## Electronic Supplementary Information (ESI)

# Unsymmetrical diarylethene derivatives as molecular keypad lock with tunable photochromism and fluorescence via Cu<sup>2+</sup> and CN<sup>-</sup> coordination

Qi Zou, Xin Li, Junji Zhang, Ji Zhou, Bingbing Sun and He Tian\*

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China

University of Science & Technology, Shanghai 200237, P. R. China

E-mail: tianhe@ecust.edu.cn (He Tian);

Fax: +86-21-64252288; Tel: +86-21-64252756

#### **Experimental section**

Materials and instrumentations

 $Cu(CH_3COO)_2 \cdot H_2O$ , tetrabutylammonium cyanide (TBA<sup>+</sup>CN<sup>-</sup>) and n-butyl lithium (2.5 M solution in hexane) were purchased from Sigma–Aldrich and used without further purification. Other starting materials were commercially available and purified before use. All other reagents were of analytical purity and used without further treatment. The synthesis of 1-(5-chloro-2-methyl-3-thienyl)-2-(5-formyl- 2-methyl-3thienyl) cyclopentene and 1-(5-formyl-2-methyl-3-thienyl)-2-(5-(naphthalen-1-yl) vinyl- 2-methyl-3-thienyl) cyclopentene (compounds 1 and 2 shown in Scheme S1) was based on the literature method.<sup>1</sup>

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra in CDCl<sub>3</sub> were recorded on Brucker AM-400 spectrometers with tetramethylsilane (TMS) as the internal standard. Mass spectra (MS) were recorded on ESI mass spectroscopy. UV–vis absorption spectra were performed on a Varian Cray 500 spectrophotometer and fluorescence spectra were recorded on a Varian Cray Eclipse fluorescence spectrophotometer; both spectrophotometers were standardized.

Synthesis of 1-(5- Chloro-2- methyl-3-thienyl)- 2- (5- 2-methyleneaminophenol-2-methyl- 3-thienyl)cyclopentene (**P1**)

A mixture of compound **1** (0.161 g, 0.5 mmol) with 2-aminophenol (0.273 g, 2.5 mmol) in ethanol (2.5 mL) was refluxed for 7 h until no compound **1** was detected by TLC silica gel plate. The solution was concentrated under vacuum. After cooling to room temperature, the solution of dichloromethane (6 mL) and n-hexane (6 mL) was added to the residue and a lot of gray solid precipitated from the solution. After filtration, the filtrate was concentrated under vacuum. The crude product was purified by recrystallization using dichloromethane and n-hexane to give the compound **P1** (0.166 g, 80.2%) as a red solid. <sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>,  $\delta$ ): 1.88 (s, 3H, -CH<sub>3</sub>), 2.07 (m, 5H, -CH<sub>3</sub> and -CH<sub>2</sub>-), 2.77 (m, 4H, -CH<sub>2</sub>-), 6.61 (s, 1H, thiophene-H), 6.86 (m, 1H, benzene-H), 6.98 (d, 1H, *J* 8.0 Hz, benzene-H), 7.14 (m, 2H, benzene-H and thiophene-H), 7.23 (d, 1H, *J* 8.0 Hz, benzene-H), 8.60 (s, 1H, -CH=N-). <sup>13</sup>C NMR

(100 MHz, CDCl<sub>3</sub>,  $\delta$ ): 14.2, 15.1, 22.9, 38.3, 38.4, 114.9, 115.7, 120.0, 125.4, 126.7, 128.5, 133.4, 133.9, 134.4, 134.7, 134.8, 135.2, 136.8, 138.8, 141.5, 149.5, 152.1. HRMS (ESI+, *m*/*z*): [MH]<sup>+</sup> calcd for C<sub>22</sub>H<sub>21</sub>ClNOS<sub>2</sub>, 414.0753; found, 414.0754. Synthesis of 1-(5- 2-methyleneaminophenol-2-methyl-3-thienyl)-2-(5-(naphthalen-1-yl) vinyl- 2-methyl-3-thienyl) cyclopentene (**P2**)

A mixture of compound **2** (0.104 g, 0.236 mmol) with 2-aminophenol (0.026 g, 0.236 mmol) in ethanol (2 mL) was refluxed for 3 h. After cooling to room temperature, the green precipitates were collected by filtration and washed with cold ethanol. The crude product was purified by recrystallization using ethanol to give the compound **P2** (0.073 g, 58.1%) as a green solid. <sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>,  $\delta$ ): 2.00 (s, 3H, -CH<sub>3</sub>), 2.10 (m, 5H, -CH<sub>3</sub> and -CH<sub>2</sub>-), 2.80 (t, 4H, *J* 7.6 Hz, -CH<sub>2</sub>-), 6.81 (s, 1H, thiophene-H), 6.85 (m, 1H, benzene-H), 6.97 (d, 1H, *J* 8.0 Hz, -CH=CH-), 7.18 (m, 4H, benzene-H and thiophene-H), 7.49 (m, 4H, naphthalene-H), 7.69 (d, 1H, *J* 7.2 Hz, naphthalene-H), 7.76 (d, 1H, *J* 8.4 Hz, naphthalene-H), 7.85 (d, 1H, *J* 7.6 Hz, naphthalene-H), 8.17 (d, 1H, *J* 8.0 Hz, -CH=CH-), 8.62 (s, 1H, -CH=N-). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $\delta$ ): 14.7, 15.2, 23.0, 38.3, 38.5, 114.9, 115.7, 120.0, 123.2, 123.7, 124.2, 124.6, 125.7, 125.9, 126.1, 127.5, 127.9, 128.4, 128.6, 131.2, 133.7, 133.8, 134.2, 134.5, 135.3, 135.5, 135.9, 137.1, 138.6, 139.2, 141.6, 149.6, 152.1. HRMS (ESI+, *m*/z): [MH]<sup>+</sup> calcd for C<sub>34</sub>H<sub>30</sub>NOS<sub>2</sub>, 532.1769; found, 532.1766.



Scheme S1 Synthetic routine of compounds P1 and P2.



**Fig. S1** UV–vis spectra of compound **P1**  $(1.0 \times 10^{-5} \text{ M})$  and  $\text{Cu}^{2+} (0-1.2 \times 10^{-5} \text{ M})$  in CH<sub>3</sub>CN solution at 25 °C.



Fig. S2 UV–vis titration profile of compound P1 at 368 nm upon addition of various amounts of  $Cu^{2+}$  in CH<sub>3</sub>CN solution.



**Fig.S3** Job's plot of compound **P1** and  $Cu^{2+}$ , A and A<sub>0</sub> are the absorbance value at 368 nm of compound **P1** in the presence and absence of  $Cu^{2+}$ , respectively; the total concentration of compound **P1** and  $Cu^{2+}$  is  $1.0 \times 10^{-5}$  M in CH<sub>3</sub>CN solution at 25 °C.



Fig. S4 HRMS (ESI+) spectrum of compound P1 (10  $\mu$ M) with Cu<sup>2+</sup> (10  $\mu$ M) in CH<sub>3</sub>CN solution.



**Fig.S5** Absorption spectral changes of complex  $P1-Cu^{2+}$  in CH<sub>3</sub>CN solution  $(1.0 \times 10^{-5} \text{ M})$  upon irradiation with 365 nm light.



**Fig. S6** Left to right: color images of compound **P1**, complex **P1-Cu**<sup>2+</sup>, complex **P1-Cu**<sup>2+</sup> upon irradiation with 365 nm light in CH<sub>3</sub>CN solution.



**Fig. S7** Absorption spectral changes of compound **P2** in CH<sub>3</sub>CN solution  $(1.0 \times 10^{-5} \text{ M})$  upon irradiation with 365 nm light.



Fig. S8 Left to right: color images of compound P2, compound P3, complex P3- $Cu^{2+}$  in CH<sub>3</sub>CN solution.



Fig. S9 Left to right: color images of compound P2, complex P2-Cu<sup>2+</sup>, complex P3-Cu<sup>2+</sup> in CH<sub>3</sub>CN solution.



**Fig. S10** UV–vis spectra of compound **P2**  $(1.0 \times 10^{-5} \text{ M})$  and Cu<sup>2+</sup>  $(0-1.2 \times 10^{-5} \text{ M})$  in CH<sub>3</sub>CN solution at 25 °C.



**Fig. S11** Absorption spectral changes of complex  $P2-Cu^{2+}$  in CH<sub>3</sub>CN solution (1.0  $\times 10^{-5}$  M) upon irradiation with 365 nm light.



**Fig. S12** UV–vis titration profile of compound **P2** at 360 nm upon addition of various amounts of  $Cu^{2+}$  in CH<sub>3</sub>CN solution.



**Fig. S13** Job's plot of compound **P2** and  $Cu^{2+}$ , A and A<sub>0</sub> are the absorbance value at 360 nm of compound **P2** in the presence and absence of  $Cu^{2+}$ , respectively; the total

## concentration of compound **P2** and $Cu^{2+}$ is $1.0 \times 10^{-5}$ M in CH<sub>3</sub>CN solution at 25 °C.



Fig. S14 HRMS (ESI+) spectrum of compound P2 (10  $\mu$ M) with Cu<sup>2+</sup> (10  $\mu$ M) in CH<sub>3</sub>CN solution.



**Fig. S15** UV–vis spectra of complex **P2-Cu<sup>2+</sup>** ( $1.0 \times 10^{-5}$  M) and CN<sup>-</sup> ( $0-3.0 \times 10^{-5}$  M) in CH<sub>3</sub>CN solution at 25 °C.



**Fig. S16** Absorption spectral changes of complex **P2-Cu<sup>2+</sup>-CN**<sup>-</sup> in CH<sub>3</sub>CN solution  $(1.0 \times 10^{-5} \text{ M})$  upon irradiation with 365 nm light.



Fig. S17 Plot of fluorescence intensity at 445 nm change of compound P2 (10  $\mu$ M) against varied concentrations of Cu<sup>2+</sup> from 1.0 to 6.0  $\mu$ M in CH<sub>3</sub>CN solution ( $\lambda_{ex}$ 

=360 nm, slit: 10 nm/10 nm, PMT Volts: 600.). R= 0.996,  $k=2.72\times10^7$  au/M

The Standard Deviation ( $\sigma$ = 0.826) was obtained by fluorescence responses (10-times of consecutive scanning on the Cary Eclipse fluorescence spectrophotometer). Therefore, the detection limit was calculated by the formula ( $3\sigma/k$ ) and gave a result as 9.11×10<sup>-8</sup> M.



**Fig. S18** Job's plot of complex **P2-Cu<sup>2+</sup>** and CN<sup>-</sup>, A and A<sub>0</sub> are the absorbance value at 355 nm of complex **P2-Cu<sup>2+</sup>** in the presence and absence of CN<sup>-</sup>, respectively; the total concentration of complex **P2-Cu<sup>2+</sup>** and CN<sup>-</sup> is  $1.0 \times 10^{-5}$  M in CH<sub>3</sub>CN solution at 25 °C.



**Fig. S19** Fluorescence spectral changes of compound **P2-Cu<sup>2+</sup>** ( $1.0 \times 10^{-5}$  M) with CN<sup>-</sup> ( $3.0 \times 10^{-5}$  M– $1.0 \times 10^{-3}$  M) in CH<sub>3</sub>CN solution at 25 °C,  $\lambda_{ex}$ = 360 nm.



**Fig. S20** Plot of fluorescence intensity at 448 nm change of complex **P2-Cu<sup>2+</sup>** (10  $\mu$ M) against varied concentrations of CN<sup>-</sup> from 4.0 to 20.0  $\mu$ M in CH<sub>3</sub>CN solution ( $\lambda_{ex}$ 

=360 nm, slit: 10 nm/10 nm, PMT Volts: 600.). R= 0.993, k= 1.1×10<sup>8</sup> au/M

The Standard Deviation ( $\sigma$ = 0.826) was obtained by fluorescence responses (10-times of consecutive scanning on the Cary Eclipse fluorescence spectrophotometer). Therefore, the detection limit was calculated by the formula ( $3\sigma/k$ ) and gave a result as  $2.25 \times 10^{-8}$  M.



**Fig. S21** Fluorescence spectra of compound **P2**, **P2-CN**<sup>-</sup> and complex **P2-CN**<sup>-</sup>**Cu**<sup>2+</sup> in CH<sub>3</sub>CN solution ( $1.0 \times 10^{-5}$  M) upon irradiation with 365 nm light,  $\lambda_{ex}$ = 360 nm.



**Fig. S22** Fluorescence spectra of compound **P3**, **P3-CN<sup>-</sup>** and complex **P3-CN<sup>-</sup>-Cu<sup>2+</sup>** in CH<sub>3</sub>CN solution ( $1.0 \times 10^{-5}$  M) upon irradiation with 365 nm light,  $\lambda_{ex}$ = 360 nm.



**Fig. S23** Fluorescence changes of complex **P2-Cu<sup>2+</sup>** in CH<sub>3</sub>CN solution ( $1.0 \times 10^{-5}$  M) upon irradiation with 365 nm light,  $\lambda_{ex}$ = 360 nm.



**Fig. S24** Fluorescence changes of complex **P2-Cu<sup>2+</sup>-CN**<sup>-</sup> in CH<sub>3</sub>CN solution  $(1.0 \times 10^{-5} \text{ M})$  upon irradiation with 365 nm light,  $\lambda_{ex}$ = 360 nm.

| Entry | Input-1 | Input-2          | Input-3 | Output-1 | Output-2                                     | Output-3 |
|-------|---------|------------------|---------|----------|----------------------------------------------|----------|
|       | UV      | Cu <sup>2+</sup> | CN      | I≤100    | 100 <i≤150< td=""><td>I&gt;150</td></i≤150<> | I>150    |
| 1     | 0       | 0                | 0       | 1        | 0                                            | 0        |
| 2     | 0       | 0                | 1       | 1        | 0                                            | 0        |
| 3     | 0       | 1                | 0       | 0        | 1                                            | 0        |
| 4     | 1       | 0                | 0       | 1        | 0                                            | 0        |
| 5     | 0       | 1                | 1       | 0        | 0                                            | 1        |
| 6     | 1       | 0                | 1       | 1        | 0                                            | 0        |
| 7     | 1       | 1                | 0       | 1        | 0                                            | 0        |
| 8     | 1       | 1                | 1       | 1        | 0                                            | 0        |

Table S1. Truth table for the monomolecular circuit



**Fig. S25** Fluorescence emission output of compound **P2** corresponding to six possible input combinations at 448 nm.

#### Calculation

Theoretical studies were carried out by using the Gaussian 03 program package.<sup>2</sup> The ground state geometries of the compounds were optimized by using density functional theory (DFT). The hybrid B3LYP functional<sup>3</sup> and the 6-31G\* basis set<sup>4</sup> were used, and the solvent effect of CH<sub>3</sub>CN was taken into account by the polarizable continuum model (PCM).<sup>5</sup>



Fig. S26 Left to right: the proposed conformations of compound P1 (C-C = 3.69 Å) and P1-Cu<sup>2+</sup> complex (C-C = 3.60 Å).



Fig. S27 Left to right: the proposed conformations of compound P2 (C-C = 3.67 Å) and P2-Cu<sup>2+</sup> complex (C-C = 3.67 Å)

In order to study the excited states of the compounds, time-dependent DFT (TDDFT) studies were carried out by using the hybrid PBE0 functional<sup>6</sup> and the  $6-31G^*$  basis set,<sup>4</sup> with the solvent effect of CH<sub>3</sub>CN taken into account by the conductor-like polarizable continuum model (C-PCM).<sup>7</sup>



Fig. S28 Excitation of compound P1.



Fig. S29 Excitation of compound P2.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012



Fig. S30 HOMO (left) and LUMO (right) of  $P1-Cu^{2+}$  complex.



Fig. S31 <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum of compound P1.



Fig. S32 <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of compound P1.



Fig. S33 HRMS (ESI+) spectrum of compound P1.



**Fig. S34** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum of compound **P2**.



## Fig. S35 <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of compound P2.



Fig. S36 HRMS (ESI+) spectrum of compound P2.

### References

- 1 Q. Zou, J. Y. Jin, B. Xu, L. Ding and H. Tian, *Tetrahedron*, 2011, **67**, 915–921.
- 2 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin and J. C. Burant, et al., Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004.
- 3 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; (b) P. J. Stephens, F. J.
  Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623-11627.
- 4 P. C. Hariharan and J. A. Pople, *Theor. Chem. Acc.*, 1973, **28**, 213–222.
- 5 M. Cossi, G. Scalmani, N. Rega and V. Barone, *J. Chem. Phys.*, 2002, **117**, 43–54.
- 6 (a) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868; (b) C. Adamo and V. Barone, *J. Chem. Phys.*, 1999, 110, 6158–6169.
- M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669–681.