. S20. 1H (a), full 13C (b) and low field 13C (c) NMR spectra of 1g (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S21. 1H (a), full 13C (b) and low field 13C (c) NMR spectra of 1h (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S22. 1H (a), full 13C (b) and low field 13C (c) NMR spectra of 1i (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S23. 1H (a) and H-H COSY (b) NMR spectra of 1j (CDCl$_3$, 600 MHz)
Fig. S24. 1H (a), full 13C (b) and low field 13C (c) NMR spectra of 1k (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S25. H-H COSY (a) and H-C HMQC (b) NMR spectra of 1k (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S26. H-C HMBC NMR spectrum of 1k.
Fig. S27. 1H (a) and full 13C (b) NMR spectra of 11 (CDCl$_3$, 600 MHz for 1H NMR and 150 MHz for 13C NMR).
Fig. S28. Low field 13C (a) and high field 13C (b) NMR spectra of 1l (CDCl$_3$, 150 MHz).
Fig. S29. ESI-MS spectra of 1a (a, [1a-Cl]−, calculated m/z 1371.4), 1c (b, [1b-Cl]−, calculated m/z 1441.5), 1g (c, [1g-H]−, calculated m/z 1550.5), 1j (d, [1j-H]−, calculated m/z 1646.6)
Fig. S30. ESI-MS spectrum of 1k.
Fig. S31. The absorption spectra of the compound 1f in low polar solvent (dichloromethane), the acid 1l in polar solvent (tetrahydrofurane) and the salt 1l-K in water.
X-ray crystallography for 1d·CHCl₃

Data collection for single crystal of 1d·CHCl₃ (0.04 × 0.02 × 0.01 mm³) was carried out with a MAR225 CCD detector at 100 K using synchrotron radiation at the BESSY storage ring, BL 14.2 (λ = 0.9050 Å, PSF of the Free University of Berlin, Germany). The structure was solved using direct methods (SHELXS97) and anisotropically refined against |F²| with SHELXL97. Absorption correction was not applied. All hydrogen atoms were placed into geometrically calculated positions and refined in the riding mode. Crystal data for 1d·CHCl₃: M = 1976.84, monoclinic, P2₁, a = 27.853(1), b = 29.022(1), c = 11.599(1) Å, β = 90.132(5)°, V = 9376.0(6) Å³, Z = 4, D(calc) = 1.400 g cm⁻³. Anisotropic refinement with 38574 reflections and 2710 parameters yielded a conventional R₁ = 0.082 for 35863 reflections with I > 2σ(I) and wR₂ = 0.199 for all reflections. Asymmetric unit contains two independent 1d molecules (1 and 2) and two chloroform molecules. Both 1d molecules exhibit the disorder of Cl atoms attached to the central pentagon on the fullerene cage. Obviously, the disorder occurs due to the approximate five-fold symmetry of the C₆₀(NH-CH(CH₂Ph)COOBu')₂Cl molecule which results in an overlap of the main molecule and the molecule(s) rotated by 72° around the pseudo five-fold axis. Therefore, the Cl atom in the molecule 1 is formally disordered between two positions, whereas disordering of Cl atom between three positions was present in the molecule 2. One of the solvated chloroform molecules is also disordered. For more details see CCDC 861958.
Experimental procedures used for the preparation of 1a-l

Chlorofullerene C_{60}Cl_6 (0.2-1.0 g) was dissolved in dry toluene (200-500 mL, distilled over sodium and stored with Na turnings prior using) in an inert atmosphere at room temperature. A small excess (7 eq.) of either a hydrochloride salt of amine or amino acid ester or a toluene solution of corresponding amino compound mixed with 4-5 fold excess of glacial acetic acid was added. Then a finely ground anhydrous potassium carbonate was added in a great excess (1-5 g). The resulting mixture was vigorously stirred at room temperature until TLC or HPLC analysis showed complete disappearance of the pristine C_{60}Cl_6 and the formation of corresponding aminofullerenes. The reactions with acetate salts of amines were very fast (2-15 min), while the crystalline hydrochlorides reacted slowly and required 2-5 days to complete the synthesis.

After the completion of the reaction insoluble byproducts and excess of potassium carbonate were removed by filtration and the filtrate was poured on the top of the silica gel chromatography column (2x30 cm, silica 40-60 µm, 60 Å). Elution with the toluene/ethyl acetate (1-20%) or toluene/methanol (0.3-1.0%) mixtures produced bright orange-red solutions of the title aminofullerenes 1a-j.

For the deprotection of BOC- or But'-protected solubilizing groups compounds 1f-1h and 1j (0.1-0.5 g) were dissolved in anhydrous CH_2Cl_2 (50-100 ml) and treated with a large excess of trifluoroacetic acid (10 ml). Resulting solution was stirred for 15 min at room temperature and then concentrated at the rotary evaporator. The obtained residues of carboxylic acid 1l or trifluoroacetates of the amines obtained from 1g, 1h and 1j were washed with diethyl ether and dried in air.

Selected spectroscopy data:

1a. \(^1\)H NMR (600 MHz, CDCl_3, δ, ppm): 1.40-1.55 (m, 45H), 3.89-4.20 (m, 10H).

\(^{13}\)C NMR (150 MHz, CDCl_3, δ, ppm): 28.04 (COOC(CH_3)_3), 28.09 (COOC(CH_3)_3), 28.13 (COOC(CH_3)_3), 48.65 (CH_2), 49.57 (CH_2), 50.85 (CH_2), 64.61 (sp\(^3\) fullerene cage), 67.00 (sp\(^3\) fullerene cage), 69.08 (sp\(^3\) fullerene cage), 76.36 (C-Cl), 81.24 (COOC(CH_3)_3), 81.55 (COOC(CH_3)_3), 81.58 (COOC(CH_3)_3), 139.59, 142.53, 143.00, 143.40, 143.69, 143.83, 143.92, 144.13, 144.22, 144.82, 145.23, 145.31, 147.17, 147.19, 147.23, 147.29, 147.91, 148.34, 148.37, 148.45, 148.72, 148.88, 149.62, 150.33, 153.75, 154.37, 171.20 (COOC(CH_3)_3), 171.80 (COOC(CH_3)_3), 171.96 (COOC(CH_3)_3).

FT-IR (KBr pellet, ν, cm\(^{-1}\)): 534 (M), 557 (M), 668 (M), 753 (M), 849 (M), 937 (M), 956 (M), 977 (M), 1036 (M), 1157 (VS), 1240 (S), 1282 (M), 1356 (M), 1368 (S), 1392 (M), 1433 (M), 1457 (M), 1732 (S), 2930 (M), 2977 (M).
1b. 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 1.35 (s, 9H), 1.37 (s, 9H), 1.38 (s, 9H), 1.39 (s, 9H), 1.45 (s, 9H), 1.50 -1.57 (m, 15H), 4.32-4.78 (m, 5H).

13C NMR (150 MHz, CDCl$_3$, δ, ppm): 20.62 (CH$_3$), 20.64 (CH$_3$), 20.89 (CH$_3$), 21.19 (CH$_3$), 27.85 (COOC(CH$_3$)$_3$), 27.94 (COOC(CH$_3$)$_3$), 27.96 (COOC(CH$_3$)$_3$), 27.97 (COOC(CH$_3$)$_3$), 54.21 (CH), 54.38 (CH), 54.46 (CH), 55.03 (CH), 56.33 (CH), 64.34 (sp3 fullerene cage), 64.56 (sp3 fullerene cage), 66.44 (sp3 fullerene cage), 66.78 (sp3 fullerene cage), 69.18 (sp3 fullerene cage), 76.6 (C-Cl), 80.57 (COOC(CH$_3$)$_3$), 81.04 (COOC(CH$_3$)$_3$), 81.06 (COOC(CH$_3$)$_3$), 81.14 (COOC(CH$_3$)$_3$), 140.23, 140.28, 142.45, 142.48, 142.80, 142.96, 143.08, 143.22, 143.35, 143.50, 143.79, 143.85, 143.89, 144.16, 144.20, 144.37, 144.38, 144.48, 144.52, 144.73, 145.08, 145.32, 145.56, 145.76, 146.79, 147.17, 147.21, 147.24, 147.28, 147.35, 147.90, 147.95, 148.24, 148.34, 148.37, 148.44, 148.49, 148.65, 148.73, 148.79, 150.13, 150.19, 150.53, 151.65, 153.97, 154.23, 154.59, 154.91, 175.61 (COOC(CH$_3$)$_3$), 176.02 (COOC(CH$_3$)$_3$), 176.17 (COOC(CH$_3$)$_3$).

