Supporting Information

Custom-tailoring ordered taper-nanopore AAO membrane by combined nanosphere self-assembling, imprinting, anodizing and etching

Congshan Li, Juan Li, Cheng Chen, Jie Zhu and Xuefeng Gao*

Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China.

Experimental details

Silica nanospheres with average diameter ~280 nm are synthesized by modified Stöber method. 1.9 ml of tetraethoxysilane is dropwise added into ethanol solution (100 ml) containing 0.5 M ammonia and 17 M deioned water at room temperature, which is stirred for 12 h at a constant speed of 700 r min\(^{-1}\). The as-prepared silica nanospheres are washed with ethanol by repeating the process of centrifugation at a speed of 4000 r min\(^{-1}\) for 20 min and ultrasonic dispersion at least five times to remove impurities. These nanospheres are dispersed in a mixture of ethanol and water (V:V=1:1) to form 0.95 M suspension. 1 μL of suspension is dropped onto a clean glass tilted at 8° angle at relative humidity of 40%~50% at room temperature, which produces a hexagonally close-packing silica nanosphere monolayer. The highly pure (99.999%) Al disks with diameters of 2.5 cm were degreased by ultrasonic cleaning in acetone, ethanol and water for 10 min, respectively. Then, the samples were electropolished in a mixture of perchloric acid and ethanol (V/V = 1:4) for 8 min (20 V, 1 °C). After drying out using nitrogen air flow, the samples are gently placed on the surface of silica nanospheres and patterned into a layer of hexagonally non-close-packed nanopits by keeping the pressure of 102 kN cm\(^{-2}\) for 2 s. The electrochemical cell is equipped with a circulation cooling system to effectively remove the reaction heat. Here, the anode is the Al foil and the cathode is the platinum electrode. These nanopits can induce the in-situ and vertical growth of taper-nanopores under 5-step cyclic anodizing in 0.29 M H\(_3\)PO\(_4\) aqueous solution (5 °C) at 150 V for 50~200 s and etching in 0.43 M H\(_3\)PO\(_4\) aqueous solution (30 °C) for 5~25 min. All SEM images were taken using thermal field emission scanning electronic microscopy (Quanta 400 FEG, FEI) at 20 KV.
Figure S1. a) Schematic illustration of silica nanospheres imprinted on the surface of Al foil, showing a geometrical relationship between the nanospheres and the patterned nanopits. b) The SEM side-view of taper-nanopores. A small number of silica nanospheres embedded into the nanopore can be observed. This was caused by the downward growth of nanopores and the pore-widening induced capture effect. Only if a simple anodizing pre-patterning process is added, we can easily obtain the patterned Al foils and alumina taper-pores without any absorbed nanospheres.

Figure S2. SEM top-views of porous anodic alumina achieved at different voltages: a) 80 V; b) 180 V. The pre-patterned Al foils are treated by five-step cyclic anodizing 100 s in 0.29 M H₃PO₄ solution and etching 10 min in 0.43 M H₃PO₄ solution. The lower anodizing voltage leads to denser branched pores while the higher anodizing voltage results in looser dislocated nanopores, as indicated by the red arrow.

Figure S3. SEM top-view of a nanoporous AAO membrane, which was achieved by five-step cyclic treatment of anodizing 100 s in 0.29 M H₃PO₄ aqueous solution and etching 5 min in 0.43 M H₃PO₄ aqueous solution. Clearly, so short etching time is insufficient to produce regular taper-nanopores.