Electronic supplementary information

For

A Heptamethine cyanine-Based Colorimetric and Ratiometric Fluorescent Chemosensor for Selective Detection of Ag⁺ in an Aqueous Medium

Hong Zheng*, Min Yan, Xiao-Xing Fan, Dan Sun, Shi-Yao Yang, Li-Jiao Yang, Jun-Dong Li, Yun-Bao Jiang*

Department of Chemistry, College of Chemistry and Chemical Engineering, and the MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China.

E-mail: hzheng@xmu.edu.cn, ybjiang@xmu.edu.cn
Tel: +86 592 2180307; Fax: +86 592 2186731

Instruments and Materials

NMR spectra were recorded on Bruker AV400 NMR and Bruker AV300 NMR. Mass spectra were measured with a JEOL JMS-T100LC mass spectrometer (ESI+). HR-MS spectra were measured with a Bruker En Apex ultra 7.0T FT-MS mass spectrometer. Uncorrected fluorescence emission spectra were conducted on a Hitachi F-4500 luminescence spectrometer. Absorption spectra were determined on a Varian CARY 300 spectrometer. Doubly distilled water was used throughout the experiments. All the materials for synthesis were purchased from commercial suppliers and used without further purification.

General detection procedures. Compound 1 was dissolved in CH₃OH to make a 1.0×10⁻³ M stock solution, which was further diluted to required concentration for measurement. Silver nitrate was dissolved in water to make a 1.0×10⁻³ M stock solution of silver ion.
To 10-mL glass tubes containing 1.0 mL of 200 mM succinic acid—NaOH buffer solution (pH 5.4) and different amounts of silver ions, added the redistilled water to the full scale, the resulting solution were mixed thoroughly. Then 0.20 mL of 1.0 \(\times 10^{-3} \) M stock solution of compound 1 was added directly with a micropipette and the solutions were mixed again. The absorption and fluorescence sensing of Ag\(^+\) were run after 40 minutes.

(a) DMF (extra dry), K2CO3, N2 atmosphere, rt, 36 hs, (b) Triphenyl phosphine, dry CH3OH, refluxed for 2 hs, N2 atmosphere, (c) 1,8-Bis (dimethylamino) naphtalene, CH3OH, refluxed for 6 hs, N2 atmosphere.

Compound 2 and 3 were synthesized according to the references S1, S2.

Synthesis of compound 4. A mixture of 3 (0.3 g, 1.42 mmol), adenine (0.48 g, 3.55 mmol), and K2CO3 (0.89 g, 7.1 mmol) in anhydrous DMF (15 mL) was stirred under N2 atmosphere at room temperature for 36 hs. Then the resulting mixture was added to the saturated NaCl solution, then extracted with ethyl acetate. The organic layer was dried over anhydrous Na2SO4, and the solvents were evaporated in vacuum. The residue was chromatographed on silica gel with CH3OH /CH2Cl2 (1:10, v/v) as eluent to give 0.41 g (54.5%) of 4 as white solid.

\(^1\)H NMR (d6-DMSO, 400 MHz) \(\delta \) (ppm): 8.16 (s, 2H), 7.24 (s, 2H), 4.22 (t, \(J = 6.8 \) Hz, 2H), 3.39 (t, \(J = 6.4 \) Hz, 2H), 2.08 (penta, \(J = 6.8 \) Hz, 2H).

\(^1^3\)C NMR (d6-DMSO, 100 MHz) \(\delta \) (ppm): 156.44 , 152.89 , 150.04 , 141.28 , 119.23 , 48.56 , 40.96 , 29.09.
ESI mass spectrometry, m/z: 219.0 (M+H)

Synthesis of compound 5. A mixture of 4 (0.3 g, 1.38 mmol) and triphenyl phosphine (0.54 g, 2.06 mmol) in dry CH3OH (9 mL) was stirred and refluxed under N2 atmosphere for 2 hs. Then the resulting mixture were evaporated in vacuum. The residue was recrystallized in CH3OH to give 0.14 g (53%) of 5 as white solid.

1H NMR (d6-DMSO, 400 MHz) δ (ppm): 8.13 (s, 2H), 7.19 (s, 2H), 4.19 (t, J = 6.8 Hz, 2H), 2.47 (t, J = 6.4 Hz, 2H), 1.84 (penta, J = 6.8 Hz, 2H).

13C NMR (d6-DMSO, 100 MHz) δ (ppm): 156.41, 152.79, 150.03, 141.37, 119.19, 41.02, 38.90, 33.70.

ESI mass spectrometry, m/z: 193.1 (M+H)

HRMS: m/z: Calcd. for C8H12N6, (M+H) +: 193.12017, found: 193.12042.