FT-IR (KBr pellet, ν, cm$^{-1}$): 469 (W), 538 (W), 563 (W), 668 (W), 748 (W), 849 (W), 882 (WV), 1036 (W), 1066 (W), 1152 (S), 1220 (W), 1300 (W), 1338 (W), 1368 (W), 1392 (W), 1456 (W), 1474 (W), 1476 (M), 1726 (W), 2853 (W), 2926 (M), 2975 (M), 3432 (VS).

1c. 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 1.35 (s, 9H), 1.37 (s, 9H), 1.38 (s, 9H), 1.39 (s, 9H), 1.45 (s, 9H), 1.50 -1.57 (m, 15H), 4.32-4.78 (m, 5H).

13C NMR (150 MHz, CDCl$_3$, δ, ppm): 20.62 (CH$_3$), 20.64 (CH$_3$), 20.88 (CH$_3$), 21.18 (CH$_3$), 27.86 (COOC(CH$_3$)$_3$), 27.94 (COOC(CH$_3$)$_3$), 27.96 (COOC(CH$_3$)$_3$), 27.97 (COOC(CH$_3$)$_3$), 54.21 (CH), 54.38 (CH), 54.47 (CH), 55.03 (CH), 56.33 (CH), 64.34 (sp3 fullerene cage), 64.57 (sp3 fullerene cage), 66.45 (sp3 fullerene cage), 66.79 (sp3 fullerene cage), 69.17 (sp3 fullerene cage), 76.6 (C-Cl), 80.55 (COOC(CH$_3$)$_3$), 81.02 (COOC(CH$_3$)$_3$), 81.06 (COOC(CH$_3$)$_3$), 81.14 (COOC(CH$_3$)$_3$), 140.25, 140.29, 142.45, 142.48, 142.80, 142.96, 143.10, 143.22, 143.35, 143.50, 143.79, 143.85, 143.95, 144.16, 144.20, 144.37, 144.38, 144.48, 144.52, 144.73, 145.08, 145.32, 145.56, 145.76, 146.79, 147.17, 147.21, 147.24, 147.28, 147.35, 147.90, 147.95, 148.24, 148.33, 148.37, 148.44, 148.49, 148.65, 148.73, 148.80, 150.11, 150.20, 150.53, 151.66, 153.98, 154.23, 154.59, 154.92, 175.59 (COOC(CH$_3$)$_3$), 175.99 (COOC(CH$_3$)$_3$), 176.15 (COOC(CH$_3$)$_3$).

FT-IR (KBr pellet, ν, cm$^{-1}$): 438 (W), 476 (WV), 538 (M), 564 (W), 592 (WV), 682 (WV), 748 (W), 772 (W), 798 (W), 848 (M), 882 (W), 1066 (M), 1084 (M), 1152 (VS), 1220 (M), 1252 (M), 1300 (M), 1328 (W), 1368 (S), 1392 (M), 1456 (M), 1478 (M), 1632 (W), 1726 (S), 2868 (W), 2930 (M), 2974 (M), 3314 (W), 3420 (W).

1d. 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 1.04 (s, 9H), 1.15 (s, 9H), 1.17 (s, 9H), 1.21 (s, 9H), 1.24 (s, 9H), 2.94-3.80 (m, 10H), 4.90-5.35 (m, 5H), 7.19-7.52 (m, 25H).
13C NMR (150 MHz, CDCl$_3$, δ, ppm): 27.73 (COOC(CH$_3$)$_3$), 27.74 (COOC(CH$_3$)$_3$), 27.80 (COOC(CH$_3$)$_3$), 27.82 (COOC(CH$_3$)$_3$), 27.84 (COOC(CH$_3$)$_3$), 40.45 (CH$_2$Ph), 40.59 (CH$_2$Ph), 41.13 (CH$_2$Ph), 41.39 (CH$_2$Ph), 41.92 (CH$_2$Ph), 58.93, 59.69, 59.88, 61.89, 62.58, 63.83, 64.29, 65.52, 67.20, 68.45, 77.56 (C-Cl), 80.98 (COOC(CH$_3$)$_3$), 81.27 (COOC(CH$_3$)$_3$), 81.36 (COOC(CH$_3$)$_3$), 81.40 (COOC(CH$_3$)$_3$), 126.42, 126.47, 126.50, 126.61, 126.64, 126.81, 128.33, 128.37, 129.17, 129.44, 129.95, 130.00, 130.04, 137.32, 137.35, 137.38, 137.66, 137.81, 140.83, 141.53, 142.41, 142.45, 142.62, 142.75, 143.44, 143.52, 143.58, 143.62, 143.77, 144.06, 144.17, 144.18, 144.31, 144.32, 144.39, 144.44, 144.64, 144.88, 145.49, 145.58, 145.95, 147.15, 147.18, 147.23, 147.30, 147.34, 147.38, 147.95, 148.01, 148.25, 148.34, 148.37, 148.42, 148.52, 148.53, 148.58, 148.75, 149.76, 150.56, 151.05, 151.55, 154.23, 154.76, 155.33, 174.74 (COOC(CH$_3$)$_3$), 174.98 (COOC(CH$_3$)$_3$), 175.60 (COOC(CH$_3$)$_3$), 175.69 (COOC(CH$_3$)$_3$), 175.81 (COOC(CH$_3$)$_3$).

FT-IR (KBr pellet, υ, cm$^{-1}$): 467 (VW), 503 (W), 536 (W), 564 (W), 592 (W), 622 (W), 668 (W), 698 (M), 738 (M), 798 (W), 845 (W), 911 (WW), 984 (VV), 1031 (W), 1077 (W), 1151 (VS), 1223 (M), 1251 (M), 1342 (W), 1368 (M), 1392 (W), 1420 (W), 1456 (M), 1475 (W), 1496 (W), 1522 (WW), 1540 (WW), 1559 (VV), 1605 (W), 1636 (W), 1722 (S), 2930 (M), 2975 (M), 3002 (W), 3062 (W), 3086 (W), 3433 (M).

1H NMR (600 MHz, CDCl$_3$, δ, ppm): 1.18 (s, 9H), 1.25 (s, 9H), 1.26 (s, 9H), 1.27 (s, 9H), 1.28 (s, 9H), 1.35 (s, 9H), 1.37 (s, 9H), 1.38 (s, 9H), 1.39 (s, 9H), 1.44 (s, 9H), 3.60-3.95 (m, 10H), 4.51 (s, 1H), 4.56 (s, 1H), 4.62 (s, 1H), 4.65 (s, 1H), 4.84 (s, 1H).

13C NMR (150 MHz, CDCl$_3$, δ, ppm): 27.46 (COOC(CH$_3$)$_3$), 27.50 (COOC(CH$_3$)$_3$), 27.56 (COOC(CH$_3$)$_3$), 27.59 (COOC(CH$_3$)$_3$), 28.03 (COOC(CH$_3$)$_3$), 28.07 (COOC(CH$_3$)$_3$), 28.19 (COOC(CH$_3$)$_3$), 59.11, 59.19, 59.55, 59.99, 61.11, 64.05, 64.26, 64.47, 64.50, 64.79, 64.91, 65.06, 65.88, 66.67, 68.56, 72.54, 72.59, 72.68, 72.76, 72.93, 77.12 (C-Cl), 80.60 (COOC(CH$_3$)$_3$), 80.93 (COOC(CH$_3$)$_3$), 80.96 (COOC(CH$_3$)$_3$), 140.34, 140.92, 142.44, 142.50, 142.82, 142.96, 143.08, 143.13, 143.37, 143.66, 143.70, 143.82, 143.86, 143.87, 144.03, 144.18, 144.23, 144.31, 144.34, 144.51, 144.58, 145.35, 145.45, 145.50, 145.68, 147.08, 147.19, 147.21, 147.27, 147.34, 147.40, 147.90, 147.96, 148.20, 148.29, 148.34, 148.38, 148.40, 148.47, 148.53, 148.65, 148.75, 148.77, 149.93, 150.13, 150.78, 151.35, 154.13, 154.20, 154.43, 154.90, 173.60 (COOC(CH$_3$)$_3$), 173.63 (COOC(CH$_3$)$_3$), 173.74 (COOC(CH$_3$)$_3$), 173.97(COOC(CH$_3$)$_3$), 174.31 (COOC(CH$_3$)$_3$).

FT-IR (KBr pellet, υ, cm$^{-1}$): 459 (W), 482 (W), 523 (W), 544 (M), 564 (W), 613 (W), 668 (W), 694 (W), 751 (W), 764 (W), 788 (W), 816 (W), 850 (M), 880 (W), 983 (WW), 1021 (W), 1055 (M), 1096 (S), 1155 (VS), 1197 (S), 1235 (M), 1247 (M), 1290 (W), 1339 (W), 1365 (S),
1391 (M), 1419 (W), 1462 (M), 1473 (M), 1636 (W), 1732 (S), 2871 (M), 2932 (M), 2975 (S), 3436 (M).

1f. 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 1.31 (m, 60H), 1.45 (m, 10H), 1.46 (s, 45H), 1.59 (m, 10H), 1.70 (m, 10H), 2.22 (t, 10H), 3.28 (m, 5H).

13C NMR (150 MHz, CDCl$_3$, δ, ppm): 25.13, 27.52, 27.54, 28.14, 29.16, 29.38, 29.52, 29.55, 29.63, 29.67, 29.68, 35.63, 46.97, 47.30, 65.52, 67.84, 69.62, 77.59, 79.89, 140.45, 142.49, 143.27, 143.49, 143.95, 144.25, 144.35, 144.4, 144.83, 145.21, 145.49, 146.99, 147.2, 147.26, 147.29, 147.36, 148.31, 148.36, 148.39, 148.41, 148.66, 148.85, 149.84, 151.02, 153.82, 154.16, 173.3, 173.35.

FT-IR (KBr pellet, ν, cm$^{-1}$): 420 (W), 465 (W), 529 (M), 536 (M), 582 (W), 651 (W), 668 (M), 722 (M), 754 (W), 847 (M), 919 (W), 950 (W), 1039 (M), 1112 (M), 1153 (VS), 1255 (M), 1318 (M), 1366 (S), 1391 (M), 1419 (M), 1457 (M), 1540 (W), 1559 (W), 1636 (M), 1653 (M), 1730 (VS), 1772 (W), 2853 (S), 2926 (VS), 2975 (M), 3434 (S).

1g. 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 1.37-1.50 (m, 45H), 3.30-3.60 (m, 20H).

13C NMR (150 MHz, CDCl$_3$, δ, ppm): 28.47 (CH$_3$), 28.53 (CH$_3$), 41.00 (CH$_2$), 41.35 (CH$_2$), 41.69 (CH$_2$), 46.41 (CH$_2$), 46.57 (CH$_2$), 48.68 (CH$_2$), 65.05 (sp3 fullerene cage), 67.43 (sp3 fullerene cage), 69.92 (sp3 fullerene cage), 79.29 (COOC(CH$_3$)$_3$), 79.41 (COOC(CH$_3$)$_3$), 79.46 (COOC(CH$_3$)$_3$), 136.54, 137.89, 139.69, 142.56, 142.97, 143.56, 143.89, 144.02, 144.07, 144.18, 144.97, 145.31, 147.16, 147.17, 147.27, 147.90, 148.33, 148.39, 148.44, 148.75, 148.93, 149.65, 150.64, 153.65, 153.91, 156.30 (COOC(CH$_3$)$_3$), 156.46 (COOC(CH$_3$)$_3$), 156.51 (COOC(CH$_3$)$_3$).

FT-IR (KBr pellet, ν, cm$^{-1}$): 465 (W), 539 (M), 584 (M), 668 (W), 730 (W), 763 (W), 780 (M), 859 (W), 998 (M), 1043 (M), 1169 (VS), 1251 (S), 1271 (S), 1341 (M), 1366 (S), 1392 (S), 1419 (M), 1456 (S), 1479 (M), 1508 (S), 1636 (M), 1697 (VS), 2930 (M), 2976 (S), 3427 (S).

1h. 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 1.37-1.58 (m, 75H), 1.72 (m, 10H), 3.14 (m, 10H), 3.28 (m, 10H).

13C NMR (150 MHz, CDCl$_3$, δ, ppm): 28.47 (CH$_3$), 26.83 (CH$_3$), 26.96 (CH$_3$), 27.11 (CH$_2$), 27.17 (CH$_2$), 27.20 (CH$_2$), 30.09 (CH$_2$), 30.16 (CH$_2$), 30.62 (CH$_2$), 30.80 (CH$_2$), 40.59 (CH$_2$), 46.83 (CH$_2$), 47.14 (CH$_2$), 49.18 (CH$_2$), 65.48 (sp3 fullerene cage), 67.82 (sp3 fullerene cage), 69.61 (sp3 fullerene cage), 79.00 (COOC(CH$_3$)$_3$), 140.34, 142.49, 143.21, 143.50, 143.83, 143.98, 144.22, 144.29, 144.36, 144.59, 144.83, 145.17, 145.45, 146.21, 147.00, 147.19, 147.25, 147.28, 147.86, 148.31, 148.38, 148.41, 148.66, 148.85, 149.79, 150.94, 153.85, 154.09, 156.05 (COOC(CH$_3$)$_3$).

FT-IR (KBr pellet, ν, cm$^{-1}$): 464 (W), 537 (M), 558 (M), 582 (M), 648 (W), 668 (W), 730 (W), 763 (W), 780 (M), 865 (W), 924 (W), 1016 (M), 1042 (M), 1171 (VS), 1250 (S), 1272 (S).
1365 (S), 1391 (M), 1457 (S), 1519 (S), 1694 (VS), 2715 (M), 2857 (S), 2930 (S), 2974 (S), 3374 (S).

1i. 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 3.20-3.90 (m, 40H), 6.67 (t, 5H), 6.72 (d, 5H), 7.52 (m, 5H), 8.23 (d, 5H).

13C NMR (150 MHz, CDCl$_3$, δ, ppm): 43.84, 46.07, 46.17, 50.54, 71.44, 72.99, 73.59, 107.42, 113.54, 128.12, 128.93, 137.43, 137.60, 137.75, 137.87, 137.93, 142.33, 143.05, 143.13, 143.31, 143.68, 143.75, 143.83, 144.10, 144.91, 145.59, 146.30, 146.96, 147.02, 147.18, 147.22, 147.73, 147.97, 148.05, 148.14, 148.23, 148.90, 149.01, 153.61, 158.56, 159.51.

FT-IR (KBr pellet, ν, cm$^{-1}$): 424 (W), 462 (W), 529 (W), 668 (W), 732 (W), 773 (M), 846 (VW), 942 (W), 980 (M), 1003 (W), 1057 (W), 1098 (W), 1128 (W), 1156 (W), 1246 (M), 1267 (W), 1278 (W), 1312 (W), 1337 (W), 1437 (S), 1482 (S), 1560 (W), 1595 (S), 1636 (M), 2834 (M), 2923 (M), 3439 (VS).

1j. 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 1.40-1.60 (m, 45H), 3.10-3.90 (m, 40H).

FT-IR (KBr pellet, ν, cm$^{-1}$): 420 (W), 464 (W), 536 (W), 547 (W), 582 (W), 664 (W), 698 (W), 770 (W), 829 (W), 869 (W), 934 (VW), 1000 (S), 1036 (W), 1170 (S), 1252 (S), 1262 (S), 1285 (S), 1298 (M), 1366 (S), 1394 (S), 1420 (S), 1456 (S), 1477 (M), 1701 (VS), 2819 (W), 2856 (M), 2931 (M), 2975 (M), 3436 (M).

1k. 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 2.37 (m, 15H), 2.67 (m, 20H), 3.17 (m, 20H), 4.75 (s, 1H), 6.37 (m, 20H).

13C NMR (150 MHz, CDCl$_3$, δ, ppm): 43.85, 45.95, 46.06, 50.75, 52.32, 54.88, 71.14, 72.79, 73.38, 80.35, 130.52, 131.11, 131.28, 134.21, 142.06, 142.17, 142.9, 143.08, 143.16, 143.4, 143.62, 143.71, 144.87, 145.57, 146.35, 146.88, 146.97, 147.15, 147.18, 147.64, 147.96, 148.06, 148.15, 148.81, 148.86, 148.92, 153.37.

FT-IR (KBr pellet, ν, cm$^{-1}$): 474 (M), 525 (M), 548 (M), 585 (M), 837 (VW), 918 (VW), 981 (M), 1025 (M), 1057 (W), 1114 (M), 1144 (W), 1187 (M), 1280 (W), 1303 (W), 1319 (W), 1374 (W), 1458 (M), 1636 (M), 2476 (W), 2601 (M), 2689 (M), 2833 (M), 2955 (M), 3429 (VS).

Elemental analysis: calculated C, 72.94; H, 4.39; N, 10.01; Cl, 12.66. Found: C, 72.97; H, 4.47; N, 9.94; Cl, 12.84.

1l. 1H NMR (600 MHz, acetone-D$_6$, δ, ppm): 1.34 (m, 70H), 1.58 (m, 10H), 2.09 (m, 10H), 2.24 (m, 10H), 3.68 (m, 5H).

13C NMR (150 MHz, acetone-D$_6$, δ, ppm): 26.66, 27.16, 27.51, 27.72, 29.7, 29.82, 29.95, 33.55, 47.16, 47.40, 64.19, 125.02, 143.25, 145.87, 146.18, 146.5, 146.99, 149.67, 173.71.

FT-IR (KBr pellet, ν, cm$^{-1}$): 439 (W), 490 (W), 536 (M), 563 (W), 582 (W), 626 (W), 663 (W), 721 (M), 798 (M), 837 (M), 925 (M), 978 (M), 1000 (M), 1038 (W), 1093 (M), 1140 (S), 3429 (VS).
1199 (VS), 1277 (M), 1410 (M), 1434 (M), 1463 (M), 1531 (W), 1674 (S), 1682 (S), 1705 (VS), 2852 (S), 2925 (VS).
Preparation of water-soluble salts 1l-K and 1l-Na

Compound 1l was dissolved in a highly polar organic solvent (THF, acetone, methanol or ethanol) and mixed with equivalent amount of 1M aqueous potassium carbonate or sodium carbonate solution. The solutions were concentrated at the rotary evaporator; the obtained residues were washed with ethanol or acetone and dried in air. The brown powders of 1l-K and 1l-Na were obtained in 90-95% yields.

1l-K. Elemental analysis: calculated C, 72.18; H, 5.58; N, 3.66. Found: C, 72.15; H, 5.65; N, 3.50.

FT-IR (KBr pellet, \(\nu \), cm\(^{-1}\)): 474 (W), 622 (W), 648 (M), 703 (M), 752 (W), 832 (M), 880 (W), 921 (W), 986 (M), 1008 (M), 1059 (M), 1162 (W), 1404 (VS), 1571 (VS), 1631 (S), 1647 (S), 1750 (M), 2852 (S), 2924 (S), 3414 (S).
Virological assays

Activity of the compound 1l-K against two herpes viruses (*Herpes Simplex* (HSV) and human cytomegalovirus (CMV)) was investigated using standard *in vitro* assays. HSV-sensitive Vero cells and CMV-sensitive human embryo lung fibroblasts (HELF) were used to evaluate the 1l-K cytotoxicity. The concentration of the compound reducing the viability of the cells by 50% within 3 days after its addition to the culture medium (CC\textsubscript{50}) was >2500 ug/ml for Vero cells and >1000 ug/ml for HELF. These results show that 1l-K has low cytotoxicity with respect to the Vero and HELF cells. Antiviral activity was evaluated by monitoring the ability of the compound to inhibit a plaque formation (plaque reduction test) in the cells infected with corresponding viruses. The effective concentration of 1l-K providing the 50% inhibition of the plaque-forming activity (EC\textsubscript{50}) was 0.5 ug/ml for HSV and 72 ug/ml for CMV. Selectivity indices (SI) calculated as CC\textsubscript{50}/EC\textsubscript{50} were >5000 for HSV and >14 for CMV. These data indicate that 1l-K shows strong antiviral effect with respect to the both herpes viruses. The efficiency of the antiviral action varies from exceptionally high for HSV to moderate for CMV.

A detailed description of the general experimental procedures (citotoxicity and antiviral assays) is provided in the previous publications:

Table S1. Agarose gel electrophoresis for 1j and 1k-K

<table>
<thead>
<tr>
<th>Compound name</th>
<th>Mobility in electric field (the cathode is at the left, the anode - on the right)</th>
<th>ζ, mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1k</td>
<td></td>
<td>+ 20.5</td>
</tr>
<tr>
<td>1l-K</td>
<td></td>
<td>– 119</td>
</tr>
</tbody>
</table>