Synthesis of compound 1. A mixture of 2 (0.1 g, 0.16 mmol), 5 (0.038 g, 0.2 mmol) and 1,8-Bis(dimethylamino) naphthalene (0.042 g, 0.2 mmol) in dry CH3OH (10 mL) was stirred and refluxed under N2 atmosphere for 6 hs. Then the resulting mixture were evaporated in vacuum. The residue was chromatographed on silica gel with CH3OH /CH2Cl2 (1:25, v/v) as eluent to give 0.057 g (45%) of 1 as blue solid.

1H NMR (CDCl3, 400 MHz) δ (ppm): 8.48 (s, 1H), 8.26 (s, 1H), 8.12 (s, 1H), 7.73 (bs, 2H), 7.270-7.291 (dd, J = 7.6, 0.8 Hz, 2H), 7.24 (d, J = 7.6 Hz, 2H), 7.05 (t, J = 7.5 Hz, 2H), 6.88 (d, J = 7.9 Hz, 2H), 5.99 (s, 2H), 5.51 (d, J = 12.8 Hz, 2H), 4.45 (t, J = 6.8 Hz, 2H), 3.91 – 3.82 (m, 2H), 3.41 (s, 6H), 2.72 – 2.56 (m, 2H), 2.46 (t, J = 6.2 Hz, 4H), 1.85 – 1.76 (m, 2H), 1.61 (s, 12H).

13C NMR (CDCl3, 100 MHz) δ (ppm): 169.66, 168.05, 155.46, 152.70, 150.06, 143.62, 141.14, 138.01, 128.10, 122.78, 122.04, 120.44, 119.42, 108.26, 94.20, 77.27, 47.75, 46.62, 41.24, 31.51, 28.98, 25.41, 22.69, 21.40.

ESI mass spectrometry, m/z: 639.2 (M+)

HRMS: m/z: Calcd. for C40H47N8, (M)+: 639.39237, found: 639.39129
Fig. S1 Effect of different pH on the ratiometric fluorescent response of 1 to Ag⁺ ion.

$[1] = 20.0 \mu$mol/L, $[Ag^+] = 10.0 \mu$mol/L, under the different pH with MeOH-H₂O (1/4, V/V) solutions. Dots in red represents the fluorescent ratiometric value (F_{546}/F_{731}) of 1+Ag⁺ solution; dots in black represents the ratiometric value (F_{546}/F_{731}) of 1 solution.

Fig. S2 Visual color changes of 1 upon addition of Ag⁺

$[1] = 20.0 \mu$mol/L, pH 5.40 (succinic acid-NaOH buffer). Concentration of Ag⁺, from left to right (μmol/L): 0.0, 0.6, 1.0, 3.0, 5.0, 7.0, 8.0, 9.0, 10.
Fig. S3 Fluorimetric response of 1 to Ag⁺ in the presence of competitive cations
[1] = 20.0 μmol/L, [Ag⁺] = 10.0 μmol/L, pH 5.40 (succinic acid-NaOH buffer) in MeOH-H₂O (1/5, V/V) solution. Cd²⁺, Fe³⁺, Cr³⁺, Cu²⁺, Co²⁺, Mn²⁺, Ni²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, each of 5 equiv. of Ag⁺; Al³⁺, Ba²⁺, Ca²⁺, Mg²⁺ and K⁺, each of 10 equiv. of Ag⁺, respectively.

Fig. S4 Relative Fluorescence intensity of 1 versus the Ag⁺ concentration
[1] = 20.0 μmol/L, pH 5.40 (succinic acid-NaOH buffer) in H₂O-MeOH (5/1, V/V) solution. λex / λem = 512 / 546 nm, 731 nm; slit: ex / em = 10.0/20.0 nm.
Fig. S5 Job’s plot of the complexation between 1 and Ag⁺
(a) by absorption spectroscopy; (b) by fluorescence spectroscopy;
[1]⁺[Ag⁺] = 20.0 µmol/L, pH 5.40 (succinic acid-NaOH buffer) in MeOH-H₂O (1/5, V/V)
solution.

Fig. S6 ¹H NMR spectra of 4 in DMSO-d6
Fig. S7 13C NMR spectra of 4 in DMSO-d6

Fig. S8 1H NMR spectra of 5 in DMSO-d6
Fig. S9 13C NMR spectra of 5 in DMSO-d6
Fig. S10 HR-MS spectra of 5
Fig. S11 1H NMR spectra of 1 in CDCl$_3$

Fig. S12 13C NMR spectra of 1 in CDCl$_3$
Fig. S13 HR-MS spectra of 1

References:
